HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjclem1 Structured version   Visualization version   GIF version

Theorem pjclem1 32167
Description: Lemma for projection commutation theorem. (Contributed by NM, 16-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
pjclem1.1 𝐺C
pjclem1.2 𝐻C
Assertion
Ref Expression
pjclem1 (𝐺 𝐶 𝐻 → ((proj𝐺) ∘ (proj𝐻)) = (proj‘(𝐺𝐻)))

Proof of Theorem pjclem1
StepHypRef Expression
1 pjclem1.1 . . . . . 6 𝐺C
2 pjclem1.2 . . . . . 6 𝐻C
31, 2cmbri 31562 . . . . 5 (𝐺 𝐶 𝐻𝐺 = ((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻))))
4 fveq2 6817 . . . . 5 (𝐺 = ((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻))) → (proj𝐺) = (proj‘((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻)))))
53, 4sylbi 217 . . . 4 (𝐺 𝐶 𝐻 → (proj𝐺) = (proj‘((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻)))))
6 inss2 4183 . . . . . . . 8 (𝐺𝐻) ⊆ 𝐻
71choccli 31279 . . . . . . . . . 10 (⊥‘𝐺) ∈ C
82, 7chub2i 31442 . . . . . . . . 9 𝐻 ⊆ ((⊥‘𝐺) ∨ 𝐻)
91, 2chdmm3i 31451 . . . . . . . . 9 (⊥‘(𝐺 ∩ (⊥‘𝐻))) = ((⊥‘𝐺) ∨ 𝐻)
108, 9sseqtrri 3979 . . . . . . . 8 𝐻 ⊆ (⊥‘(𝐺 ∩ (⊥‘𝐻)))
116, 10sstri 3939 . . . . . . 7 (𝐺𝐻) ⊆ (⊥‘(𝐺 ∩ (⊥‘𝐻)))
121, 2chincli 31432 . . . . . . . 8 (𝐺𝐻) ∈ C
132choccli 31279 . . . . . . . . 9 (⊥‘𝐻) ∈ C
141, 13chincli 31432 . . . . . . . 8 (𝐺 ∩ (⊥‘𝐻)) ∈ C
1512, 14pjscji 32142 . . . . . . 7 ((𝐺𝐻) ⊆ (⊥‘(𝐺 ∩ (⊥‘𝐻))) → (proj‘((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻)))) = ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻)))))
1611, 15ax-mp 5 . . . . . 6 (proj‘((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻)))) = ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻))))
1716eqeq2i 2744 . . . . 5 ((proj𝐺) = (proj‘((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻)))) ↔ (proj𝐺) = ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻)))))
18 coeq2 5793 . . . . . 6 ((proj𝐺) = ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻)))) → ((proj𝐻) ∘ (proj𝐺)) = ((proj𝐻) ∘ ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻))))))
1912pjfi 31676 . . . . . . . . . 10 (proj‘(𝐺𝐻)): ℋ⟶ ℋ
2014pjfi 31676 . . . . . . . . . 10 (proj‘(𝐺 ∩ (⊥‘𝐻))): ℋ⟶ ℋ
212, 19, 20pjsdii 32127 . . . . . . . . 9 ((proj𝐻) ∘ ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻))))) = (((proj𝐻) ∘ (proj‘(𝐺𝐻))) +op ((proj𝐻) ∘ (proj‘(𝐺 ∩ (⊥‘𝐻)))))
2212, 2pjss1coi 32135 . . . . . . . . . . 11 ((𝐺𝐻) ⊆ 𝐻 ↔ ((proj𝐻) ∘ (proj‘(𝐺𝐻))) = (proj‘(𝐺𝐻)))
236, 22mpbi 230 . . . . . . . . . 10 ((proj𝐻) ∘ (proj‘(𝐺𝐻))) = (proj‘(𝐺𝐻))
242, 14pjorthcoi 32141 . . . . . . . . . . 11 (𝐻 ⊆ (⊥‘(𝐺 ∩ (⊥‘𝐻))) → ((proj𝐻) ∘ (proj‘(𝐺 ∩ (⊥‘𝐻)))) = 0hop )
