HomeHome Metamath Proof Explorer
Theorem List (p. 311 of 466)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29289)
  Hilbert Space Explorer  Hilbert Space Explorer
(29290-30812)
  Users' Mathboxes  Users' Mathboxes
(30813-46532)
 

Theorem List for Metamath Proof Explorer - 31001-31100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremabfmpel 31001* Membership in an element of a mapping function-defined family of sets. (Contributed by Thierry Arnoux, 19-Oct-2016.)
𝐹 = (𝑥𝑉 ↦ {𝑦𝜑})    &   {𝑦𝜑} ∈ V    &   ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))       ((𝐴𝑉𝐵𝑊) → (𝐵 ∈ (𝐹𝐴) ↔ 𝜓))
 
TheoremfmptdF 31002 Domain and codomain of the mapping operation; deduction form. This version of fmptd 6997 uses bound-variable hypothesis instead of distinct variable conditions. (Contributed by Thierry Arnoux, 28-Mar-2017.)
𝑥𝜑    &   𝑥𝐴    &   𝑥𝐶    &   ((𝜑𝑥𝐴) → 𝐵𝐶)    &   𝐹 = (𝑥𝐴𝐵)       (𝜑𝐹:𝐴𝐶)
 
Theoremfmptcof2 31003* Composition of two functions expressed as ordered-pair class abstractions. (Contributed by FL, 21-Jun-2012.) (Revised by Mario Carneiro, 24-Jul-2014.) (Revised by Thierry Arnoux, 10-May-2017.)
𝑥𝑆    &   𝑦𝑇    &   𝑥𝐴    &   𝑥𝐵    &   𝑥𝜑    &   (𝜑 → ∀𝑥𝐴 𝑅𝐵)    &   (𝜑𝐹 = (𝑥𝐴𝑅))    &   (𝜑𝐺 = (𝑦𝐵𝑆))    &   (𝑦 = 𝑅𝑆 = 𝑇)       (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑇))
 
Theoremfcomptf 31004* Express composition of two functions as a maps-to applying both in sequence. This version has one less distinct variable restriction compared to fcompt 7014. (Contributed by Thierry Arnoux, 30-Jun-2017.)
𝑥𝐵       ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → (𝐴𝐵) = (𝑥𝐶 ↦ (𝐴‘(𝐵𝑥))))
 
Theoremacunirnmpt 31005* Axiom of choice for the union of the range of a mapping to function. (Contributed by Thierry Arnoux, 6-Nov-2019.)
(𝜑𝐴𝑉)    &   ((𝜑𝑗𝐴) → 𝐵 ≠ ∅)    &   𝐶 = ran (𝑗𝐴𝐵)       (𝜑 → ∃𝑓(𝑓:𝐶 𝐶 ∧ ∀𝑦𝐶𝑗𝐴 (𝑓𝑦) ∈ 𝐵))
 
Theoremacunirnmpt2 31006* Axiom of choice for the union of the range of a mapping to function. (Contributed by Thierry Arnoux, 7-Nov-2019.)
(𝜑𝐴𝑉)    &   ((𝜑𝑗𝐴) → 𝐵 ≠ ∅)    &   𝐶 = ran (𝑗𝐴𝐵)    &   (𝑗 = (𝑓𝑥) → 𝐵 = 𝐷)       (𝜑 → ∃𝑓(𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷))
 
Theoremacunirnmpt2f 31007* Axiom of choice for the union of the range of a mapping to function. (Contributed by Thierry Arnoux, 7-Nov-2019.)
(𝜑𝐴𝑉)    &   ((𝜑𝑗𝐴) → 𝐵 ≠ ∅)    &   𝑗𝐴    &   𝑗𝐶    &   𝑗𝐷    &   𝐶 = 𝑗𝐴 𝐵    &   (𝑗 = (𝑓𝑥) → 𝐵 = 𝐷)    &   ((𝜑𝑗𝐴) → 𝐵𝑊)       (𝜑 → ∃𝑓(𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷))
 
Theoremaciunf1lem 31008* Choice in an index union. (Contributed by Thierry Arnoux, 8-Nov-2019.)
(𝜑𝐴𝑉)    &   ((𝜑𝑗𝐴) → 𝐵 ≠ ∅)    &   𝑗𝐴    &   ((𝜑𝑗𝐴) → 𝐵𝑊)       (𝜑 → ∃𝑓(𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵(2nd ‘(𝑓𝑥)) = 𝑥))
 
Theoremaciunf1 31009* Choice in an index union. (Contributed by Thierry Arnoux, 4-May-2020.)
(𝜑𝐴𝑉)    &   ((𝜑𝑗𝐴) → 𝐵𝑊)       (𝜑 → ∃𝑓(𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑘 𝑗𝐴 𝐵(2nd ‘(𝑓𝑘)) = 𝑘))
 
