HomeHome Metamath Proof Explorer
Theorem List (p. 311 of 450)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28695)
  Hilbert Space Explorer  Hilbert Space Explorer
(28696-30218)
  Users' Mathboxes  Users' Mathboxes
(30219-44926)
 

Theorem List for Metamath Proof Explorer - 31001-31100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdimval 31001 The dimension of a vector space 𝐹 is the cardinality of one of its bases. (Contributed by Thierry Arnoux, 6-May-2023.)
𝐽 = (LBasis‘𝐹)       ((𝐹 ∈ LVec ∧ 𝑆𝐽) → (dim‘𝐹) = (♯‘𝑆))
 
Theoremdimvalfi 31002 The dimension of a vector space 𝐹 is the cardinality of one of its bases. This version of dimval 31001 does not depend on the axiom of choice, but it is limited to the case where the base 𝑆 is finite. (Contributed by Thierry Arnoux, 24-May-2023.)
𝐽 = (LBasis‘𝐹)       ((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) → (dim‘𝐹) = (♯‘𝑆))
 
Theoremdimcl 31003 Closure of the vector space dimension. (Contributed by Thierry Arnoux, 18-May-2023.)
(𝑉 ∈ LVec → (dim‘𝑉) ∈ ℕ0*)
 
Theoremlvecdim0i 31004 A vector space of dimension zero is reduced to its identity element. (Contributed by Thierry Arnoux, 31-Jul-2023.)
0 = (0g𝑉)       ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → (Base‘𝑉) = { 0 })
 
Theoremlvecdim0 31005 A vector space of dimension zero is reduced to its identity element, biconditional version. (Contributed by Thierry Arnoux, 31-Jul-2023.)
0 = (0g𝑉)       (𝑉 ∈ LVec → ((dim‘𝑉) = 0 ↔ (Base‘𝑉) = { 0 }))
 
Theoremlssdimle 31006 The dimension of a linear subspace is less than or equal to the dimension of the parent vector space. This is corollary 5.4 of [Lang] p. 141 (Contributed by Thierry Arnoux, 20-May-2023.)
𝑋 = (𝑊s 𝑈)       ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑋) ≤ (dim‘𝑊))
 
Theoremdimpropd 31007* If two structures have the same components (properties), they have the same dimension. (Contributed by Thierry Arnoux, 18-May-2023.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   (𝜑𝐵𝑊)    &   ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))    &   ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) ∈ 𝑊)    &   ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))    &   𝐹 = (Scalar‘𝐾)    &   𝐺 = (Scalar‘𝐿)    &   (𝜑𝑃 = (Base‘𝐹))    &   (𝜑𝑃 = (Base‘𝐺))    &   ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(+g𝐹)𝑦) = (𝑥(+g𝐺)𝑦))    &   (𝜑𝐾 ∈ LVec)    &   (𝜑𝐿 ∈ LVec)       (𝜑 → (dim‘𝐾) = (dim‘𝐿))
 
Theoremrgmoddim 31008 The left vector space induced by a ring over itself has dimension 1. (Contributed by Thierry Arnoux, 5-Aug-2023.)
𝑉 = (ringLMod‘𝐹)       (𝐹 ∈ Field → (dim‘𝑉) = 1)
 
Theoremfrlmdim 31009 Dimension of a free left module. (Contributed by Thierry Arnoux, 20-May-2023.)
𝐹 = (𝑅 freeLMod 𝐼)       ((𝑅 ∈ DivRing ∧ 𝐼𝑉) → (dim‘𝐹) = (♯‘𝐼))
 
Theoremtnglvec 31010 Augmenting a structure with a norm conserves left vector spaces. (Contributed by Thierry Arnoux, 20-May-2023.)
𝑇 = (𝐺 toNrmGrp 𝑁)       (𝑁𝑉 → (𝐺 ∈ LVec ↔ 𝑇 ∈ LVec))
 
