HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjclem1 Structured version   Visualization version   GIF version

Theorem pjclem1 32097
Description: Lemma for projection commutation theorem. (Contributed by NM, 16-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
pjclem1.1 𝐺C
pjclem1.2 𝐻C
Assertion
Ref Expression
pjclem1 (𝐺 𝐶 𝐻 → ((proj𝐺) ∘ (proj𝐻)) = (proj‘(𝐺𝐻)))

Proof of Theorem pjclem1
StepHypRef Expression
1 pjclem1.1 . . . . . 6 𝐺C
2 pjclem1.2 . . . . . 6 𝐻C
31, 2cmbri 31492 . . . . 5 (𝐺 𝐶 𝐻𝐺 = ((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻))))
4 fveq2 6840 . . . . 5 (𝐺 = ((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻))) → (proj𝐺) = (proj‘((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻)))))
53, 4sylbi 217 . . . 4 (𝐺 𝐶 𝐻 → (proj𝐺) = (proj‘((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻)))))
6 inss2 4197 . . . . . . . 8 (𝐺𝐻) ⊆ 𝐻
71choccli 31209 . . . . . . . . . 10 (⊥‘𝐺) ∈ C
82, 7chub2i 31372 . . . . . . . . 9 𝐻 ⊆ ((⊥‘𝐺) ∨ 𝐻)
91, 2chdmm3i 31381 . . . . . . . . 9 (⊥‘(𝐺 ∩ (⊥‘𝐻))) = ((⊥‘𝐺) ∨ 𝐻)
108, 9sseqtrri 3993 . . . . . . . 8 𝐻 ⊆ (⊥‘(𝐺 ∩ (⊥‘𝐻)))
116, 10sstri 3953 . . . . . . 7 (𝐺𝐻) ⊆ (⊥‘(𝐺 ∩ (⊥‘𝐻)))
121, 2chincli 31362 . . . . . . . 8 (𝐺𝐻) ∈ C
132choccli 31209 . . . . . . . . 9 (⊥‘𝐻) ∈ C
141, 13chincli 31362 . . . . . . . 8 (𝐺 ∩ (⊥‘𝐻)) ∈ C
1512, 14pjscji 32072 . . . . . . 7 ((𝐺𝐻) ⊆ (⊥‘(𝐺 ∩ (⊥‘𝐻))) → (proj‘((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻)))) = ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻)))))
1611, 15ax-mp 5 . . . . . 6 (proj‘((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻)))) = ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻))))
1716eqeq2i 2742 . . . . 5 ((proj𝐺) = (proj‘((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻)))) ↔ (proj𝐺) = ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻)))))
18 coeq2 5812 . . . . . 6 ((proj𝐺) = ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻)))) → ((proj𝐻) ∘ (proj𝐺)) = ((proj𝐻) ∘ ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻))))))
1912pjfi 31606 . . . . . . . . . 10 (proj‘(𝐺𝐻)): ℋ⟶ ℋ
2014pjfi 31606 . . . . . . . . . 10 (proj‘(𝐺 ∩ (⊥‘𝐻))): ℋ⟶ ℋ
212, 19, 20pjsdii 32057 . . . . . . . . 9 ((proj𝐻) ∘ ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻))))) = (((proj𝐻) ∘ (proj‘(𝐺𝐻))) +op ((proj𝐻) ∘ (proj‘(𝐺 ∩ (⊥‘𝐻)))))
2212, 2pjss1coi 32065 . . . . . . . . . . 11 ((𝐺𝐻) ⊆ 𝐻 ↔ ((proj𝐻) ∘ (proj‘(𝐺𝐻))) = (proj‘(𝐺𝐻)))
236, 22mpbi 230 . . . . . . . . . 10 ((proj𝐻) ∘ (proj‘(𝐺𝐻))) = (proj‘(𝐺𝐻))
242, 14pjorthcoi 32071 . . . . . . . . . . 11 (𝐻 ⊆ (⊥‘(𝐺 ∩ (⊥‘𝐻))) → ((proj𝐻) ∘ (proj‘(𝐺 ∩ (⊥‘𝐻)))) = 0hop )
2510, 24ax-mp 5 . . . . . . . . . 10 ((proj𝐻) ∘ (proj‘(𝐺 ∩ (⊥‘𝐻)))) = 0hop
2623, 25oveq12i 7381 . . . . . . . . 9 (((proj𝐻) ∘ (proj‘(𝐺𝐻))) +op ((proj𝐻) ∘ (proj‘(𝐺 ∩ (⊥‘𝐻))))) = ((proj‘(𝐺𝐻)) +op 0hop )
2719hoaddridi 31688 . . . . . . . . 9 ((proj‘(𝐺𝐻)) +op 0hop ) = (proj‘(𝐺𝐻))
2821, 26, 273eqtri 2756 . . . . . . . 8 ((proj𝐻) ∘ ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻))))) = (proj‘(𝐺𝐻))