Theoremofoprabco 31010* Function operation as a composition with an operation. (Contributed by Thierry Arnoux, 4-Jun-2017.)
𝑎𝑀    &   (𝜑𝐹:𝐴𝐵)    &   (𝜑𝐺:𝐴𝐶)    &   (𝜑𝐴𝑉)    &   (𝜑𝑀 = (𝑎𝐴 ↦ ⟨(𝐹𝑎), (𝐺𝑎)⟩))    &   (𝜑𝑁 = (𝑥𝐵, 𝑦𝐶 ↦ (𝑥𝑅𝑦)))       (𝜑 → (𝐹f 𝑅𝐺) = (𝑁𝑀))
 
Theoremofpreima 31011* Express the preimage of a function operation as a union of preimages. (Contributed by Thierry Arnoux, 8-Mar-2018.)
(𝜑𝐹:𝐴𝐵)    &   (𝜑𝐺:𝐴𝐶)    &   (𝜑𝐴𝑉)    &   (𝜑𝑅 Fn (𝐵 × 𝐶))       (𝜑 → ((𝐹f 𝑅𝐺) “ 𝐷) = 𝑝 ∈ (𝑅𝐷)((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
 
Theoremofpreima2 31012* Express the preimage of a function operation as a union of preimages. This version of ofpreima 31011 iterates the union over a smaller set. (Contributed by Thierry Arnoux, 8-Mar-2018.)
(𝜑𝐹:𝐴𝐵)    &   (𝜑𝐺:𝐴𝐶)    &   (𝜑𝐴𝑉)    &   (𝜑𝑅 Fn (𝐵 × 𝐶))       (𝜑 → ((𝐹f 𝑅𝐺) “ 𝐷) = 𝑝 ∈ ((𝑅𝐷) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
 
Theoremfuncnvmpt 31013* Condition for a function in maps-to notation to be single-rooted. (Contributed by Thierry Arnoux, 28-Feb-2017.)
𝑥𝜑    &   𝑥𝐴    &   𝑥𝐹    &   𝐹 = (𝑥𝐴𝐵)    &   ((𝜑𝑥𝐴) → 𝐵𝑉)       (𝜑 → (Fun 𝐹 ↔ ∀𝑦∃*𝑥𝐴 𝑦 = 𝐵))
 
Theoremfuncnv5mpt 31014* Two ways to say that a function in maps-to notation is single-rooted. (Contributed by Thierry Arnoux, 1-Mar-2017.)
𝑥𝜑    &   𝑥𝐴    &   𝑥𝐹    &   𝐹 = (𝑥𝐴𝐵)    &   ((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝑥 = 𝑧𝐵 = 𝐶)       (𝜑 → (Fun 𝐹 ↔ ∀𝑥𝐴𝑧𝐴 (𝑥 = 𝑧𝐵𝐶)))
 
Theoremfuncnv4mpt 31015* Two ways to say that a function in maps-to notation is single-rooted. (Contributed by Thierry Arnoux, 2-Mar-2017.)
𝑥𝜑    &   𝑥𝐴    &   𝑥𝐹    &   𝐹 = (𝑥𝐴𝐵)    &   ((𝜑𝑥𝐴) → 𝐵𝑉)       (𝜑 → (Fun 𝐹 ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵)))
 
Theorempreimane 31016 Different elements have different preimages. (Contributed by Thierry Arnoux, 7-May-2023.)
(𝜑 → Fun 𝐹)    &   (𝜑𝑋𝑌)    &   (𝜑𝑋 ∈ ran 𝐹)    &   (𝜑𝑌 ∈ ran 𝐹)       (𝜑 → (𝐹 “ {𝑋}) ≠ (𝐹 “ {𝑌}))
 
Theoremfnpreimac 31017* Choose a set 𝑥 containing a preimage of each element of a given set 𝐵. (Contributed by Thierry Arnoux, 7-May-2023.)
((𝐴𝑉𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹) → ∃𝑥 ∈ 𝒫 𝐴(𝑥𝐵 ∧ (𝐹𝑥) = 𝐵))
 
Theoremfgreu 31018* Exactly one point of a function's graph has a given first element. (Contributed by Thierry Arnoux, 1-Apr-2018.)
((Fun 𝐹𝑋 ∈ dom 𝐹) → ∃!𝑝𝐹 𝑋 = (1st𝑝))
 
Theoremfcnvgreu 31019* If the converse of a relation 𝐴 is a function, exactly one point of its graph has a given second element (that is, function value). (Contributed by Thierry Arnoux, 1-Apr-2018.)
(((Rel 𝐴 ∧ Fun 𝐴) ∧ 𝑌 ∈ ran 𝐴) → ∃!𝑝𝐴 𝑌 = (2nd𝑝))
 
Theoremrnmposs 31020* The range of an operation given by the maps-to notation as a subset. (Contributed by Thierry Arnoux, 23-May-2017.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       (∀𝑥𝐴𝑦𝐵 𝐶𝐷 → ran 𝐹𝐷)
 
TheoremmptssALT 31021* Deduce subset relation of mapping-to function graphs from a subset relation of domains. Alternative proof of mptss 5953. (Contributed by Thierry Arnoux, 30-May-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → (𝑥𝐴𝐶) ⊆ (𝑥𝐵𝐶))
 