Theoremtngdim 31011 Dimension of a left vector space augmented with a norm. (Contributed by Thierry Arnoux, 20-May-2023.)
𝑇 = (𝐺 toNrmGrp 𝑁)       ((𝐺 ∈ LVec ∧ 𝑁𝑉) → (dim‘𝐺) = (dim‘𝑇))
 
Theoremrrxdim 31012 Dimension of the generalized Euclidean space. (Contributed by Thierry Arnoux, 20-May-2023.)
𝐻 = (ℝ^‘𝐼)       (𝐼𝑉 → (dim‘𝐻) = (♯‘𝐼))
 
Theoremmatdim 31013 Dimension of the space of square matrices. (Contributed by Thierry Arnoux, 20-May-2023.)
𝐴 = (𝐼 Mat 𝑅)    &   𝑁 = (♯‘𝐼)       ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (dim‘𝐴) = (𝑁 · 𝑁))
 
Theoremlbslsat 31014 A nonzero vector 𝑋 is a basis of a line spanned by the singleton 𝑋. Spans of nonzero singletons are sometimes called "atoms", see df-lsatoms 36127 and for example lsatlspsn 36144. (Contributed by Thierry Arnoux, 20-May-2023.)
𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &    0 = (0g𝑊)    &   𝑌 = (𝑊s (𝑁‘{𝑋}))       ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → {𝑋} ∈ (LBasis‘𝑌))
 
Theoremlsatdim 31015 A line, spanned by a nonzero singleton, has dimension 1. (Contributed by Thierry Arnoux, 20-May-2023.)
𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &    0 = (0g𝑊)    &   𝑌 = (𝑊s (𝑁‘{𝑋}))       ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → (dim‘𝑌) = 1)
 
Theoremdrngdimgt0 31016 The dimension of a vector space that is also a division ring is greater than zero. (Contributed by Thierry Arnoux, 29-Jul-2023.)
((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → 0 < (dim‘𝐹))
 
Theoremlmhmlvec2 31017 A homomorphism of left vector spaces has a left vector space as codomain. (Contributed by Thierry Arnoux, 7-May-2023.)
((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝑈 ∈ LVec)
 
Theoremkerlmhm 31018 The kernel of a vector space homomorphism is a vector space itself. (Contributed by Thierry Arnoux, 7-May-2023.)
0 = (0g𝑈)    &   𝐾 = (𝑉s (𝐹 “ { 0 }))       ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝐾 ∈ LVec)
 
Theoremimlmhm 31019 The image of a vector space homomorphism is a vector space itself. (Contributed by Thierry Arnoux, 7-May-2023.)
𝐼 = (𝑈s ran 𝐹)       ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝐼 ∈ LVec)
 
Theoremlindsunlem 31020 Lemma for lindsun 31021. (Contributed by Thierry Arnoux, 9-May-2023.)
𝑁 = (LSpan‘𝑊)    &    0 = (0g𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈 ∈ (LIndS‘𝑊))    &   (𝜑𝑉 ∈ (LIndS‘𝑊))    &   (𝜑 → ((𝑁𝑈) ∩ (𝑁𝑉)) = { 0 })    &   𝑂 = (0g‘(Scalar‘𝑊))    &   𝐹 = (Base‘(Scalar‘𝑊))    &   (𝜑𝐶𝑈)    &   (𝜑𝐾 ∈ (𝐹 ∖ {𝑂}))    &   (𝜑 → (𝐾( ·𝑠𝑊)𝐶) ∈ (𝑁‘((𝑈𝑉) ∖ {𝐶})))       (𝜑 → ⊥)
 
Theoremlindsun 31021 Condition for the union of two independent sets to be an independent set. (Contributed by Thierry Arnoux, 9-May-2023.)
𝑁 = (LSpan‘𝑊)    &    0 = (0g𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈 ∈ (LIndS‘𝑊))    &   (𝜑𝑉 ∈ (LIndS‘𝑊))    &   (𝜑 → ((𝑁𝑈) ∩ (𝑁𝑉)) = { 0 })       (𝜑 → (𝑈𝑉) ∈ (LIndS‘𝑊))
 
