Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elint Structured version   Visualization version   GIF version

Theorem elint 4880
 Description: Membership in class intersection. (Contributed by NM, 21-May-1994.)
Hypothesis
Ref Expression
elint.1 𝐴 ∈ V
Assertion
Ref Expression
elint (𝐴 𝐵 ↔ ∀𝑥(𝑥𝐵𝐴𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem elint
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elint.1 . 2 𝐴 ∈ V
2 eleq1 2905 . . . 4 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
32imbi2d 342 . . 3 (𝑦 = 𝐴 → ((𝑥𝐵𝑦𝑥) ↔ (𝑥𝐵𝐴𝑥)))
43albidv 1914 . 2 (𝑦 = 𝐴 → (∀𝑥(𝑥𝐵𝑦𝑥) ↔ ∀𝑥(𝑥𝐵𝐴𝑥)))
5 df-int 4875 . 2 𝐵 = {𝑦 ∣ ∀𝑥(𝑥𝐵𝑦𝑥)}
61, 4, 5elab2 3674 1 (𝐴 𝐵 ↔ ∀𝑥(𝑥𝐵𝐴𝑥))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 207  ∀wal 1528   = wceq 1530   ∈ wcel 2107  Vcvv 3500  ∩ cint 4874 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-int 4875 This theorem is referenced by:  elint2  4881  elintab  4885  intss1  4889  intun  4906  intpr  4907  cssmre  20772  elintfv  32910  dfom5b  33276
 Copyright terms: Public domain W3C validator