Theoremdfcnv2 31022* Alternative definition of the converse of a relation. (Contributed by Thierry Arnoux, 31-Mar-2018.)
(ran 𝑅𝐴𝑅 = 𝑥𝐴 ({𝑥} × (𝑅 “ {𝑥})))
 
Theoremfnimatp 31023 The image of an unordered triple under a function. (Contributed by Thierry Arnoux, 19-Sep-2023.)
(𝜑𝐹 Fn 𝐷)    &   (𝜑𝐴𝐷)    &   (𝜑𝐵𝐷)    &   (𝜑𝐶𝐷)       (𝜑 → (𝐹 “ {𝐴, 𝐵, 𝐶}) = {(𝐹𝐴), (𝐹𝐵), (𝐹𝐶)})
 
Theoremfnunres2 31024 Restriction of a disjoint union to the domain of the second function. (Contributed by Thierry Arnoux, 12-Oct-2023.)
((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → ((𝐹𝐺) ↾ 𝐵) = 𝐺)
 
20.3.4.3  Operations - misc additions
 
Theoremmpomptxf 31025* Express a two-argument function as a one-argument function, or vice-versa. In this version 𝐵(𝑥) is not assumed to be constant w.r.t 𝑥. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by Thierry Arnoux, 31-Mar-2018.)
𝑥𝐶    &   𝑦𝐶    &   (𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐷)       (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
 
Theoremsuppovss 31026* A bound for the support of an operation. (Contributed by Thierry Arnoux, 19-Jul-2023.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)    &   𝐺 = (𝑥𝐴 ↦ (𝑦𝐵𝐶))    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝜑𝑍𝐷)    &   ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝐶𝐷)       (𝜑 → (𝐹 supp 𝑍) ⊆ ((𝐺 supp (𝐵 × {𝑍})) × 𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺𝑘) supp 𝑍)))
 
Theoremfvdifsupp 31027 Function value is zero outside of its support. (Contributed by Thierry Arnoux, 21-Jan-2024.)
(𝜑𝐹 Fn 𝐴)    &   (𝜑𝐴𝑉)    &   (𝜑𝑍𝑊)    &   (𝜑𝑋 ∈ (𝐴 ∖ (𝐹 supp 𝑍)))       (𝜑 → (𝐹𝑋) = 𝑍)
 
Theoremfmptssfisupp 31028* The restriction of a mapping function has finite support if that function has finite support. (Contributed by Thierry Arnoux, 21-Jan-2024.)
(𝜑 → (𝑥𝐴𝐵) finSupp 𝑍)    &   (𝜑𝐶𝐴)    &   (𝜑𝑍𝑉)       (𝜑 → (𝑥𝐶𝐵) finSupp 𝑍)
 
Theoremsuppiniseg 31029 Relation between the support (𝐹 supp 𝑍) and the initial segment (𝐹 “ {𝑍}). (Contributed by Thierry Arnoux, 25-Jun-2024.)
((Fun 𝐹𝐹𝑉𝑍𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) = (𝐹 “ {𝑍}))
 
Theoremfsuppinisegfi 31030 The initial segment (𝐹 “ {𝑌}) of a nonzero 𝑌 is finite if 𝐹 has finite support. (Contributed by Thierry Arnoux, 21-Jun-2024.)
(𝜑𝐹𝑉)    &   (𝜑0𝑊)    &   (𝜑𝑌 ∈ (V ∖ { 0 }))    &   (𝜑𝐹 finSupp 0 )       (𝜑 → (𝐹 “ {𝑌}) ∈ Fin)
 
Theoremfressupp 31031 The restriction of a function to its support. (Contributed by Thierry Arnoux, 25-Jun-2024.)
((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 ↾ (𝐹 supp 𝑍)) = (𝐹 ∖ (V × {𝑍})))
 
Theoremfdifsuppconst 31032 A function is a zero constant outside of its support. (Contributed by Thierry Arnoux, 22-Jun-2024.)
𝐴 = (dom 𝐹 ∖ (𝐹 supp 𝑍))       ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹𝐴) = (𝐴 × {𝑍}))
 
Theoremressupprn 31033 The range of a function restricted to its support. (Contributed by Thierry Arnoux, 25-Jun-2024.)
((Fun 𝐹𝐹𝑉0𝑊) → ran (𝐹 ↾ (𝐹 supp 0 )) = (ran 𝐹 ∖ { 0 }))
 
Theoremsupppreima 31034 Express the support of a function as the preimage of its range except zero. (Contributed by Thierry Arnoux, 24-Jun-2024.)
((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = (𝐹 “ (ran 𝐹 ∖ {𝑍})))
 
Theoremfsupprnfi 31035 Finite support implies finite range. (Contributed by Thierry Arnoux, 24-Jun-2024.)
(((Fun 𝐹𝐹𝑉) ∧ ( 0𝑊𝐹 finSupp 0 )) → ran 𝐹 ∈ Fin)
 
20.3.4.4  Explicit Functions with one or two points as a domain
 
Theoremcosnopne 31036 Composition of two ordered pair singletons with non-matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023.)
(𝜑𝐵𝑊)    &   (𝜑𝐶𝑋)    &   (𝜑𝐴𝐷)       (𝜑 → ({⟨𝐴, 𝐵⟩} ∘ {⟨𝐶, 𝐷⟩}) = ∅)
 