2928eqeq2i 2742 . . . . . . 7 (((proj𝐻) ∘ (proj𝐺)) = ((proj𝐻) ∘ ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻))))) ↔ ((proj𝐻) ∘ (proj𝐺)) = (proj‘(𝐺𝐻)))
30 coeq2 5812 . . . . . . . 8 (((proj𝐻) ∘ (proj𝐺)) = (proj‘(𝐺𝐻)) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) = ((proj𝐺) ∘ (proj‘(𝐺𝐻))))
31 inss1 4196 . . . . . . . . 9 (𝐺𝐻) ⊆ 𝐺
3212, 1pjss1coi 32065 . . . . . . . . 9 ((𝐺𝐻) ⊆ 𝐺 ↔ ((proj𝐺) ∘ (proj‘(𝐺𝐻))) = (proj‘(𝐺𝐻)))
3331, 32mpbi 230 . . . . . . . 8 ((proj𝐺) ∘ (proj‘(𝐺𝐻))) = (proj‘(𝐺𝐻))
3430, 33eqtrdi 2780 . . . . . . 7 (((proj𝐻) ∘ (proj𝐺)) = (proj‘(𝐺𝐻)) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) = (proj‘(𝐺𝐻)))
3529, 34sylbi 217 . . . . . 6 (((proj𝐻) ∘ (proj𝐺)) = ((proj𝐻) ∘ ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻))))) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) = (proj‘(𝐺𝐻)))
3618, 35syl 17 . . . . 5 ((proj𝐺) = ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻)))) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) = (proj‘(𝐺𝐻)))
3717, 36sylbi 217 . . . 4 ((proj𝐺) = (proj‘((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻)))) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) = (proj‘(𝐺𝐻)))
385, 37syl 17 . . 3 (𝐺 𝐶 𝐻 → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) = (proj‘(𝐺𝐻)))
391, 2cmcm3i 31496 . . . . 5 (𝐺 𝐶 𝐻 ↔ (⊥‘𝐺) 𝐶 𝐻)
407, 2cmbri 31492 . . . . 5 ((⊥‘𝐺) 𝐶 𝐻 ↔ (⊥‘𝐺) = (((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻))))
4139, 40bitri 275 . . . 4 (𝐺 𝐶 𝐻 ↔ (⊥‘𝐺) = (((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻))))
42 fveq2 6840 . . . . 5 ((⊥‘𝐺) = (((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻))) → (proj‘(⊥‘𝐺)) = (proj‘(((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻)))))
43 inss2 4197 . . . . . . . . 9 ((⊥‘𝐺) ∩ 𝐻) ⊆ 𝐻
442, 1chub2i 31372 . . . . . . . . . 10 𝐻 ⊆ (𝐺 𝐻)
451, 2chdmm4i 31382 . . . . . . . . . 10 (⊥‘((⊥‘𝐺) ∩ (⊥‘𝐻))) = (𝐺 𝐻)
4644, 45sseqtrri 3993 . . . . . . . . 9 𝐻 ⊆ (⊥‘((⊥‘𝐺) ∩ (⊥‘𝐻)))
4743, 46sstri 3953 . . . . . . . 8 ((⊥‘𝐺) ∩ 𝐻) ⊆ (⊥‘((⊥‘𝐺) ∩ (⊥‘𝐻)))
487, 2chincli 31362 . . . . . . . . 9 ((⊥‘𝐺) ∩ 𝐻) ∈ C
497, 13chincli 31362 . . . . . . . . 9 ((⊥‘𝐺) ∩ (⊥‘𝐻)) ∈ C
5048, 49pjscji 32072 . . . . . . . 8 (((⊥‘𝐺) ∩ 𝐻) ⊆ (⊥‘((⊥‘𝐺) ∩ (⊥‘𝐻))) → (proj‘(((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻)))) = ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻)))))
5147, 50ax-mp 5 . . . . . . 7 (proj‘(((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻)))) = ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))))
5251eqeq2i 2742 . . . . . 6 ((proj‘(⊥‘𝐺)) = (proj‘(((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻)))) ↔ (proj‘(⊥‘𝐺)) = ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻)))))
53 coeq2 5812 . . . . . . 7 ((proj‘(⊥‘𝐺)) = ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻)))) → ((proj𝐻) ∘ (proj‘(⊥‘𝐺))) = ((proj𝐻) ∘ ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))))))
5448pjfi 31606 . . . . . . . . . . 11 (proj‘((⊥‘𝐺) ∩ 𝐻)): ℋ⟶ ℋ
5549pjfi 31606 . . . . . . . . . . 11 (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))): ℋ⟶ ℋ