Theoremlbsdiflsp0 31022 The linear spans of two disjunct independent sets only have a trivial intersection. This can be seen as the opposite direction of lindsun 31021. (Contributed by Thierry Arnoux, 17-May-2023.)
𝐽 = (LBasis‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &    0 = (0g𝑊)       ((𝑊 ∈ LVec ∧ 𝐵𝐽𝑉𝐵) → ((𝑁‘(𝐵𝑉)) ∩ (𝑁𝑉)) = { 0 })
 
Theoremdimkerim 31023 Given a linear map 𝐹 between vector spaces 𝑉 and 𝑈, the dimension of the vector space 𝑉 is the sum of the dimension of 𝐹 's kernel and the dimension of 𝐹's image. Second part of theorem 5.3 in [Lang] p. 141 This can also be described as the Rank-nullity theorem, (dim‘𝐼) being the rank of 𝐹 (the dimension of its image), and (dim‘𝐾) its nullity (the dimension of its kernel). (Contributed by Thierry Arnoux, 17-May-2023.)
0 = (0g𝑈)    &   𝐾 = (𝑉s (𝐹 “ { 0 }))    &   𝐼 = (𝑈s ran 𝐹)       ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → (dim‘𝑉) = ((dim‘𝐾) +𝑒 (dim‘𝐼)))
 
Theoremqusdimsum 31024 Let 𝑊 be a vector space, and let 𝑋 be a subspace. Then the dimension of 𝑊 is the sum of the dimension of 𝑋 and the dimension of the quotient space of 𝑋. First part of theorem 5.3 in [Lang] p. 141 (Contributed by Thierry Arnoux, 20-May-2023.)
𝑋 = (𝑊s 𝑈)    &   𝑌 = (𝑊 /s (𝑊 ~QG 𝑈))       ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑊) = ((dim‘𝑋) +𝑒 (dim‘𝑌)))
 
Theoremfedgmullem1 31025* Lemma for fedgmul 31027 (Contributed by Thierry Arnoux, 20-Jul-2023.)
𝐴 = ((subringAlg ‘𝐸)‘𝑉)    &   𝐵 = ((subringAlg ‘𝐸)‘𝑈)    &   𝐶 = ((subringAlg ‘𝐹)‘𝑉)    &   𝐹 = (𝐸s 𝑈)    &   𝐾 = (𝐸s 𝑉)    &   (𝜑𝐸 ∈ DivRing)    &   (𝜑𝐹 ∈ DivRing)    &   (𝜑𝐾 ∈ DivRing)    &   (𝜑𝑈 ∈ (SubRing‘𝐸))    &   (𝜑𝑉 ∈ (SubRing‘𝐹))    &   𝐷 = (𝑗𝑌, 𝑖𝑋 ↦ (𝑖(.r𝐸)𝑗))    &   𝐻 = (𝑗𝑌, 𝑖𝑋 ↦ ((𝐺𝑗)‘𝑖))    &   (𝜑𝑋 ∈ (LBasis‘𝐶))    &   (𝜑𝑌 ∈ (LBasis‘𝐵))    &   (𝜑𝑍 ∈ (Base‘𝐴))    &   (𝜑𝐿:𝑌⟶(Base‘(Scalar‘𝐵)))    &   (𝜑𝐿 finSupp (0g‘(Scalar‘𝐵)))    &   (𝜑𝑍 = (𝐵 Σg (𝑗𝑌 ↦ ((𝐿𝑗)( ·𝑠𝐵)𝑗))))    &   (𝜑𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋))    &   ((𝜑𝑗𝑌) → (𝐺𝑗) finSupp (0g‘(Scalar‘𝐶)))    &   ((𝜑𝑗𝑌) → (𝐿𝑗) = (𝐶 Σg (𝑖𝑋 ↦ (((𝐺𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))       (𝜑 → (𝐻 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑍 = (𝐴 Σg (𝐻f ( ·𝑠𝐴)𝐷))))
 