Theoremcosnop 31037 Composition of two ordered pair singletons with matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝜑𝐶𝑋)       (𝜑 → ({⟨𝐴, 𝐵⟩} ∘ {⟨𝐶, 𝐴⟩}) = {⟨𝐶, 𝐵⟩})
 
Theoremcnvprop 31038 Converse of a pair of ordered pairs. (Contributed by Thierry Arnoux, 24-Sep-2023.)
(((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑉𝐷𝑊)) → {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {⟨𝐵, 𝐴⟩, ⟨𝐷, 𝐶⟩})
 
Theorembrprop 31039 Binary relation for a pair of ordered pairs. (Contributed by Thierry Arnoux, 24-Sep-2023.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝜑𝐶𝑉)    &   (𝜑𝐷𝑊)       (𝜑 → (𝑋{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}𝑌 ↔ ((𝑋 = 𝐴𝑌 = 𝐵) ∨ (𝑋 = 𝐶𝑌 = 𝐷))))
 
Theoremmptprop 31040* Rewrite pairs of ordered pairs as mapping to functions. (Contributed by Thierry Arnoux, 24-Sep-2023.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝜑𝐶𝑉)    &   (𝜑𝐷𝑊)    &   (𝜑𝐴𝐶)       (𝜑 → {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = (𝑥 ∈ {𝐴, 𝐶} ↦ if(𝑥 = 𝐴, 𝐵, 𝐷)))
 
Theoremcoprprop 31041 Composition of two pairs of ordered pairs with matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝜑𝐶𝑉)    &   (𝜑𝐷𝑊)    &   (𝜑𝐴𝐶)    &   (𝜑𝐸𝑋)    &   (𝜑𝐹𝑋)    &   (𝜑𝐸𝐹)       (𝜑 → ({⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} ∘ {⟨𝐸, 𝐴⟩, ⟨𝐹, 𝐶⟩}) = {⟨𝐸, 𝐵⟩, ⟨𝐹, 𝐷⟩})
 
20.3.4.5  Isomorphisms - misc. add.
 
Theoremgtiso 31042 Two ways to write a strictly decreasing function on the reals. (Contributed by Thierry Arnoux, 6-Apr-2017.)
((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → (𝐹 Isom < , < (𝐴, 𝐵) ↔ 𝐹 Isom ≤ , ≤ (𝐴, 𝐵)))
 
Theoremisoun 31043* Infer an isomorphism from a union of two isomorphisms. (Contributed by Thierry Arnoux, 30-Mar-2017.)
(𝜑𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))    &   (𝜑𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐷))    &   ((𝜑𝑥𝐴𝑦𝐶) → 𝑥𝑅𝑦)    &   ((𝜑𝑧𝐵𝑤𝐷) → 𝑧𝑆𝑤)    &   ((𝜑𝑥𝐶𝑦𝐴) → ¬ 𝑥𝑅𝑦)    &   ((𝜑𝑧𝐷𝑤𝐵) → ¬ 𝑧𝑆𝑤)    &   (𝜑 → (𝐴𝐶) = ∅)    &   (𝜑 → (𝐵𝐷) = ∅)       (𝜑 → (𝐻𝐺) Isom 𝑅, 𝑆 ((𝐴𝐶), (𝐵𝐷)))
 
20.3.4.6  Disjointness (additional proof requiring functions)
 
Theoremdisjdsct 31044* A disjoint collection is distinct, i.e. each set in this collection is different of all others, provided that it does not contain the empty set This can be expressed as "the converse of the mapping function is a function", or "the mapping function is single-rooted". (Cf. funcnv 6510) (Contributed by Thierry Arnoux, 28-Feb-2017.)
𝑥𝜑    &   𝑥𝐴    &   ((𝜑𝑥𝐴) → 𝐵 ∈ (𝑉 ∖ {∅}))    &   (𝜑Disj 𝑥𝐴 𝐵)       (𝜑 → Fun (𝑥𝐴𝐵))
 
20.3.4.7  First and second members of an ordered pair - misc additions
 
Theoremdf1stres 31045* Definition for a restriction of the 1st (first member of an ordered pair) function. (Contributed by Thierry Arnoux, 27-Sep-2017.)
(1st ↾ (𝐴 × 𝐵)) = (𝑥𝐴, 𝑦𝐵𝑥)
 
Theoremdf2ndres 31046* Definition for a restriction of the 2nd (second member of an ordered pair) function. (Contributed by Thierry Arnoux, 27-Sep-2017.)
(2nd ↾ (𝐴 × 𝐵)) = (𝑥𝐴, 𝑦𝐵𝑦)
 
Theorem1stpreimas 31047 The preimage of a singleton. (Contributed by Thierry Arnoux, 27-Apr-2020.)
((Rel 𝐴𝑋𝑉) → ((1st𝐴) “ {𝑋}) = ({𝑋} × (𝐴 “ {𝑋})))
 
