HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjclem1 Structured version   Visualization version   GIF version

Theorem pjclem1 31435
Description: Lemma for projection commutation theorem. (Contributed by NM, 16-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
pjclem1.1 𝐺C
pjclem1.2 𝐻C
Assertion
Ref Expression
pjclem1 (𝐺 𝐶 𝐻 → ((proj𝐺) ∘ (proj𝐻)) = (proj‘(𝐺𝐻)))

Proof of Theorem pjclem1
StepHypRef Expression
1 pjclem1.1 . . . . . 6 𝐺C
2 pjclem1.2 . . . . . 6 𝐻C
31, 2cmbri 30830 . . . . 5 (𝐺 𝐶 𝐻𝐺 = ((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻))))
4 fveq2 6888 . . . . 5 (𝐺 = ((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻))) → (proj𝐺) = (proj‘((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻)))))
53, 4sylbi 216 . . . 4 (𝐺 𝐶 𝐻 → (proj𝐺) = (proj‘((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻)))))
6 inss2 4228 . . . . . . . 8 (𝐺𝐻) ⊆ 𝐻
71choccli 30547 . . . . . . . . . 10 (⊥‘𝐺) ∈ C
82, 7chub2i 30710 . . . . . . . . 9 𝐻 ⊆ ((⊥‘𝐺) ∨ 𝐻)
91, 2chdmm3i 30719 . . . . . . . . 9 (⊥‘(𝐺 ∩ (⊥‘𝐻))) = ((⊥‘𝐺) ∨ 𝐻)
108, 9sseqtrri 4018 . . . . . . . 8 𝐻 ⊆ (⊥‘(𝐺 ∩ (⊥‘𝐻)))
116, 10sstri 3990 . . . . . . 7 (𝐺𝐻) ⊆ (⊥‘(𝐺 ∩ (⊥‘𝐻)))
121, 2chincli 30700 . . . . . . . 8 (𝐺𝐻) ∈ C
132choccli 30547 . . . . . . . . 9 (⊥‘𝐻) ∈ C
141, 13chincli 30700 . . . . . . . 8 (𝐺 ∩ (⊥‘𝐻)) ∈ C
1512, 14pjscji 31410 . . . . . . 7 ((𝐺𝐻) ⊆ (⊥‘(𝐺 ∩ (⊥‘𝐻))) → (proj‘((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻)))) = ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻)))))
1611, 15ax-mp 5 . . . . . 6 (proj‘((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻)))) = ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻))))
1716eqeq2i 2745 . . . . 5 ((proj𝐺) = (proj‘((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻)))) ↔ (proj𝐺) = ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻)))))
18 coeq2 5856 . . . . . 6 ((proj𝐺) = ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻)))) → ((proj𝐻) ∘ (proj𝐺)) = ((proj𝐻) ∘ ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻))))))
1912pjfi 30944 . . . . . . . . . 10 (proj‘(𝐺𝐻)): ℋ⟶ ℋ
2014pjfi 30944 . . . . . . . . . 10 (proj‘(𝐺 ∩ (⊥‘𝐻))): ℋ⟶ ℋ
212, 19, 20pjsdii 31395 . . . . . . . . 9 ((proj𝐻) ∘ ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻))))) = (((proj𝐻) ∘ (proj‘(𝐺𝐻))) +op ((proj𝐻) ∘ (proj‘(𝐺 ∩ (⊥‘𝐻)))))
2212, 2pjss1coi 31403 . . . . . . . . . . 11 ((𝐺𝐻) ⊆ 𝐻 ↔ ((proj𝐻) ∘ (proj‘(𝐺𝐻))) = (proj‘(𝐺𝐻)))
236, 22mpbi 229 . . . . . . . . . 10 ((proj𝐻) ∘ (proj‘(𝐺𝐻))) = (proj‘(𝐺𝐻))
242, 14pjorthcoi 31409 . . . . . . . . . . 11 (𝐻 ⊆ (⊥‘(𝐺 ∩ (⊥‘𝐻))) → ((proj𝐻) ∘ (proj‘(𝐺 ∩ (⊥‘𝐻)))) = 0hop )