2510, 24ax-mp 5 . . . . . . . . . 10 ((proj𝐻) ∘ (proj‘(𝐺 ∩ (⊥‘𝐻)))) = 0hop
2623, 25oveq12i 7353 . . . . . . . . 9 (((proj𝐻) ∘ (proj‘(𝐺𝐻))) +op ((proj𝐻) ∘ (proj‘(𝐺 ∩ (⊥‘𝐻))))) = ((proj‘(𝐺𝐻)) +op 0hop )
2719hoaddridi 31758 . . . . . . . . 9 ((proj‘(𝐺𝐻)) +op 0hop ) = (proj‘(𝐺𝐻))
2821, 26, 273eqtri 2758 . . . . . . . 8 ((proj𝐻) ∘ ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻))))) = (proj‘(𝐺𝐻))
2928eqeq2i 2744 . . . . . . 7 (((proj𝐻) ∘ (proj𝐺)) = ((proj𝐻) ∘ ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻))))) ↔ ((proj𝐻) ∘ (proj𝐺)) = (proj‘(𝐺𝐻)))
30 coeq2 5793 . . . . . . . 8 (((proj𝐻) ∘ (proj𝐺)) = (proj‘(𝐺𝐻)) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) = ((proj𝐺) ∘ (proj‘(𝐺𝐻))))
31 inss1 4182 . . . . . . . . 9 (𝐺𝐻) ⊆ 𝐺
3212, 1pjss1coi 32135 . . . . . . . . 9 ((𝐺𝐻) ⊆ 𝐺 ↔ ((proj𝐺) ∘ (proj‘(𝐺𝐻))) = (proj‘(𝐺𝐻)))
3331, 32mpbi 230 . . . . . . . 8 ((proj𝐺) ∘ (proj‘(𝐺𝐻))) = (proj‘(𝐺𝐻))
3430, 33eqtrdi 2782 . . . . . . 7 (((proj𝐻) ∘ (proj𝐺)) = (proj‘(𝐺𝐻)) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) = (proj‘(𝐺𝐻)))
3529, 34sylbi 217 . . . . . 6 (((proj𝐻) ∘ (proj𝐺)) = ((proj𝐻) ∘ ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻))))) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) = (proj‘(𝐺𝐻)))
3618, 35syl 17 . . . . 5 ((proj𝐺) = ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻)))) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) = (proj‘(𝐺𝐻)))
3717, 36sylbi 217 . . . 4 ((proj𝐺) = (proj‘((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻)))) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) = (proj‘(𝐺𝐻)))
385, 37syl 17 . . 3 (𝐺 𝐶 𝐻 → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) = (proj‘(𝐺𝐻)))
391, 2cmcm3i 31566 . . . . 5 (𝐺 𝐶 𝐻 ↔ (⊥‘𝐺) 𝐶 𝐻)
407, 2cmbri 31562 . . . . 5 ((⊥‘𝐺) 𝐶 𝐻 ↔ (⊥‘𝐺) = (((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻))))
4139, 40bitri 275 . . . 4 (𝐺 𝐶 𝐻 ↔ (⊥‘𝐺) = (((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻))))
42 fveq2 6817 . . . . 5 ((⊥‘𝐺) = (((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻))) → (proj‘(⊥‘𝐺)) = (proj‘(((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻)))))
43 inss2 4183 . . . . . . . . 9 ((⊥‘𝐺) ∩ 𝐻) ⊆ 𝐻
442, 1chub2i 31442 . . . . . . . . . 10 𝐻 ⊆ (𝐺 𝐻)
451, 2chdmm4i 31452 . . . . . . . . . 10 (⊥‘((⊥‘𝐺) ∩ (⊥‘𝐻))) = (𝐺 𝐻)
4644, 45sseqtrri 3979 . . . . . . . . 9 𝐻 ⊆ (⊥‘((⊥‘𝐺) ∩ (⊥‘𝐻)))
4743, 46sstri 3939 . . . . . . . 8 ((⊥‘𝐺) ∩ 𝐻) ⊆ (⊥‘((⊥‘𝐺) ∩ (⊥‘𝐻)))
487, 2chincli 31432 . . . . . . . . 9 ((⊥‘𝐺) ∩ 𝐻) ∈ C
497, 13chincli 31432 . . . . . . . . 9 ((⊥‘𝐺) ∩ (⊥‘𝐻)) ∈ C
