HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjclem1 Structured version   Visualization version   GIF version

Theorem pjclem1 30557
Description: Lemma for projection commutation theorem. (Contributed by NM, 16-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
pjclem1.1 𝐺C
pjclem1.2 𝐻C
Assertion
Ref Expression
pjclem1 (𝐺 𝐶 𝐻 → ((proj𝐺) ∘ (proj𝐻)) = (proj‘(𝐺𝐻)))

Proof of Theorem pjclem1
StepHypRef Expression
1 pjclem1.1 . . . . . 6 𝐺C
2 pjclem1.2 . . . . . 6 𝐻C
31, 2cmbri 29952 . . . . 5 (𝐺 𝐶 𝐻𝐺 = ((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻))))
4 fveq2 6774 . . . . 5 (𝐺 = ((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻))) → (proj𝐺) = (proj‘((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻)))))
53, 4sylbi 216 . . . 4 (𝐺 𝐶 𝐻 → (proj𝐺) = (proj‘((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻)))))
6 inss2 4163 . . . . . . . 8 (𝐺𝐻) ⊆ 𝐻
71choccli 29669 . . . . . . . . . 10 (⊥‘𝐺) ∈ C
82, 7chub2i 29832 . . . . . . . . 9 𝐻 ⊆ ((⊥‘𝐺) ∨ 𝐻)
91, 2chdmm3i 29841 . . . . . . . . 9 (⊥‘(𝐺 ∩ (⊥‘𝐻))) = ((⊥‘𝐺) ∨ 𝐻)
108, 9sseqtrri 3958 . . . . . . . 8 𝐻 ⊆ (⊥‘(𝐺 ∩ (⊥‘𝐻)))
116, 10sstri 3930 . . . . . . 7 (𝐺𝐻) ⊆ (⊥‘(𝐺 ∩ (⊥‘𝐻)))
121, 2chincli 29822 . . . . . . . 8 (𝐺𝐻) ∈ C
132choccli 29669 . . . . . . . . 9 (⊥‘𝐻) ∈ C
141, 13chincli 29822 . . . . . . . 8 (𝐺 ∩ (⊥‘𝐻)) ∈ C
1512, 14pjscji 30532 . . . . . . 7 ((𝐺𝐻) ⊆ (⊥‘(𝐺 ∩ (⊥‘𝐻))) → (proj‘((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻)))) = ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻)))))
1611, 15ax-mp 5 . . . . . 6 (proj‘((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻)))) = ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻))))
1716eqeq2i 2751 . . . . 5 ((proj𝐺) = (proj‘((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻)))) ↔ (proj𝐺) = ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻)))))
18 coeq2 5767 . . . . . 6 ((proj𝐺) = ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻)))) → ((proj𝐻) ∘ (proj𝐺)) = ((proj𝐻) ∘ ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻))))))
1912pjfi 30066 . . . . . . . . . 10 (proj‘(𝐺𝐻)): ℋ⟶ ℋ
2014pjfi 30066 . . . . . . . . . 10 (proj‘(𝐺 ∩ (⊥‘𝐻))): ℋ⟶ ℋ
212, 19, 20pjsdii 30517 . . . . . . . . 9 ((proj𝐻) ∘ ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻))))) = (((proj𝐻) ∘ (proj‘(𝐺𝐻))) +op ((proj𝐻) ∘ (proj‘(𝐺 ∩ (⊥‘𝐻)))))
2212, 2pjss1coi 30525 . . . . . . . . . . 11 ((𝐺𝐻) ⊆ 𝐻 ↔ ((proj𝐻) ∘ (proj‘(𝐺𝐻))) = (proj‘(𝐺𝐻)))
236, 22mpbi 229 . . . . . . . . . 10 ((proj𝐻) ∘ (proj‘(𝐺𝐻))) = (proj‘(𝐺𝐻))
242, 14pjorthcoi 30531 . . . . . . . . . . 11 (𝐻 ⊆ (⊥‘(𝐺 ∩ (⊥‘𝐻))) → ((proj𝐻) ∘ (proj‘(𝐺 ∩ (⊥‘𝐻)))) = 0hop )
2510, 24ax-mp 5 . . . . . . . . . 10 ((proj𝐻) ∘ (proj‘(𝐺 ∩ (⊥‘𝐻)))) = 0hop
2623, 25oveq12i 7287 . . . . . . . . 9 (((proj𝐻) ∘ (proj‘(𝐺𝐻))) +op ((proj𝐻) ∘ (proj‘(𝐺 ∩ (⊥‘𝐻))))) = ((proj‘(𝐺𝐻)) +op 0hop )
2719hoaddid1i 30148 . . . . . . . . 9 ((proj‘(𝐺𝐻)) +op 0hop ) = (proj‘(𝐺𝐻))
2821, 26, 273eqtri 2770 . . . . . . . 8 ((proj𝐻) ∘ ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻))))) = (proj‘(𝐺𝐻))