2510, 24ax-mp 5 . . . . . . . . . 10 ((proj𝐻) ∘ (proj‘(𝐺 ∩ (⊥‘𝐻)))) = 0hop
2623, 25oveq12i 7417 . . . . . . . . 9 (((proj𝐻) ∘ (proj‘(𝐺𝐻))) +op ((proj𝐻) ∘ (proj‘(𝐺 ∩ (⊥‘𝐻))))) = ((proj‘(𝐺𝐻)) +op 0hop )
2719hoaddridi 31026 . . . . . . . . 9 ((proj‘(𝐺𝐻)) +op 0hop ) = (proj‘(𝐺𝐻))
2821, 26, 273eqtri 2764 . . . . . . . 8 ((proj𝐻) ∘ ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻))))) = (proj‘(𝐺𝐻))
2928eqeq2i 2745 . . . . . . 7 (((proj𝐻) ∘ (proj𝐺)) = ((proj𝐻) ∘ ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻))))) ↔ ((proj𝐻) ∘ (proj𝐺)) = (proj‘(𝐺𝐻)))
30 coeq2 5856 . . . . . . . 8 (((proj𝐻) ∘ (proj𝐺)) = (proj‘(𝐺𝐻)) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) = ((proj𝐺) ∘ (proj‘(𝐺𝐻))))
31 inss1 4227 . . . . . . . . 9 (𝐺𝐻) ⊆ 𝐺
3212, 1pjss1coi 31403 . . . . . . . . 9 ((𝐺𝐻) ⊆ 𝐺 ↔ ((proj𝐺) ∘ (proj‘(𝐺𝐻))) = (proj‘(𝐺𝐻)))
3331, 32mpbi 229 . . . . . . . 8 ((proj𝐺) ∘ (proj‘(𝐺𝐻))) = (proj‘(𝐺𝐻))
3430, 33eqtrdi 2788 . . . . . . 7 (((proj𝐻) ∘ (proj𝐺)) = (proj‘(𝐺𝐻)) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) = (proj‘(𝐺𝐻)))
3529, 34sylbi 216 . . . . . 6 (((proj𝐻) ∘ (proj𝐺)) = ((proj𝐻) ∘ ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻))))) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) = (proj‘(𝐺𝐻)))
3618, 35syl 17 . . . . 5 ((proj𝐺) = ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻)))) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) = (proj‘(𝐺𝐻)))
3717, 36sylbi 216 . . . 4 ((proj𝐺) = (proj‘((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻)))) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) = (proj‘(𝐺𝐻)))
385, 37syl 17 . . 3 (𝐺 𝐶 𝐻 → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) = (proj‘(𝐺𝐻)))
391, 2cmcm3i 30834 . . . . 5 (𝐺 𝐶 𝐻 ↔ (⊥‘𝐺) 𝐶 𝐻)
407, 2cmbri 30830 . . . . 5 ((⊥‘𝐺) 𝐶 𝐻 ↔ (⊥‘𝐺) = (((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻))))
4139, 40bitri 274 . . . 4 (𝐺 𝐶 𝐻 ↔ (⊥‘𝐺) = (((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻))))
42 fveq2 6888 . . . . 5 ((⊥‘𝐺) = (((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻))) → (proj‘(⊥‘𝐺)) = (proj‘(((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻)))))
43 inss2 4228 . . . . . . . . 9 ((⊥‘𝐺) ∩ 𝐻) ⊆ 𝐻
442, 1chub2i 30710 . . . . . . . . . 10 𝐻 ⊆ (𝐺 𝐻)
451, 2chdmm4i 30720 . . . . . . . . . 10 (⊥‘((⊥‘𝐺) ∩ (⊥‘𝐻))) = (𝐺 𝐻)
4644, 45sseqtrri 4018 . . . . . . . . 9 𝐻 ⊆ (⊥‘((⊥‘𝐺) ∩ (⊥‘𝐻)))
4743, 46sstri 3990 . . . . . . . 8 ((⊥‘𝐺) ∩ 𝐻) ⊆ (⊥‘((⊥‘𝐺) ∩ (⊥‘𝐻)))
487, 2chincli 30700 . . . . . . . . 9 ((⊥‘𝐺) ∩ 𝐻) ∈ C
497, 13chincli 30700 . . . . . . . . 9 ((⊥‘𝐺) ∩ (⊥‘𝐻)) ∈ C
5048, 49pjscji 31410 . . . . . . . 8 (((⊥‘𝐺) ∩ 𝐻) ⊆ (⊥‘((⊥‘𝐺) ∩ (⊥‘𝐻))) → (proj‘(((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻)))) = ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻)))))