Theorem1stpreima 31048 The preimage by 1st is a 'vertical band'. (Contributed by Thierry Arnoux, 13-Oct-2017.)
(𝐴𝐵 → ((1st ↾ (𝐵 × 𝐶)) “ 𝐴) = (𝐴 × 𝐶))
 
Theorem2ndpreima 31049 The preimage by 2nd is an 'horizontal band'. (Contributed by Thierry Arnoux, 13-Oct-2017.)
(𝐴𝐶 → ((2nd ↾ (𝐵 × 𝐶)) “ 𝐴) = (𝐵 × 𝐴))
 
Theoremcurry2ima 31050* The image of a curried function with a constant second argument. (Contributed by Thierry Arnoux, 25-Sep-2017.)
𝐺 = (𝐹(1st ↾ (V × {𝐶})))       ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → (𝐺𝐷) = {𝑦 ∣ ∃𝑥𝐷 𝑦 = (𝑥𝐹𝐶)})
 
Theorempreiman0 31051 The preimage of a nonempty set is nonempty. (Contributed by Thierry Arnoux, 9-Jun-2024.)
((Fun 𝐹𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → (𝐹𝐴) ≠ ∅)
 
Theoremintimafv 31052* The intersection of an image set, as an indexed intersection of function values. (Contributed by Thierry Arnoux, 15-Jun-2024.)
((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = 𝑥𝐴 (𝐹𝑥))
 
20.3.4.8  Supremum - misc additions
 
Theoremsupssd 31053* Inequality deduction for supremum of a subset. (Contributed by Thierry Arnoux, 21-Mar-2017.)
(𝜑𝑅 Or 𝐴)    &   (𝜑𝐵𝐶)    &   (𝜑𝐶𝐴)    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)))       (𝜑 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅sup(𝐵, 𝐴, 𝑅))
 
Theoreminfssd 31054* Inequality deduction for infimum of a subset. (Contributed by AV, 4-Oct-2020.)
(𝜑𝑅 Or 𝐴)    &   (𝜑𝐶𝐵)    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐶 𝑧𝑅𝑦)))    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))       (𝜑 → ¬ inf(𝐶, 𝐴, 𝑅)𝑅inf(𝐵, 𝐴, 𝑅))
 
20.3.4.9  Finite Sets
 
Theoremimafi2 31055 The image by a finite set is finite. See also imafi 8967. (Contributed by Thierry Arnoux, 25-Apr-2020.)
(𝐴 ∈ Fin → (𝐴𝐵) ∈ Fin)
 
Theoremunifi3 31056 If a union is finite, then all its elements are finite. See unifi 9117. (Contributed by Thierry Arnoux, 27-Aug-2017.)
( 𝐴 ∈ Fin → 𝐴 ⊆ Fin)
 
20.3.4.10  Countable Sets
 
Theoremsnct 31057 A singleton is countable. (Contributed by Thierry Arnoux, 16-Sep-2016.)
(𝐴𝑉 → {𝐴} ≼ ω)
 
Theoremprct 31058 An unordered pair is countable. (Contributed by Thierry Arnoux, 16-Sep-2016.)
((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} ≼ ω)
 
Theoremmpocti 31059* An operation is countable if both its domains are countable. (Contributed by Thierry Arnoux, 17-Sep-2017.)
𝑥𝐴𝑦𝐵 𝐶𝑉       ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝑥𝐴, 𝑦𝐵𝐶) ≼ ω)
 
Theoremabrexct 31060* An image set of a countable set is countable. (Contributed by Thierry Arnoux, 29-Dec-2016.)
(𝐴 ≼ ω → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≼ ω)
 
Theoremmptctf 31061 A countable mapping set is countable, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Thierry Arnoux, 8-Mar-2017.)
𝑥𝐴       (𝐴 ≼ ω → (𝑥𝐴𝐵) ≼ ω)
 
Theoremabrexctf 31062* An image set of a countable set is countable, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Thierry Arnoux, 8-Mar-2017.)
𝑥𝐴       (𝐴 ≼ ω → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≼ ω)
 
Theorempadct 31063* Index a countable set with integers and pad with 𝑍. (Contributed by Thierry Arnoux, 1-Jun-2020.)
((𝐴 ≼ ω ∧ 𝑍𝑉 ∧ ¬ 𝑍𝐴) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
 
TheoremcnvoprabOLD 31064* The converse of a class abstraction of nested ordered pairs. Obsolete version of cnvoprab 7909 as of 16-Oct-2022, which has nonfreeness hypotheses instead of disjoint variable conditions. (Contributed by Thierry Arnoux, 17-Aug-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑥𝜓    &   𝑦𝜓    &   (𝑎 = ⟨𝑥, 𝑦⟩ → (𝜓𝜑))    &   (𝜓𝑎 ∈ (V × V))       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑧, 𝑎⟩ ∣ 𝜓}
 
Theoremf1od2 31065* Sufficient condition for a binary function expressed in maps-to notation to be bijective. (Contributed by Thierry Arnoux, 17-Aug-2017.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)    &   ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝐶𝑊)    &   ((𝜑𝑧𝐷) → (𝐼𝑋𝐽𝑌))    &   (𝜑 → (((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ↔ (𝑧𝐷 ∧ (𝑥 = 𝐼𝑦 = 𝐽))))       (𝜑𝐹:(𝐴 × 𝐵)–1-1-onto𝐷)
 