Theoremfedgmullem2 31026* Lemma for fedgmul 31027 (Contributed by Thierry Arnoux, 20-Jul-2023.)
𝐴 = ((subringAlg ‘𝐸)‘𝑉)    &   𝐵 = ((subringAlg ‘𝐸)‘𝑈)    &   𝐶 = ((subringAlg ‘𝐹)‘𝑉)    &   𝐹 = (𝐸s 𝑈)    &   𝐾 = (𝐸s 𝑉)    &   (𝜑𝐸 ∈ DivRing)    &   (𝜑𝐹 ∈ DivRing)    &   (𝜑𝐾 ∈ DivRing)    &   (𝜑𝑈 ∈ (SubRing‘𝐸))    &   (𝜑𝑉 ∈ (SubRing‘𝐹))    &   𝐷 = (𝑗𝑌, 𝑖𝑋 ↦ (𝑖(.r𝐸)𝑗))    &   𝐻 = (𝑗𝑌, 𝑖𝑋 ↦ ((𝐺𝑗)‘𝑖))    &   (𝜑𝑋 ∈ (LBasis‘𝐶))    &   (𝜑𝑌 ∈ (LBasis‘𝐵))    &   (𝜑𝑊 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑌 × 𝑋))))    &   (𝜑 → (𝐴 Σg (𝑊f ( ·𝑠𝐴)𝐷)) = (0g𝐴))       (𝜑𝑊 = ((𝑌 × 𝑋) × {(0g‘(Scalar‘𝐴))}))
 
Theoremfedgmul 31027 The multiplicativity formula for degrees of field extensions. Given 𝐸 a field extension of 𝐹, itself a field extension of 𝐾, we have [𝐸:𝐾] = [𝐸:𝐹][𝐹:𝐾]. Proposition 1.2 of [Lang], p. 224. Here (dim‘𝐴) is the degree of the extension 𝐸 of 𝐾, (dim‘𝐵) is the degree of the extension 𝐸 of 𝐹, and (dim‘𝐶) is the degree of the extension 𝐹 of 𝐾. This proof is valid for infinite dimensions, and is actually valid for division ring extensions, not just field extensions. (Contributed by Thierry Arnoux, 25-Jul-2023.)
𝐴 = ((subringAlg ‘𝐸)‘𝑉)    &   𝐵 = ((subringAlg ‘𝐸)‘𝑈)    &   𝐶 = ((subringAlg ‘𝐹)‘𝑉)    &   𝐹 = (𝐸s 𝑈)    &   𝐾 = (𝐸s 𝑉)    &   (𝜑𝐸 ∈ DivRing)    &   (𝜑𝐹 ∈ DivRing)    &   (𝜑𝐾 ∈ DivRing)    &   (𝜑𝑈 ∈ (SubRing‘𝐸))    &   (𝜑𝑉 ∈ (SubRing‘𝐹))       (𝜑 → (dim‘𝐴) = ((dim‘𝐵) ·e (dim‘𝐶)))
 
20.3.10  Field Extensions
 
Syntaxcfldext 31028 Syntax for the field extension relation.
class /FldExt
 
Syntaxcfinext 31029 Syntax for the finite field extension relation.
class /FinExt
 
Syntaxcalgext 31030 Syntax for the algebraic field extension relation.
class /AlgExt
 
Syntaxcextdg 31031 Syntax for the field extension degree operation.
class [:]
 
Definitiondf-fldext 31032* Definition of the field extension relation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
/FldExt = {⟨𝑒, 𝑓⟩ ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))}
 
Definitiondf-extdg 31033* Definition of the field extension degree operation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
[:] = (𝑒 ∈ V, 𝑓 ∈ (/FldExt “ {𝑒}) ↦ (dim‘((subringAlg ‘𝑒)‘(Base‘𝑓))))
 
Definitiondf-finext 31034* Definition of the finite field extension relation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
/FinExt = {⟨𝑒, 𝑓⟩ ∣ (𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) ∈ ℕ0)}
 