5147, 50ax-mp 5 . . . . . . 7 (proj‘(((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻)))) = ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))))
5251eqeq2i 2745 . . . . . 6 ((proj‘(⊥‘𝐺)) = (proj‘(((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻)))) ↔ (proj‘(⊥‘𝐺)) = ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻)))))
53 coeq2 5856 . . . . . . 7 ((proj‘(⊥‘𝐺)) = ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻)))) → ((proj𝐻) ∘ (proj‘(⊥‘𝐺))) = ((proj𝐻) ∘ ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))))))
5448pjfi 30944 . . . . . . . . . . 11 (proj‘((⊥‘𝐺) ∩ 𝐻)): ℋ⟶ ℋ
5549pjfi 30944 . . . . . . . . . . 11 (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))): ℋ⟶ ℋ
562, 54, 55pjsdii 31395 . . . . . . . . . 10 ((proj𝐻) ∘ ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))))) = (((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ 𝐻))) +op ((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻)))))
5748, 2pjss1coi 31403 . . . . . . . . . . . 12 (((⊥‘𝐺) ∩ 𝐻) ⊆ 𝐻 ↔ ((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ 𝐻))) = (proj‘((⊥‘𝐺) ∩ 𝐻)))
5843, 57mpbi 229 . . . . . . . . . . 11 ((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ 𝐻))) = (proj‘((⊥‘𝐺) ∩ 𝐻))
592, 49pjorthcoi 31409 . . . . . . . . . . . 12 (𝐻 ⊆ (⊥‘((⊥‘𝐺) ∩ (⊥‘𝐻))) → ((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻)))) = 0hop )
6046, 59ax-mp 5 . . . . . . . . . . 11 ((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻)))) = 0hop
6158, 60oveq12i 7417 . . . . . . . . . 10 (((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ 𝐻))) +op ((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))))) = ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op 0hop )
6254hoaddridi 31026 . . . . . . . . . 10 ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op 0hop ) = (proj‘((⊥‘𝐺) ∩ 𝐻))
6356, 61, 623eqtri 2764 . . . . . . . . 9 ((proj𝐻) ∘ ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))))) = (proj‘((⊥‘𝐺) ∩ 𝐻))
6463eqeq2i 2745 . . . . . . . 8 (((proj𝐻) ∘ (proj‘(⊥‘𝐺))) = ((proj𝐻) ∘ ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))))) ↔ ((proj𝐻) ∘ (proj‘(⊥‘𝐺))) = (proj‘((⊥‘𝐺) ∩ 𝐻)))
65 coeq2 5856 . . . . . . . . 9 (((proj𝐻) ∘ (proj‘(⊥‘𝐺))) = (proj‘((⊥‘𝐺) ∩ 𝐻)) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))) = ((proj𝐺) ∘ (proj‘((⊥‘𝐺) ∩ 𝐻))))
661, 13chub1i 30709 . . . . . . . . . . 11 𝐺 ⊆ (𝐺 (⊥‘𝐻))
671, 2chdmm2i 30718 . . . . . . . . . . 11 (⊥‘((⊥‘𝐺) ∩ 𝐻)) = (𝐺 (⊥‘𝐻))
6866, 67sseqtrri 4018 . . . . . . . . . 10 𝐺 ⊆ (⊥‘((⊥‘𝐺) ∩ 𝐻))