Theoremfcobij 31066* Composing functions with a bijection yields a bijection between sets of functions. (Contributed by Thierry Arnoux, 25-Aug-2017.)
(𝜑𝐺:𝑆1-1-onto𝑇)    &   (𝜑𝑅𝑈)    &   (𝜑𝑆𝑉)    &   (𝜑𝑇𝑊)       (𝜑 → (𝑓 ∈ (𝑆m 𝑅) ↦ (𝐺𝑓)):(𝑆m 𝑅)–1-1-onto→(𝑇m 𝑅))
 
Theoremfcobijfs 31067* Composing finitely supported functions with a bijection yields a bijection between sets of finitely supported functions. See also mapfien 9176. (Contributed by Thierry Arnoux, 25-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
(𝜑𝐺:𝑆1-1-onto𝑇)    &   (𝜑𝑅𝑈)    &   (𝜑𝑆𝑉)    &   (𝜑𝑇𝑊)    &   (𝜑𝑂𝑆)    &   𝑄 = (𝐺𝑂)    &   𝑋 = {𝑔 ∈ (𝑆m 𝑅) ∣ 𝑔 finSupp 𝑂}    &   𝑌 = { ∈ (𝑇m 𝑅) ∣ finSupp 𝑄}       (𝜑 → (𝑓𝑋 ↦ (𝐺𝑓)):𝑋1-1-onto𝑌)
 
Theoremsuppss3 31068* Deduce a function's support's inclusion in another function's support. (Contributed by Thierry Arnoux, 7-Sep-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
𝐺 = (𝑥𝐴𝐵)    &   (𝜑𝐴𝑉)    &   (𝜑𝑍𝑊)    &   (𝜑𝐹 Fn 𝐴)    &   ((𝜑𝑥𝐴 ∧ (𝐹𝑥) = 𝑍) → 𝐵 = 𝑍)       (𝜑 → (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍))
 
Theoremfsuppcurry1 31069* Finite support of a curried function with a constant first argument. (Contributed by Thierry Arnoux, 7-Jul-2023.)
𝐺 = (𝑥𝐵 ↦ (𝐶𝐹𝑥))    &   (𝜑𝑍𝑈)    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝜑𝐹 Fn (𝐴 × 𝐵))    &   (𝜑𝐶𝐴)    &   (𝜑𝐹 finSupp 𝑍)       (𝜑𝐺 finSupp 𝑍)
 
Theoremfsuppcurry2 31070* Finite support of a curried function with a constant second argument. (Contributed by Thierry Arnoux, 7-Jul-2023.)
𝐺 = (𝑥𝐴 ↦ (𝑥𝐹𝐶))    &   (𝜑𝑍𝑈)    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝜑𝐹 Fn (𝐴 × 𝐵))    &   (𝜑𝐶𝐵)    &   (𝜑𝐹 finSupp 𝑍)       (𝜑𝐺 finSupp 𝑍)
 
Theoremoffinsupp1 31071* Finite support for a function operation. (Contributed by Thierry Arnoux, 8-Jul-2023.)
(𝜑𝐴𝑉)    &   (𝜑𝑌𝑈)    &   (𝜑𝑍𝑊)    &   (𝜑𝐹:𝐴𝑆)    &   (𝜑𝐺:𝐴𝑇)    &   (𝜑𝐹 finSupp 𝑌)    &   ((𝜑𝑥𝑇) → (𝑌𝑅𝑥) = 𝑍)       (𝜑 → (𝐹f 𝑅𝐺) finSupp 𝑍)
 
Theoremffs2 31072 Rewrite a function's support based with its range rather than the universal class. See also frnsuppeq 8000. (Contributed by Thierry Arnoux, 27-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
𝐶 = (𝐵 ∖ {𝑍})       ((𝐴𝑉𝑍𝑊𝐹:𝐴𝐵) → (𝐹 supp 𝑍) = (𝐹𝐶))
 
Theoremffsrn 31073 The range of a finitely supported function is finite. (Contributed by Thierry Arnoux, 27-Aug-2017.)
(𝜑𝑍𝑊)    &   (𝜑𝐹𝑉)    &   (𝜑 → Fun 𝐹)    &   (𝜑 → (𝐹 supp 𝑍) ∈ Fin)       (𝜑 → ran 𝐹 ∈ Fin)
 
Theoremresf1o 31074* Restriction of functions to a superset of their support creates a bijection. (Contributed by Thierry Arnoux, 12-Sep-2017.)
𝑋 = {𝑓 ∈ (𝐵m 𝐴) ∣ (𝑓 “ (𝐵 ∖ {𝑍})) ⊆ 𝐶}    &   𝐹 = (𝑓𝑋 ↦ (𝑓𝐶))       (((𝐴𝑉𝐵𝑊𝐶𝐴) ∧ 𝑍𝐵) → 𝐹:𝑋1-1-onto→(𝐵m 𝐶))
 