5048, 49pjscji 32142 . . . . . . . 8 (((⊥‘𝐺) ∩ 𝐻) ⊆ (⊥‘((⊥‘𝐺) ∩ (⊥‘𝐻))) → (proj‘(((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻)))) = ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻)))))
5147, 50ax-mp 5 . . . . . . 7 (proj‘(((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻)))) = ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))))
5251eqeq2i 2744 . . . . . 6 ((proj‘(⊥‘𝐺)) = (proj‘(((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻)))) ↔ (proj‘(⊥‘𝐺)) = ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻)))))
53 coeq2 5793 . . . . . . 7 ((proj‘(⊥‘𝐺)) = ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻)))) → ((proj𝐻) ∘ (proj‘(⊥‘𝐺))) = ((proj𝐻) ∘ ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))))))
5448pjfi 31676 . . . . . . . . . . 11 (proj‘((⊥‘𝐺) ∩ 𝐻)): ℋ⟶ ℋ
5549pjfi 31676 . . . . . . . . . . 11 (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))): ℋ⟶ ℋ
562, 54, 55pjsdii 32127 . . . . . . . . . 10 ((proj𝐻) ∘ ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))))) = (((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ 𝐻))) +op ((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻)))))
5748, 2pjss1coi 32135 . . . . . . . . . . . 12 (((⊥‘𝐺) ∩ 𝐻) ⊆ 𝐻 ↔ ((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ 𝐻))) = (proj‘((⊥‘𝐺) ∩ 𝐻)))
5843, 57mpbi 230 . . . . . . . . . . 11 ((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ 𝐻))) = (proj‘((⊥‘𝐺) ∩ 𝐻))
592, 49pjorthcoi 32141 . . . . . . . . . . . 12 (𝐻 ⊆ (⊥‘((⊥‘𝐺) ∩ (⊥‘𝐻))) → ((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻)))) = 0hop )
6046, 59ax-mp 5 . . . . . . . . . . 11 ((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻)))) = 0hop
6158, 60oveq12i 7353 . . . . . . . . . 10 (((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ 𝐻))) +op ((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))))) = ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op 0hop )
6254hoaddridi 31758 . . . . . . . . . 10 ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op 0hop ) = (proj‘((⊥‘𝐺) ∩ 𝐻))
6356, 61, 623eqtri 2758 . . . . . . . . 9 ((proj𝐻) ∘ ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))))) = (proj‘((⊥‘𝐺) ∩ 𝐻))
6463eqeq2i 2744 . . . . . . . 8 (((proj𝐻) ∘ (proj‘(⊥‘𝐺))) = ((proj𝐻) ∘ ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))))) ↔ ((proj𝐻) ∘ (proj‘(⊥‘𝐺))) = (proj‘((⊥‘𝐺) ∩ 𝐻)))
65 coeq2 5793 . . . . . . . . 9 (((proj𝐻) ∘ (proj‘(⊥‘𝐺))) = (proj‘((⊥‘𝐺) ∩ 𝐻)) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))) = ((proj𝐺) ∘ (proj‘((⊥‘𝐺) ∩ 𝐻))))
661, 13chub1i 31441 . . . . . . . . . . 11 𝐺 ⊆ (𝐺 (⊥‘𝐻))
671, 2chdmm2i 31450 . . . . . . . . . . 11 (⊥‘((⊥‘𝐺) ∩ 𝐻)) = (𝐺 (⊥‘𝐻))