691, 48pjorthcoi 31409 . . . . . . . . . 10 (𝐺 ⊆ (⊥‘((⊥‘𝐺) ∩ 𝐻)) → ((proj𝐺) ∘ (proj‘((⊥‘𝐺) ∩ 𝐻))) = 0hop )
7068, 69ax-mp 5 . . . . . . . . 9 ((proj𝐺) ∘ (proj‘((⊥‘𝐺) ∩ 𝐻))) = 0hop
7165, 70eqtrdi 2788 . . . . . . . 8 (((proj𝐻) ∘ (proj‘(⊥‘𝐺))) = (proj‘((⊥‘𝐺) ∩ 𝐻)) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))) = 0hop )
7264, 71sylbi 216 . . . . . . 7 (((proj𝐻) ∘ (proj‘(⊥‘𝐺))) = ((proj𝐻) ∘ ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))))) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))) = 0hop )
7353, 72syl 17 . . . . . 6 ((proj‘(⊥‘𝐺)) = ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻)))) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))) = 0hop )
7452, 73sylbi 216 . . . . 5 ((proj‘(⊥‘𝐺)) = (proj‘(((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻)))) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))) = 0hop )
7542, 74syl 17 . . . 4 ((⊥‘𝐺) = (((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻))) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))) = 0hop )
7641, 75sylbi 216 . . 3 (𝐺 𝐶 𝐻 → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))) = 0hop )
7738, 76oveq12d 7423 . 2 (𝐺 𝐶 𝐻 → (((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) +op ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺))))) = ((proj‘(𝐺𝐻)) +op 0hop ))
78 df-iop 30989 . . . . . . 7 Iop = (proj‘ ℋ)
7978coeq2i 5858 . . . . . 6 ((proj𝐻) ∘ Iop ) = ((proj𝐻) ∘ (proj‘ ℋ))
802pjfi 30944 . . . . . . 7 (proj𝐻): ℋ⟶ ℋ
8180hoid1i 31029 . . . . . 6 ((proj𝐻) ∘ Iop ) = (proj𝐻)
8279, 81eqtr3i 2762 . . . . 5 ((proj𝐻) ∘ (proj‘ ℋ)) = (proj𝐻)
831pjtoi 31419 . . . . . . 7 ((proj𝐺) +op (proj‘(⊥‘𝐺))) = (proj‘ ℋ)
8483coeq2i 5858 . . . . . 6 ((proj𝐻) ∘ ((proj𝐺) +op (proj‘(⊥‘𝐺)))) = ((proj𝐻) ∘ (proj‘ ℋ))
851pjfi 30944 . . . . . . 7 (proj𝐺): ℋ⟶ ℋ
867pjfi 30944 . . . . . . 7 (proj‘(⊥‘𝐺)): ℋ⟶ ℋ
872, 85, 86pjsdii 31395 . . . . . 6 ((proj𝐻) ∘ ((proj𝐺) +op (proj‘(⊥‘𝐺)))) = (((proj𝐻) ∘ (proj𝐺)) +op ((proj𝐻) ∘ (proj‘(⊥‘𝐺))))
8884, 87eqtr3i 2762 . . . . 5 ((proj𝐻) ∘ (proj‘ ℋ)) = (((proj𝐻) ∘ (proj𝐺)) +op ((proj𝐻) ∘ (proj‘(⊥‘𝐺))))
8982, 88eqtr3i 2762 . . . 4 (proj𝐻) = (((proj𝐻) ∘ (proj𝐺)) +op ((proj𝐻) ∘ (proj‘(⊥‘𝐺))))
9089coeq2i 5858 . . 3 ((proj𝐺) ∘ (proj𝐻)) = ((proj𝐺) ∘ (((proj𝐻) ∘ (proj𝐺)) +op ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))))
9180, 85hocofi 31006 . . . 4 ((proj𝐻) ∘ (proj𝐺)): ℋ⟶ ℋ
9280, 86hocofi 31006 . . . 4 ((proj𝐻) ∘ (proj‘(⊥‘𝐺))): ℋ⟶ ℋ
931, 91, 92pjsdii 31395 . . 3 ((proj𝐺) ∘ (((proj𝐻) ∘ (proj𝐺)) +op ((proj𝐻) ∘ (proj‘(⊥‘𝐺))))) = (((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) +op ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))))
