| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elint | Structured version Visualization version GIF version | ||
| Description: Membership in class intersection. (Contributed by NM, 21-May-1994.) |
| Ref | Expression |
|---|---|
| elint.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elint | ⊢ (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elint.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | eleq1 2823 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) | |
| 3 | 2 | imbi2d 340 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝑦 ∈ 𝑥) ↔ (𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥))) |
| 4 | 3 | albidv 1920 | . . 3 ⊢ (𝑦 = 𝐴 → (∀𝑥(𝑥 ∈ 𝐵 → 𝑦 ∈ 𝑥) ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥))) |
| 5 | df-int 4928 | . . 3 ⊢ ∩ 𝐵 = {𝑦 ∣ ∀𝑥(𝑥 ∈ 𝐵 → 𝑦 ∈ 𝑥)} | |
| 6 | 4, 5 | elab2g 3664 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥))) |
| 7 | 1, 6 | ax-mp 5 | 1 ⊢ (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∩ cint 4927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-int 4928 |
| This theorem is referenced by: elint2 4934 elintabOLD 4940 intss1 4944 intun 4961 intprg 4962 cssmre 21658 elintfv 35787 dfom5b 35935 |
| Copyright terms: Public domain | W3C validator |