6866, 67sseqtrri 3979 . . . . . . . . . 10 𝐺 ⊆ (⊥‘((⊥‘𝐺) ∩ 𝐻))
691, 48pjorthcoi 32141 . . . . . . . . . 10 (𝐺 ⊆ (⊥‘((⊥‘𝐺) ∩ 𝐻)) → ((proj𝐺) ∘ (proj‘((⊥‘𝐺) ∩ 𝐻))) = 0hop )
7068, 69ax-mp 5 . . . . . . . . 9 ((proj𝐺) ∘ (proj‘((⊥‘𝐺) ∩ 𝐻))) = 0hop
7165, 70eqtrdi 2782 . . . . . . . 8 (((proj𝐻) ∘ (proj‘(⊥‘𝐺))) = (proj‘((⊥‘𝐺) ∩ 𝐻)) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))) = 0hop )
7264, 71sylbi 217 . . . . . . 7 (((proj𝐻) ∘ (proj‘(⊥‘𝐺))) = ((proj𝐻) ∘ ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))))) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))) = 0hop )
7353, 72syl 17 . . . . . 6 ((proj‘(⊥‘𝐺)) = ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻)))) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))) = 0hop )
7452, 73sylbi 217 . . . . 5 ((proj‘(⊥‘𝐺)) = (proj‘(((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻)))) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))) = 0hop )
7542, 74syl 17 . . . 4 ((⊥‘𝐺) = (((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻))) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))) = 0hop )
7641, 75sylbi 217 . . 3 (𝐺 𝐶 𝐻 → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))) = 0hop )
7738, 76oveq12d 7359 . 2 (𝐺 𝐶 𝐻 → (((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) +op ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺))))) = ((proj‘(𝐺𝐻)) +op 0hop ))
78 df-iop 31721 . . . . . . 7 Iop = (proj‘ ℋ)
7978coeq2i 5795 . . . . . 6 ((proj𝐻) ∘ Iop ) = ((proj𝐻) ∘ (proj‘ ℋ))
802pjfi 31676 . . . . . . 7 (proj𝐻): ℋ⟶ ℋ
8180hoid1i 31761 . . . . . 6 ((proj𝐻) ∘ Iop ) = (proj𝐻)
8279, 81eqtr3i 2756 . . . . 5 ((proj𝐻) ∘ (proj‘ ℋ)) = (proj𝐻)
831pjtoi 32151 . . . . . . 7 ((proj𝐺) +op (proj‘(⊥‘𝐺))) = (proj‘ ℋ)
8483coeq2i 5795 . . . . . 6 ((proj𝐻) ∘ ((proj𝐺) +op (proj‘(⊥‘𝐺)))) = ((proj𝐻) ∘ (proj‘ ℋ))
851pjfi 31676 . . . . . . 7 (proj𝐺): ℋ⟶ ℋ
867pjfi 31676 . . . . . . 7 (proj‘(⊥‘𝐺)): ℋ⟶ ℋ
872, 85, 86pjsdii 32127 . . . . . 6 ((proj𝐻) ∘ ((proj𝐺) +op (proj‘(⊥‘𝐺)))) = (((proj𝐻) ∘ (proj𝐺)) +op ((proj𝐻) ∘ (proj‘(⊥‘𝐺))))
8884, 87eqtr3i 2756 . . . . 5 ((proj𝐻) ∘ (proj‘ ℋ)) = (((proj𝐻) ∘ (proj𝐺)) +op ((proj𝐻) ∘ (proj‘(⊥‘𝐺))))
8982, 88eqtr3i 2756 . . . 4 (proj𝐻) = (((proj𝐻) ∘ (proj𝐺)) +op ((proj𝐻) ∘ (proj‘(⊥‘𝐺))))
9089coeq2i 5795 . . 3 ((proj𝐺) ∘ (proj𝐻)) = ((proj𝐺) ∘ (((proj𝐻) ∘ (proj𝐺)) +op ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))))
9180, 85hocofi 31738 . . . 4 ((proj𝐻) ∘ (proj𝐺)): ℋ⟶ ℋ
9280, 86hocofi 31738 . . . 4 ((proj𝐻) ∘ (proj‘(⊥‘𝐺))): ℋ⟶ ℋ