Definitiondf-algext 31035* Definition of the algebraic extension relation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
/AlgExt = {⟨𝑒, 𝑓⟩ ∣ (𝑒/FldExt𝑓 ∧ ∀𝑥 ∈ (Base‘𝑒)∃𝑝 ∈ (Poly1𝑓)(((eval1𝑓)‘𝑝)‘𝑥) = (0g𝑒))}
 
Theoremrelfldext 31036 The field extension is a relation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Rel /FldExt
 
Theorembrfldext 31037 The field extension relation explicited. (Contributed by Thierry Arnoux, 29-Jul-2023.)
((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))
 
Theoremccfldextrr 31038 The field of the complex numbers is an extension of the field of the real numbers. (Contributed by Thierry Arnoux, 20-Jul-2023.)
fld/FldExtfld
 
Theoremfldextfld1 31039 A field extension is only defined if the extension is a field. (Contributed by Thierry Arnoux, 29-Jul-2023.)
(𝐸/FldExt𝐹𝐸 ∈ Field)
 
Theoremfldextfld2 31040 A field extension is only defined if the subfield is a field. (Contributed by Thierry Arnoux, 29-Jul-2023.)
(𝐸/FldExt𝐹𝐹 ∈ Field)
 
Theoremfldextsubrg 31041 Field extension implies a subring relation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
𝑈 = (Base‘𝐹)       (𝐸/FldExt𝐹𝑈 ∈ (SubRing‘𝐸))
 
Theoremfldextress 31042 Field extension implies a structure restriction relation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
(𝐸/FldExt𝐹𝐹 = (𝐸s (Base‘𝐹)))
 
Theorembrfinext 31043 The finite field extension relation explicited. (Contributed by Thierry Arnoux, 29-Jul-2023.)
(𝐸/FldExt𝐹 → (𝐸/FinExt𝐹 ↔ (𝐸[:]𝐹) ∈ ℕ0))
 
Theoremextdgval 31044 Value of the field extension degree operation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
(𝐸/FldExt𝐹 → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
 
Theoremfldextsralvec 31045 The subring algebra associated with a field extension is a vector space. (Contributed by Thierry Arnoux, 3-Aug-2023.)
(𝐸/FldExt𝐹 → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec)
 
Theoremextdgcl 31046 Closure of the field extension degree operation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
(𝐸/FldExt𝐹 → (𝐸[:]𝐹) ∈ ℕ0*)
 
Theoremextdggt0 31047 Degrees of field extension are greater than zero. (Contributed by Thierry Arnoux, 30-Jul-2023.)
(𝐸/FldExt𝐹 → 0 < (𝐸[:]𝐹))
 
Theoremfldexttr 31048 Field extension is a transitive relation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐸/FldExt𝐾)
 
Theoremfldextid 31049 The field extension relation is reflexive. (Contributed by Thierry Arnoux, 30-Jul-2023.)
(𝐹 ∈ Field → 𝐹/FldExt𝐹)
 
Theoremextdgid 31050 A trivial field extension has degree one. (Contributed by Thierry Arnoux, 4-Aug-2023.)
(𝐸 ∈ Field → (𝐸[:]𝐸) = 1)
 
Theoremextdgmul 31051 The multiplicativity formula for degrees of field extensions. Given 𝐸 a field extension of 𝐹, itself a field extension of 𝐾, the degree of the extension 𝐸/FldExt𝐾 is the product of the degrees of the extensions 𝐸/FldExt𝐹 and 𝐹/FldExt𝐾. Proposition 1.2 of [Lang], p. 224. (Contributed by Thierry Arnoux, 30-Jul-2023.)
((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸[:]𝐾) = ((𝐸[:]𝐹) ·e (𝐹[:]𝐾)))
 
Theoremfinexttrb 31052 The extension 𝐸 of 𝐾 is finite if and only if 𝐸 is finite over 𝐹 and 𝐹 is finite over 𝐾. Corollary 1.3 of [Lang] , p. 225. (Contributed by Thierry Arnoux, 30-Jul-2023.)
((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸/FinExt𝐾 ↔ (𝐸/FinExt𝐹𝐹/FinExt𝐾)))
 