9490, 93eqtr2i 2761 . 2 (((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) +op ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺))))) = ((proj𝐺) ∘ (proj𝐻))
9577, 94, 273eqtr3g 2795 1 (𝐺 𝐶 𝐻 → ((proj𝐺) ∘ (proj𝐻)) = (proj‘(𝐺𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  cin 3946  wss 3947   class class class wbr 5147  ccom 5679  cfv 6540  (class class class)co 7405  chba 30159   C cch 30169  cort 30170   chj 30173   𝐶 ccm 30176  projcpjh 30177   +op chos 30178   0hop ch0o 30183   Iop chio 30184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cc 10426  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185  ax-mulf 11186  ax-hilex 30239  ax-hfvadd 30240  ax-hvcom 30241  ax-hvass 30242  ax-hv0cl 30243  ax-hvaddid 30244  ax-hfvmul 30245  ax-hvmulid 30246  ax-hvmulass 30247  ax-hvdistr1 30248  ax-hvdistr2 30249  ax-hvmul0 30250  ax-hfi 30319  ax-his1 30322  ax-his2 30323  ax-his3 30324  ax-his4 30325  ax-hcompl 30442
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-omul 8467  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-acn 9933  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ioo 13324  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-fl 13753  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-rlim 15429  df-sum 15629  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-hom 17217  df-cco 17218  df-rest 17364  df-topn 17365  df-0g 17383  df-gsum 17384  df-topgen 17385  df-pt 17386  df-prds 17389  df-xrs 17444  df-qtop 17449  df-imas 17450  df-xps 17452  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-mulg 18945  df-cntz 19175  df-cmn 19644  df-psmet 20928  df-xmet 20929  df-met 20930  df-bl 20931  df-mopn 20932  df-fbas 20933  df-fg 20934  df-cnfld 20937  df-top 22387  df-topon 22404  df-topsp 22426  df-bases 22440  df-cld 22514  df-ntr 22515  df-cls 22516  df-nei 22593  df-cn 22722  df-cnp 22723  df-lm 22724  df-haus 22810  df-tx 23057  df-hmeo 23250  df-fil 23341  df-fm 23433  df-flim 23434  df-flf 23435  df-xms 23817  df-ms 23818  df-tms 23819  df-cfil 24763  df-cau 24764  df-cmet 24765  df-grpo 29733  df-gid 29734  df-ginv 29735  df-gdiv 29736  df-ablo 29785  df-vc 29799  df-nv 29832  df-va 29835  df-ba 29836  df-sm 29837  df-0v 29838  df-vs 29839  df-nmcv 29840  df-ims 29841  df-dip 29941  df-ssp 29962  df-ph 30053  df-cbn 30103  df-hnorm 30208  df-hba 30209  df-hvsub 30211  df-hlim 30212  df-hcau 30213  df-sh 30447  df-ch 30461  df-oc 30492  df-ch0 30493  df-shs 30548  df-chj 30550  df-pjh 30635  df-cm 30823  df-hosum 30970  df-h0op 30988  df-iop 30989
This theorem is referenced by:  pjclem2  31436
  Copyright terms: Public domain W3C validator