2928eqeq2i 2751 . . . . . . 7 (((proj𝐻) ∘ (proj𝐺)) = ((proj𝐻) ∘ ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻))))) ↔ ((proj𝐻) ∘ (proj𝐺)) = (proj‘(𝐺𝐻)))
30 coeq2 5767 . . . . . . . 8 (((proj𝐻) ∘ (proj𝐺)) = (proj‘(𝐺𝐻)) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) = ((proj𝐺) ∘ (proj‘(𝐺𝐻))))
31 inss1 4162 . . . . . . . . 9 (𝐺𝐻) ⊆ 𝐺
3212, 1pjss1coi 30525 . . . . . . . . 9 ((𝐺𝐻) ⊆ 𝐺 ↔ ((proj𝐺) ∘ (proj‘(𝐺𝐻))) = (proj‘(𝐺𝐻)))
3331, 32mpbi 229 . . . . . . . 8 ((proj𝐺) ∘ (proj‘(𝐺𝐻))) = (proj‘(𝐺𝐻))
3430, 33eqtrdi 2794 . . . . . . 7 (((proj𝐻) ∘ (proj𝐺)) = (proj‘(𝐺𝐻)) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) = (proj‘(𝐺𝐻)))
3529, 34sylbi 216 . . . . . 6 (((proj𝐻) ∘ (proj𝐺)) = ((proj𝐻) ∘ ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻))))) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) = (proj‘(𝐺𝐻)))
3618, 35syl 17 . . . . 5 ((proj𝐺) = ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻)))) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) = (proj‘(𝐺𝐻)))
3717, 36sylbi 216 . . . 4 ((proj𝐺) = (proj‘((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻)))) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) = (proj‘(𝐺𝐻)))
385, 37syl 17 . . 3 (𝐺 𝐶 𝐻 → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) = (proj‘(𝐺𝐻)))
391, 2cmcm3i 29956 . . . . 5 (𝐺 𝐶 𝐻 ↔ (⊥‘𝐺) 𝐶 𝐻)
407, 2cmbri 29952 . . . . 5 ((⊥‘𝐺) 𝐶 𝐻 ↔ (⊥‘𝐺) = (((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻))))
4139, 40bitri 274 . . . 4 (𝐺 𝐶 𝐻 ↔ (⊥‘𝐺) = (((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻))))
42 fveq2 6774 . . . . 5 ((⊥‘𝐺) = (((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻))) → (proj‘(⊥‘𝐺)) = (proj‘(((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻)))))
43 inss2 4163 . . . . . . . . 9 ((⊥‘𝐺) ∩ 𝐻) ⊆ 𝐻
442, 1chub2i 29832 . . . . . . . . . 10 𝐻 ⊆ (𝐺 𝐻)
451, 2chdmm4i 29842 . . . . . . . . . 10 (⊥‘((⊥‘𝐺) ∩ (⊥‘𝐻))) = (𝐺 𝐻)
4644, 45sseqtrri 3958 . . . . . . . . 9 𝐻 ⊆ (⊥‘((⊥‘𝐺) ∩ (⊥‘𝐻)))
4743, 46sstri 3930 . . . . . . . 8 ((⊥‘𝐺) ∩ 𝐻) ⊆ (⊥‘((⊥‘𝐺) ∩ (⊥‘𝐻)))
487, 2chincli 29822 . . . . . . . . 9 ((⊥‘𝐺) ∩ 𝐻) ∈ C
497, 13chincli 29822 . . . . . . . . 9 ((⊥‘𝐺) ∩ (⊥‘𝐻)) ∈ C
5048, 49pjscji 30532 . . . . . . . 8 (((⊥‘𝐺) ∩ 𝐻) ⊆ (⊥‘((⊥‘𝐺) ∩ (⊥‘𝐻))) → (proj‘(((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻)))) = ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻)))))
5147, 50ax-mp 5 . . . . . . 7 (proj‘(((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻)))) = ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))))
5251eqeq2i 2751 . . . . . 6 ((proj‘(⊥‘𝐺)) = (proj‘(((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻)))) ↔ (proj‘(⊥‘𝐺)) = ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻)))))
53 coeq2 5767 . . . . . . 7 ((proj‘(⊥‘𝐺)) = ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻)))) → ((proj𝐻) ∘ (proj‘(⊥‘𝐺))) = ((proj𝐻) ∘ ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))))))
5448pjfi 30066 . . . . . . . . . . 11 (proj‘((⊥‘𝐺) ∩ 𝐻)): ℋ⟶ ℋ
5549pjfi 30066 . . . . . . . . . . 11 (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))): ℋ⟶ ℋ
