MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elint Structured version   Visualization version   GIF version

Theorem elint 4958
Description: Membership in class intersection. (Contributed by NM, 21-May-1994.)
Hypothesis
Ref Expression
elint.1 𝐴 ∈ V
Assertion
Ref Expression
elint (𝐴 𝐵 ↔ ∀𝑥(𝑥𝐵𝐴𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem elint
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elint.1 . 2 𝐴 ∈ V
2 eleq1 2828 . . . . 5 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
32imbi2d 340 . . . 4 (𝑦 = 𝐴 → ((𝑥𝐵𝑦𝑥) ↔ (𝑥𝐵𝐴𝑥)))
43albidv 1919 . . 3 (𝑦 = 𝐴 → (∀𝑥(𝑥𝐵𝑦𝑥) ↔ ∀𝑥(𝑥𝐵𝐴𝑥)))
5 df-int 4953 . . 3 𝐵 = {𝑦 ∣ ∀𝑥(𝑥𝐵𝑦𝑥)}
64, 5elab2g 3684 . 2 (𝐴 ∈ V → (𝐴 𝐵 ↔ ∀𝑥(𝑥𝐵𝐴𝑥)))
71, 6ax-mp 5 1 (𝐴 𝐵 ↔ ∀𝑥(𝑥𝐵𝐴𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1536   = wceq 1538  wcel 2107  Vcvv 3479   cint 4952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1541  df-ex 1778  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-int 4953
This theorem is referenced by:  elint2  4959  elintabOLD  4965  intss1  4969  intun  4986  intprg  4987  cssmre  21735  elintfv  35758  dfom5b  35906
  Copyright terms: Public domain W3C validator