562, 54, 55pjsdii 32057 . . . . . . . . . 10 ((proj𝐻) ∘ ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))))) = (((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ 𝐻))) +op ((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻)))))
5748, 2pjss1coi 32065 . . . . . . . . . . . 12 (((⊥‘𝐺) ∩ 𝐻) ⊆ 𝐻 ↔ ((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ 𝐻))) = (proj‘((⊥‘𝐺) ∩ 𝐻)))
5843, 57mpbi 230 . . . . . . . . . . 11 ((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ 𝐻))) = (proj‘((⊥‘𝐺) ∩ 𝐻))
592, 49pjorthcoi 32071 . . . . . . . . . . . 12 (𝐻 ⊆ (⊥‘((⊥‘𝐺) ∩ (⊥‘𝐻))) → ((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻)))) = 0hop )
6046, 59ax-mp 5 . . . . . . . . . . 11 ((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻)))) = 0hop
6158, 60oveq12i 7381 . . . . . . . . . 10 (((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ 𝐻))) +op ((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))))) = ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op 0hop )
6254hoaddridi 31688 . . . . . . . . . 10 ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op 0hop ) = (proj‘((⊥‘𝐺) ∩ 𝐻))
6356, 61, 623eqtri 2756 . . . . . . . . 9 ((proj𝐻) ∘ ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))))) = (proj‘((⊥‘𝐺) ∩ 𝐻))
6463eqeq2i 2742 . . . . . . . 8 (((proj𝐻) ∘ (proj‘(⊥‘𝐺))) = ((proj𝐻) ∘ ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))))) ↔ ((proj𝐻) ∘ (proj‘(⊥‘𝐺))) = (proj‘((⊥‘𝐺) ∩ 𝐻)))
65 coeq2 5812 . . . . . . . . 9 (((proj𝐻) ∘ (proj‘(⊥‘𝐺))) = (proj‘((⊥‘𝐺) ∩ 𝐻)) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))) = ((proj𝐺) ∘ (proj‘((⊥‘𝐺) ∩ 𝐻))))
661, 13chub1i 31371 . . . . . . . . . . 11 𝐺 ⊆ (𝐺 (⊥‘𝐻))
671, 2chdmm2i 31380 . . . . . . . . . . 11 (⊥‘((⊥‘𝐺) ∩ 𝐻)) = (𝐺 (⊥‘𝐻))
6866, 67sseqtrri 3993 . . . . . . . . . 10 𝐺 ⊆ (⊥‘((⊥‘𝐺) ∩ 𝐻))
691, 48pjorthcoi 32071 . . . . . . . . . 10 (𝐺 ⊆ (⊥‘((⊥‘𝐺) ∩ 𝐻)) → ((proj𝐺) ∘ (proj‘((⊥‘𝐺) ∩ 𝐻))) = 0hop )
7068, 69ax-mp 5 . . . . . . . . 9 ((proj𝐺) ∘ (proj‘((⊥‘𝐺) ∩ 𝐻))) = 0hop
7165, 70eqtrdi 2780 . . . . . . . 8 (((proj𝐻) ∘ (proj‘(⊥‘𝐺))) = (proj‘((⊥‘𝐺) ∩ 𝐻)) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))) = 0hop )
7264, 71sylbi 217 . . . . . . 7 (((proj𝐻) ∘ (proj‘(⊥‘𝐺))) = ((proj𝐻) ∘ ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))))) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))) = 0hop )
7353, 72syl 17 . . . . . 6 ((proj‘(⊥‘𝐺)) = ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻)))) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))) = 0hop )
7452, 73sylbi 217 . . . . 5 ((proj‘(⊥‘𝐺)) = (proj‘(((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻)))) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))) = 0hop )
7542, 74syl 17 . . . 4 ((⊥‘𝐺) = (((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻))) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))) = 0hop )
7641, 75sylbi 217 . . 3 (𝐺 𝐶 𝐻 → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))) = 0hop )
7738, 76oveq12d 7387 . 2 (𝐺 𝐶 𝐻 → (((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) +op ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺))))) = ((proj‘(𝐺𝐻)) +op 0hop ))