Theoremextdg1id 31053 If the degree of the extension 𝐸/FldExt𝐹 is 1, then 𝐸 and 𝐹 are identical. (Contributed by Thierry Arnoux, 6-Aug-2023.)
((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) → 𝐸 = 𝐹)
 
Theoremextdg1b 31054 The degree of the extension 𝐸/FldExt𝐹 is 1 iff 𝐸 and 𝐹 are the same structure. (Contributed by Thierry Arnoux, 6-Aug-2023.)
(𝐸/FldExt𝐹 → ((𝐸[:]𝐹) = 1 ↔ 𝐸 = 𝐹))
 
Theoremfldextchr 31055 The characteristic of a subfield is the same as the characteristic of the larger field. (Contributed by Thierry Arnoux, 20-Aug-2023.)
(𝐸/FldExt𝐹 → (chr‘𝐹) = (chr‘𝐸))
 
Theoremccfldsrarelvec 31056 The subring algebra of the complex numbers over the real numbers is a left vector space. (Contributed by Thierry Arnoux, 20-Aug-2023.)
((subringAlg ‘ℂfld)‘ℝ) ∈ LVec
 
Theoremccfldextdgrr 31057 The degree of the field extension of the complex numbers over the real numbers is 2. (Suggested by GL, 4-Aug-2023.) (Contributed by Thierry Arnoux, 20-Aug-2023.)
(ℂfld[:]ℝfld) = 2
 
20.3.11  Matrices
 
20.3.11.1  Submatrices
 
Syntaxcsmat 31058 Syntax for a function generating submatrices.
class subMat1
 
Definitiondf-smat 31059* Define a function generating submatrices of an integer-indexed matrix. The function maps an index in ((1...𝑀) × (1...𝑁)) into a new index in ((1...(𝑀 − 1)) × (1...(𝑁 − 1))). A submatrix is obtained by deleting a row and a column of the original matrix. Because this function re-indexes the matrix, the resulting submatrix still has the same index set for rows and columns, and its determinent is defined, unlike the current df-subma 21186. (Contributed by Thierry Arnoux, 18-Aug-2020.)
subMat1 = (𝑚 ∈ V ↦ (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑚 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩))))
 
Theoremsmatfval 31060* Value of the submatrix. (Contributed by Thierry Arnoux, 19-Aug-2020.)
((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀𝑉) → (𝐾(subMat1‘𝑀)𝐿) = (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
 
Theoremsmatrcl 31061 Closure of the rectangular submatrix. (Contributed by Thierry Arnoux, 19-Aug-2020.)
𝑆 = (𝐾(subMat1‘𝐴)𝐿)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐾 ∈ (1...𝑀))    &   (𝜑𝐿 ∈ (1...𝑁))    &   (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))       (𝜑𝑆 ∈ (𝐵m ((1...(𝑀 − 1)) × (1...(𝑁 − 1)))))
 
Theoremsmatlem 31062 Lemma for the next theorems. (Contributed by Thierry Arnoux, 19-Aug-2020.)
𝑆 = (𝐾(subMat1‘𝐴)𝐿)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐾 ∈ (1...𝑀))    &   (𝜑𝐿 ∈ (1...𝑁))    &   (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐽 ∈ ℕ)    &   (𝜑 → if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)) = 𝑋)    &   (𝜑 → if(𝐽 < 𝐿, 𝐽, (𝐽 + 1)) = 𝑌)       (𝜑 → (𝐼𝑆𝐽) = (𝑋𝐴𝑌))
 
Theoremsmattl 31063 Entries of a submatrix, top left. (Contributed by Thierry Arnoux, 19-Aug-2020.)
𝑆 = (𝐾(subMat1‘𝐴)𝐿)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐾 ∈ (1...𝑀))    &   (𝜑𝐿 ∈ (1...𝑁))    &   (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))    &   (𝜑𝐼 ∈ (1..^𝐾))    &   (𝜑𝐽 ∈ (1..^𝐿))       (𝜑 → (𝐼𝑆𝐽) = (𝐼𝐴𝐽))
 