Theoremmaprnin 31075* Restricting the range of the mapping operator. (Contributed by Thierry Arnoux, 30-Aug-2017.)
𝐴 ∈ V    &   𝐵 ∈ V       ((𝐵𝐶) ↑m 𝐴) = {𝑓 ∈ (𝐵m 𝐴) ∣ ran 𝑓𝐶}
 
Theoremfpwrelmapffslem 31076* Lemma for fpwrelmapffs 31078. For this theorem, the sets 𝐴 and 𝐵 could be infinite, but the relation 𝑅 itself is finite. (Contributed by Thierry Arnoux, 1-Sep-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
𝐴 ∈ V    &   𝐵 ∈ V    &   (𝜑𝐹:𝐴⟶𝒫 𝐵)    &   (𝜑𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))})       (𝜑 → (𝑅 ∈ Fin ↔ (ran 𝐹 ⊆ Fin ∧ (𝐹 supp ∅) ∈ Fin)))
 
Theoremfpwrelmap 31077* Define a canonical mapping between functions from 𝐴 into subsets of 𝐵 and the relations with domain 𝐴 and range within 𝐵. Note that the same relation is used in axdc2lem 10213 and marypha2lem1 9203. (Contributed by Thierry Arnoux, 28-Aug-2017.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝑀 = (𝑓 ∈ (𝒫 𝐵m 𝐴) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝑓𝑥))})       𝑀:(𝒫 𝐵m 𝐴)–1-1-onto→𝒫 (𝐴 × 𝐵)
 
Theoremfpwrelmapffs 31078* Define a canonical mapping between finite relations (finite subsets of a cartesian product) and functions with finite support into finite subsets. (Contributed by Thierry Arnoux, 28-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝑀 = (𝑓 ∈ (𝒫 𝐵m 𝐴) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝑓𝑥))})    &   𝑆 = {𝑓 ∈ ((𝒫 𝐵 ∩ Fin) ↑m 𝐴) ∣ (𝑓 supp ∅) ∈ Fin}       (𝑀𝑆):𝑆1-1-onto→(𝒫 (𝐴 × 𝐵) ∩ Fin)
 
20.3.5  Real and Complex Numbers
 
20.3.5.1  Complex operations - misc. additions
 
Theoremcreq0 31079 The real representation of complex numbers is zero iff both its terms are zero. Cf. crne0 11975. (Contributed by Thierry Arnoux, 20-Aug-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 = 0 ∧ 𝐵 = 0) ↔ (𝐴 + (i · 𝐵)) = 0))
 
Theorem1nei 31080 The imaginary unit i is not one. (Contributed by Thierry Arnoux, 20-Aug-2023.)
1 ≠ i
 
Theorem1neg1t1neg1 31081 An integer unit times itself. (Contributed by Thierry Arnoux, 23-Aug-2020.)
(𝑁 ∈ {-1, 1} → (𝑁 · 𝑁) = 1)
 
Theoremnnmulge 31082 Multiplying by a positive integer 𝑀 yields greater than or equal nonnegative integers. (Contributed by Thierry Arnoux, 13-Dec-2021.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ (𝑀 · 𝑁))
 
20.3.5.2  Ordering on reals - misc additions
 
Theoremlt2addrd 31083* If the right-hand side of a 'less than' relationship is an addition, then we can express the left-hand side as an addition, too, where each term is respectively less than each term of the original right side. (Contributed by Thierry Arnoux, 15-Mar-2017.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴 < (𝐵 + 𝐶))       (𝜑 → ∃𝑏 ∈ ℝ ∃𝑐 ∈ ℝ (𝐴 = (𝑏 + 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶))
 
20.3.5.3  Extended reals - misc additions
 
Theoremxrlelttric 31084 Trichotomy law for extended reals. (Contributed by Thierry Arnoux, 12-Sep-2017.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵𝐵 < 𝐴))
 
Theoremxaddeq0 31085 Two extended reals which add up to zero are each other's negatives. (Contributed by Thierry Arnoux, 13-Jun-2017.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) = 0 ↔ 𝐴 = -𝑒𝐵))
 
Theoremxrinfm 31086 The extended real numbers are unbounded below. (Contributed by Thierry Arnoux, 18-Feb-2018.) (Revised by AV, 28-Sep-2020.)
inf(ℝ*, ℝ*, < ) = -∞
 
Theoremle2halvesd 31087 A sum is less than the whole if each term is less than half. (Contributed by Thierry Arnoux, 29-Nov-2017.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴 ≤ (𝐶 / 2))    &   (𝜑𝐵 ≤ (𝐶 / 2))       (𝜑 → (𝐴 + 𝐵) ≤ 𝐶)
 
Theoremxraddge02 31088 A number is less than or equal to itself plus a nonnegative number. (Contributed by Thierry Arnoux, 28-Dec-2016.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ 𝐵𝐴 ≤ (𝐴 +𝑒 𝐵)))
 
Theoremxrge0addge 31089 A number is less than or equal to itself plus a nonnegative number. (Contributed by Thierry Arnoux, 19-Jul-2020.)
((𝐴 ∈ ℝ*𝐵 ∈ (0[,]+∞)) → 𝐴 ≤ (𝐴 +𝑒 𝐵))
 