562, 54, 55pjsdii 30517 . . . . . . . . . 10 ((proj𝐻) ∘ ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))))) = (((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ 𝐻))) +op ((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻)))))
5748, 2pjss1coi 30525 . . . . . . . . . . . 12 (((⊥‘𝐺) ∩ 𝐻) ⊆ 𝐻 ↔ ((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ 𝐻))) = (proj‘((⊥‘𝐺) ∩ 𝐻)))
5843, 57mpbi 229 . . . . . . . . . . 11 ((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ 𝐻))) = (proj‘((⊥‘𝐺) ∩ 𝐻))
592, 49pjorthcoi 30531 . . . . . . . . . . . 12 (𝐻 ⊆ (⊥‘((⊥‘𝐺) ∩ (⊥‘𝐻))) → ((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻)))) = 0hop )
6046, 59ax-mp 5 . . . . . . . . . . 11 ((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻)))) = 0hop
6158, 60oveq12i 7287 . . . . . . . . . 10 (((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ 𝐻))) +op ((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))))) = ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op 0hop )
6254hoaddid1i 30148 . . . . . . . . . 10 ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op 0hop ) = (proj‘((⊥‘𝐺) ∩ 𝐻))
6356, 61, 623eqtri 2770 . . . . . . . . 9 ((proj𝐻) ∘ ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))))) = (proj‘((⊥‘𝐺) ∩ 𝐻))
6463eqeq2i 2751 . . . . . . . 8 (((proj𝐻) ∘ (proj‘(⊥‘𝐺))) = ((proj𝐻) ∘ ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))))) ↔ ((proj𝐻) ∘ (proj‘(⊥‘𝐺))) = (proj‘((⊥‘𝐺) ∩ 𝐻)))
65 coeq2 5767 . . . . . . . . 9 (((proj𝐻) ∘ (proj‘(⊥‘𝐺))) = (proj‘((⊥‘𝐺) ∩ 𝐻)) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))) = ((proj𝐺) ∘ (proj‘((⊥‘𝐺) ∩ 𝐻))))
661, 13chub1i 29831 . . . . . . . . . . 11 𝐺 ⊆ (𝐺 (⊥‘𝐻))
671, 2chdmm2i 29840 . . . . . . . . . . 11 (⊥‘((⊥‘𝐺) ∩ 𝐻)) = (𝐺 (⊥‘𝐻))
6866, 67sseqtrri 3958 . . . . . . . . . 10 𝐺 ⊆ (⊥‘((⊥‘𝐺) ∩ 𝐻))
691, 48pjorthcoi 30531 . . . . . . . . . 10 (𝐺 ⊆ (⊥‘((⊥‘𝐺) ∩ 𝐻)) → ((proj𝐺) ∘ (proj‘((⊥‘𝐺) ∩ 𝐻))) = 0hop )
7068, 69ax-mp 5 . . . . . . . . 9 ((proj𝐺) ∘ (proj‘((⊥‘𝐺) ∩ 𝐻))) = 0hop
7165, 70eqtrdi 2794 . . . . . . . 8 (((proj𝐻) ∘ (proj‘(⊥‘𝐺))) = (proj‘((⊥‘𝐺) ∩ 𝐻)) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))) = 0hop )
7264, 71sylbi 216 . . . . . . 7 (((proj𝐻) ∘ (proj‘(⊥‘𝐺))) = ((proj𝐻) ∘ ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))))) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))) = 0hop )
7353, 72syl 17 . . . . . 6 ((proj‘(⊥‘𝐺)) = ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻)))) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))) = 0hop )
7452, 73sylbi 216 . . . . 5 ((proj‘(⊥‘𝐺)) = (proj‘(((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻)))) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))) = 0hop )
7542, 74syl 17 . . . 4 ((⊥‘𝐺) = (((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻))) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))) = 0hop )
7641, 75sylbi 216 . . 3 (𝐺 𝐶 𝐻 → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))) = 0hop )
7738, 76oveq12d 7293 . 2 (𝐺 𝐶 𝐻 → (((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) +op ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺))))) = ((proj‘(𝐺𝐻)) +op 0hop ))
