MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elint Structured version   Visualization version   GIF version

Theorem elint 4842
Description: Membership in class intersection. (Contributed by NM, 21-May-1994.)
Hypothesis
Ref Expression
elint.1 𝐴 ∈ V
Assertion
Ref Expression
elint (𝐴 𝐵 ↔ ∀𝑥(𝑥𝐵𝐴𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem elint
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elint.1 . 2 𝐴 ∈ V
2 eleq1 2820 . . . . 5 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
32imbi2d 344 . . . 4 (𝑦 = 𝐴 → ((𝑥𝐵𝑦𝑥) ↔ (𝑥𝐵𝐴𝑥)))
43albidv 1927 . . 3 (𝑦 = 𝐴 → (∀𝑥(𝑥𝐵𝑦𝑥) ↔ ∀𝑥(𝑥𝐵𝐴𝑥)))
5 df-int 4837 . . 3 𝐵 = {𝑦 ∣ ∀𝑥(𝑥𝐵𝑦𝑥)}
64, 5elab2g 3575 . 2 (𝐴 ∈ V → (𝐴 𝐵 ↔ ∀𝑥(𝑥𝐵𝐴𝑥)))
71, 6ax-mp 5 1 (𝐴 𝐵 ↔ ∀𝑥(𝑥𝐵𝐴𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wal 1540   = wceq 1542  wcel 2114  Vcvv 3398   cint 4836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1545  df-ex 1787  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-int 4837
This theorem is referenced by:  elint2  4843  elintab  4847  intss1  4851  intun  4868  intprg  4869  intprOLD  4871  cssmre  20509  elintfv  33310  dfom5b  33852
  Copyright terms: Public domain W3C validator