Theoremxlt2addrd 31090* If the right-hand side of a 'less than' relationship is an addition, then we can express the left-hand side as an addition, too, where each term is respectively less than each term of the original right side. (Contributed by Thierry Arnoux, 15-Mar-2017.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐶 ∈ ℝ*)    &   (𝜑𝐵 ≠ -∞)    &   (𝜑𝐶 ≠ -∞)    &   (𝜑𝐴 < (𝐵 +𝑒 𝐶))       (𝜑 → ∃𝑏 ∈ ℝ*𝑐 ∈ ℝ* (𝐴 = (𝑏 +𝑒 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶))
 
Theoremxrsupssd 31091 Inequality deduction for supremum of an extended real subset. (Contributed by Thierry Arnoux, 21-Mar-2017.)
(𝜑𝐵𝐶)    &   (𝜑𝐶 ⊆ ℝ*)       (𝜑 → sup(𝐵, ℝ*, < ) ≤ sup(𝐶, ℝ*, < ))
 
Theoremxrge0infss 31092* Any subset of nonnegative extended reals has an infimum. (Contributed by Thierry Arnoux, 16-Sep-2019.) (Revised by AV, 4-Oct-2020.)
(𝐴 ⊆ (0[,]+∞) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
 
Theoremxrge0infssd 31093 Inequality deduction for infimum of a nonnegative extended real subset. (Contributed by Thierry Arnoux, 16-Sep-2019.) (Revised by AV, 4-Oct-2020.)
(𝜑𝐶𝐵)    &   (𝜑𝐵 ⊆ (0[,]+∞))       (𝜑 → inf(𝐵, (0[,]+∞), < ) ≤ inf(𝐶, (0[,]+∞), < ))
 
Theoremxrge0addcld 31094 Nonnegative extended reals are closed under addition. (Contributed by Thierry Arnoux, 16-Sep-2019.)
(𝜑𝐴 ∈ (0[,]+∞))    &   (𝜑𝐵 ∈ (0[,]+∞))       (𝜑 → (𝐴 +𝑒 𝐵) ∈ (0[,]+∞))
 
Theoremxrge0subcld 31095 Condition for closure of nonnegative extended reals under subtraction. (Contributed by Thierry Arnoux, 27-May-2020.)
(𝜑𝐴 ∈ (0[,]+∞))    &   (𝜑𝐵 ∈ (0[,]+∞))    &   (𝜑𝐵𝐴)       (𝜑 → (𝐴 +𝑒 -𝑒𝐵) ∈ (0[,]+∞))
 
Theoreminfxrge0lb 31096 A member of a set of nonnegative extended reals is greater than or equal to the set's infimum. (Contributed by Thierry Arnoux, 19-Jul-2020.) (Revised by AV, 4-Oct-2020.)
(𝜑𝐴 ⊆ (0[,]+∞))    &   (𝜑𝐵𝐴)       (𝜑 → inf(𝐴, (0[,]+∞), < ) ≤ 𝐵)
 
Theoreminfxrge0glb 31097* The infimum of a set of nonnegative extended reals is the greatest lower bound. (Contributed by Thierry Arnoux, 19-Jul-2020.) (Revised by AV, 4-Oct-2020.)
(𝜑𝐴 ⊆ (0[,]+∞))    &   (𝜑𝐵 ∈ (0[,]+∞))       (𝜑 → (inf(𝐴, (0[,]+∞), < ) < 𝐵 ↔ ∃𝑥𝐴 𝑥 < 𝐵))
 
Theoreminfxrge0gelb 31098* The infimum of a set of nonnegative extended reals is greater than or equal to a lower bound. (Contributed by Thierry Arnoux, 19-Jul-2020.) (Revised by AV, 4-Oct-2020.)
(𝜑𝐴 ⊆ (0[,]+∞))    &   (𝜑𝐵 ∈ (0[,]+∞))       (𝜑 → (𝐵 ≤ inf(𝐴, (0[,]+∞), < ) ↔ ∀𝑥𝐴 𝐵𝑥))
 
Theoremxrofsup 31099 The supremum is preserved by extended addition set operation. (Provided minus infinity is not involved as it does not behave well with addition.) (Contributed by Thierry Arnoux, 20-Mar-2017.)
(𝜑𝑋 ⊆ ℝ*)    &   (𝜑𝑌 ⊆ ℝ*)    &   (𝜑 → sup(𝑋, ℝ*, < ) ≠ -∞)    &   (𝜑 → sup(𝑌, ℝ*, < ) ≠ -∞)    &   (𝜑𝑍 = ( +𝑒 “ (𝑋 × 𝑌)))       (𝜑 → sup(𝑍, ℝ*, < ) = (sup(𝑋, ℝ*, < ) +𝑒 sup(𝑌, ℝ*, < )))
 
Theoremsupxrnemnf 31100 The supremum of a nonempty set of extended reals which does not contain minus infinity is not minus infinity. (Contributed by Thierry Arnoux, 21-Mar-2017.)
((𝐴 ⊆ ℝ*𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) ≠ -∞)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46532
  Copyright terms: Public domain < Previous  Next >