931, 91, 92pjsdii 32127 . . 3 ((proj𝐺) ∘ (((proj𝐻) ∘ (proj𝐺)) +op ((proj𝐻) ∘ (proj‘(⊥‘𝐺))))) = (((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) +op ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))))
9490, 93eqtr2i 2755 . 2 (((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) +op ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺))))) = ((proj𝐺) ∘ (proj𝐻))
9577, 94, 273eqtr3g 2789 1 (𝐺 𝐶 𝐻 → ((proj𝐺) ∘ (proj𝐻)) = (proj‘(𝐺𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cin 3896  wss 3897   class class class wbr 5086  ccom 5615  cfv 6476  (class class class)co 7341  chba 30891   C cch 30901  cort 30902   chj 30905   𝐶 ccm 30908  projcpjh 30909   +op chos 30910   0hop ch0o 30915   Iop chio 30916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cc 10321  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080  ax-mulf 11081  ax-hilex 30971  ax-hfvadd 30972  ax-hvcom 30973  ax-hvass 30974  ax-hv0cl 30975  ax-hvaddid 30976  ax-hfvmul 30977  ax-hvmulid 30978  ax-hvmulass 30979  ax-hvdistr1 30980  ax-hvdistr2 30981  ax-hvmul0 30982  ax-hfi 31051  ax-his1 31054  ax-his2 31055  ax-his3 31056  ax-his4 31057  ax-hcompl 31174
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9827  df-acn 9830  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ioo 13244  df-ico 13246  df-icc 13247  df-fz 13403  df-fzo 13550  df-fl 13691  df-seq 13904  df-exp 13964  df-hash 14233  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-clim 15390  df-rlim 15391  df-sum 15589  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-rest 17321  df-topn 17322  df-0g 17340  df-gsum 17341  df-topgen 17342  df-pt 17343  df-prds 17346  df-xrs 17401  df-qtop 17406  df-imas 17407  df-xps 17409  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19224  df-cmn 19689  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-cld 22929  df-ntr 22930  df-cls 22931  df-nei 23008  df-cn 23137  df-cnp 23138  df-lm 23139  df-haus 23225  df-tx 23472  df-hmeo 23665  df-fil 23756  df-fm 23848  df-flim 23849  df-flf 23850  df-xms 24230  df-ms 24231  df-tms 24232  df-cfil 25177  df-cau 25178  df-cmet 25179  df-grpo 30465  df-gid 30466  df-ginv 30467  df-gdiv 30468  df-ablo 30517  df-vc 30531  df-nv 30564  df-va 30567  df-ba 30568  df-sm 30569  df-0v 30570  df-vs 30571  df-nmcv 30572  df-ims 30573  df-dip 30673  df-ssp 30694  df-ph 30785  df-cbn 30835  df-hnorm 30940  df-hba 30941  df-hvsub 30943  df-hlim 30944  df-hcau 30945  df-sh 31179  df-ch 31193  df-oc 31224  df-ch0 31225  df-shs 31280  df-chj 31282  df-pjh 31367  df-cm 31555  df-hosum 31702  df-h0op 31720  df-iop 31721
This theorem is referenced by:  pjclem2  32168
  Copyright terms: Public domain W3C validator