78 df-iop 31651 . . . . . . 7 Iop = (proj‘ ℋ)
7978coeq2i 5814 . . . . . 6 ((proj𝐻) ∘ Iop ) = ((proj𝐻) ∘ (proj‘ ℋ))
802pjfi 31606 . . . . . . 7 (proj𝐻): ℋ⟶ ℋ
8180hoid1i 31691 . . . . . 6 ((proj𝐻) ∘ Iop ) = (proj𝐻)
8279, 81eqtr3i 2754 . . . . 5 ((proj𝐻) ∘ (proj‘ ℋ)) = (proj𝐻)
831pjtoi 32081 . . . . . . 7 ((proj𝐺) +op (proj‘(⊥‘𝐺))) = (proj‘ ℋ)
8483coeq2i 5814 . . . . . 6 ((proj𝐻) ∘ ((proj𝐺) +op (proj‘(⊥‘𝐺)))) = ((proj𝐻) ∘ (proj‘ ℋ))
851pjfi 31606 . . . . . . 7 (proj𝐺): ℋ⟶ ℋ
867pjfi 31606 . . . . . . 7 (proj‘(⊥‘𝐺)): ℋ⟶ ℋ
872, 85, 86pjsdii 32057 . . . . . 6 ((proj𝐻) ∘ ((proj𝐺) +op (proj‘(⊥‘𝐺)))) = (((proj𝐻) ∘ (proj𝐺)) +op ((proj𝐻) ∘ (proj‘(⊥‘𝐺))))
8884, 87eqtr3i 2754 . . . . 5 ((proj𝐻) ∘ (proj‘ ℋ)) = (((proj𝐻) ∘ (proj𝐺)) +op ((proj𝐻) ∘ (proj‘(⊥‘𝐺))))
8982, 88eqtr3i 2754 . . . 4 (proj𝐻) = (((proj𝐻) ∘ (proj𝐺)) +op ((proj𝐻) ∘ (proj‘(⊥‘𝐺))))
9089coeq2i 5814 . . 3 ((proj𝐺) ∘ (proj𝐻)) = ((proj𝐺) ∘ (((proj𝐻) ∘ (proj𝐺)) +op ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))))
9180, 85hocofi 31668 . . . 4 ((proj𝐻) ∘ (proj𝐺)): ℋ⟶ ℋ
9280, 86hocofi 31668 . . . 4 ((proj𝐻) ∘ (proj‘(⊥‘𝐺))): ℋ⟶ ℋ
931, 91, 92pjsdii 32057 . . 3 ((proj𝐺) ∘ (((proj𝐻) ∘ (proj𝐺)) +op ((proj𝐻) ∘ (proj‘(⊥‘𝐺))))) = (((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) +op ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))))
9490, 93eqtr2i 2753 . 2 (((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) +op ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺))))) = ((proj𝐺) ∘ (proj𝐻))
9577, 94, 273eqtr3g 2787 1 (𝐺 𝐶 𝐻 → ((proj𝐺) ∘ (proj𝐻)) = (proj‘(𝐺𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cin 3910  wss 3911   class class class wbr 5102  ccom 5635  cfv 6499  (class class class)co 7369  chba 30821   C cch 30831  cort 30832   chj 30835   𝐶 ccm 30838  projcpjh 30839   +op chos 30840   0hop ch0o 30845   Iop chio 30846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cc 10364  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124  ax-hilex 30901  ax-hfvadd 30902  ax-hvcom 30903  ax-hvass 30904  ax-hv0cl 30905  ax-hvaddid 30906  ax-hfvmul 30907  ax-hvmulid 30908  ax-hvmulass 30909  ax-hvdistr1 30910  ax-hvdistr2 30911  ax-hvmul0 30912  ax-hfi 30981  ax-his1 30984  ax-his2 30985  ax-his3 30986  ax-his4 30987  ax-hcompl 31104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-acn 9871  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-cn 23090  df-cnp 23091  df-lm 23092  df-haus 23178  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cfil 25131  df-cau 25132  df-cmet 25133  df-grpo 30395  df-gid 30396  df-ginv 30397  df-gdiv 30398  df-ablo 30447  df-vc 30461  df-nv 30494  df-va 30497  df-ba 30498  df-sm 30499  df-0v 30500  df-vs 30501  df-nmcv 30502  df-ims 30503  df-dip 30603  df-ssp 30624  df-ph 30715  df-cbn 30765  df-hnorm 30870  df-hba 30871  df-hvsub 30873  df-hlim 30874  df-hcau 30875  df-sh 31109  df-ch 31123  df-oc 31154  df-ch0 31155  df-shs 31210  df-chj 31212  df-pjh 31297  df-cm 31485  df-hosum 31632  df-h0op 31650  df-iop 31651
This theorem is referenced by:  pjclem2  32098
  Copyright terms: Public domain W3C validator