78 df-iop 30111 . . . . . . 7 Iop = (proj‘ ℋ)
7978coeq2i 5769 . . . . . 6 ((proj𝐻) ∘ Iop ) = ((proj𝐻) ∘ (proj‘ ℋ))
802pjfi 30066 . . . . . . 7 (proj𝐻): ℋ⟶ ℋ
8180hoid1i 30151 . . . . . 6 ((proj𝐻) ∘ Iop ) = (proj𝐻)
8279, 81eqtr3i 2768 . . . . 5 ((proj𝐻) ∘ (proj‘ ℋ)) = (proj𝐻)
831pjtoi 30541 . . . . . . 7 ((proj𝐺) +op (proj‘(⊥‘𝐺))) = (proj‘ ℋ)
8483coeq2i 5769 . . . . . 6 ((proj𝐻) ∘ ((proj𝐺) +op (proj‘(⊥‘𝐺)))) = ((proj𝐻) ∘ (proj‘ ℋ))
851pjfi 30066 . . . . . . 7 (proj𝐺): ℋ⟶ ℋ
867pjfi 30066 . . . . . . 7 (proj‘(⊥‘𝐺)): ℋ⟶ ℋ
872, 85, 86pjsdii 30517 . . . . . 6 ((proj𝐻) ∘ ((proj𝐺) +op (proj‘(⊥‘𝐺)))) = (((proj𝐻) ∘ (proj𝐺)) +op ((proj𝐻) ∘ (proj‘(⊥‘𝐺))))
8884, 87eqtr3i 2768 . . . . 5 ((proj𝐻) ∘ (proj‘ ℋ)) = (((proj𝐻) ∘ (proj𝐺)) +op ((proj𝐻) ∘ (proj‘(⊥‘𝐺))))
8982, 88eqtr3i 2768 . . . 4 (proj𝐻) = (((proj𝐻) ∘ (proj𝐺)) +op ((proj𝐻) ∘ (proj‘(⊥‘𝐺))))
9089coeq2i 5769 . . 3 ((proj𝐺) ∘ (proj𝐻)) = ((proj𝐺) ∘ (((proj𝐻) ∘ (proj𝐺)) +op ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))))
9180, 85hocofi 30128 . . . 4 ((proj𝐻) ∘ (proj𝐺)): ℋ⟶ ℋ
9280, 86hocofi 30128 . . . 4 ((proj𝐻) ∘ (proj‘(⊥‘𝐺))): ℋ⟶ ℋ
931, 91, 92pjsdii 30517 . . 3 ((proj𝐺) ∘ (((proj𝐻) ∘ (proj𝐺)) +op ((proj𝐻) ∘ (proj‘(⊥‘𝐺))))) = (((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) +op ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))))
9490, 93eqtr2i 2767 . 2 (((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) +op ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺))))) = ((proj𝐺) ∘ (proj𝐻))
9577, 94, 273eqtr3g 2801 1 (𝐺 𝐶 𝐻 → ((proj𝐺) ∘ (proj𝐻)) = (proj‘(𝐺𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  cin 3886  wss 3887   class class class wbr 5074  ccom 5593  cfv 6433  (class class class)co 7275  chba 29281   C cch 29291  cort 29292   chj 29295   𝐶 ccm 29298  projcpjh 29299   +op chos 29300   0hop ch0o 29305   Iop chio 29306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951  ax-hilex 29361  ax-hfvadd 29362  ax-hvcom 29363  ax-hvass 29364  ax-hv0cl 29365  ax-hvaddid 29366  ax-hfvmul 29367  ax-hvmulid 29368  ax-hvmulass 29369  ax-hvdistr1 29370  ax-hvdistr2 29371  ax-hvmul0 29372  ax-hfi 29441  ax-his1 29444  ax-his2 29445  ax-his3 29446  ax-his4 29447  ax-hcompl 29564
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-cn 22378  df-cnp 22379  df-lm 22380  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cfil 24419  df-cau 24420  df-cmet 24421  df-grpo 28855  df-gid 28856  df-ginv 28857  df-gdiv 28858  df-ablo 28907  df-vc 28921  df-nv 28954  df-va 28957  df-ba 28958  df-sm 28959  df-0v 28960  df-vs 28961  df-nmcv 28962  df-ims 28963  df-dip 29063  df-ssp 29084  df-ph 29175  df-cbn 29225  df-hnorm 29330  df-hba 29331  df-hvsub 29333  df-hlim 29334  df-hcau 29335  df-sh 29569  df-ch 29583  df-oc 29614  df-ch0 29615  df-shs 29670  df-chj 29672  df-pjh 29757  df-cm 29945  df-hosum 30092  df-h0op 30110  df-iop 30111
This theorem is referenced by:  pjclem2  30558
  Copyright terms: Public domain W3C validator