Theoremsmattr 31064 Entries of a submatrix, top right. (Contributed by Thierry Arnoux, 19-Aug-2020.)
𝑆 = (𝐾(subMat1‘𝐴)𝐿)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐾 ∈ (1...𝑀))    &   (𝜑𝐿 ∈ (1...𝑁))    &   (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))    &   (𝜑𝐼 ∈ (𝐾...𝑀))    &   (𝜑𝐽 ∈ (1..^𝐿))       (𝜑 → (𝐼𝑆𝐽) = ((𝐼 + 1)𝐴𝐽))
 
Theoremsmatbl 31065 Entries of a submatrix, bottom left. (Contributed by Thierry Arnoux, 19-Aug-2020.)
𝑆 = (𝐾(subMat1‘𝐴)𝐿)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐾 ∈ (1...𝑀))    &   (𝜑𝐿 ∈ (1...𝑁))    &   (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))    &   (𝜑𝐼 ∈ (1..^𝐾))    &   (𝜑𝐽 ∈ (𝐿...𝑁))       (𝜑 → (𝐼𝑆𝐽) = (𝐼𝐴(𝐽 + 1)))
 
Theoremsmatbr 31066 Entries of a submatrix, bottom right. (Contributed by Thierry Arnoux, 19-Aug-2020.)
𝑆 = (𝐾(subMat1‘𝐴)𝐿)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐾 ∈ (1...𝑀))    &   (𝜑𝐿 ∈ (1...𝑁))    &   (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))    &   (𝜑𝐼 ∈ (𝐾...𝑀))    &   (𝜑𝐽 ∈ (𝐿...𝑁))       (𝜑 → (𝐼𝑆𝐽) = ((𝐼 + 1)𝐴(𝐽 + 1)))
 
Theoremsmatcl 31067 Closure of the square submatrix: if 𝑀 is a square matrix of dimension 𝑁 with indices in (1...𝑁), then a submatrix of 𝑀 is of dimension (𝑁 − 1). (Contributed by Thierry Arnoux, 19-Aug-2020.)
𝐴 = ((1...𝑁) Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝐶 = (Base‘((1...(𝑁 − 1)) Mat 𝑅))    &   𝑆 = (𝐾(subMat1‘𝑀)𝐿)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐾 ∈ (1...𝑁))    &   (𝜑𝐿 ∈ (1...𝑁))    &   (𝜑𝑀𝐵)       (𝜑𝑆𝐶)
 
Theoremmatmpo 31068* Write a square matrix as a mapping operation. (Contributed by Thierry Arnoux, 16-Aug-2020.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)       (𝑀𝐵𝑀 = (𝑖𝑁, 𝑗𝑁 ↦ (𝑖𝑀𝑗)))
 
Theorem1smat1 31069 The submatrix of the identity matrix obtained by removing the ith row and the ith column is an identity matrix. Cf. 1marepvsma1 21192. (Contributed by Thierry Arnoux, 19-Aug-2020.)
1 = (1r‘((1...𝑁) Mat 𝑅))    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐼 ∈ (1...𝑁))       (𝜑 → (𝐼(subMat1‘ 1 )𝐼) = (1r‘((1...(𝑁 − 1)) Mat 𝑅)))
 
Theoremsubmat1n 31070 One case where the submatrix with integer indices, subMat1, and the general submatrix subMat, agree. (Contributed by Thierry Arnoux, 22-Aug-2020.)
𝐴 = ((1...𝑁) Mat 𝑅)    &   𝐵 = (Base‘𝐴)       ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑁(((1...𝑁) subMat 𝑅)‘𝑀)𝑁))
 
Theoremsubmatres 31071 Special case where the submatrix is a restriction of the initial matrix, and no renumbering occurs. (Contributed by Thierry Arnoux, 26-Aug-2020.)
𝐴 = ((1...𝑁) Mat 𝑅)    &   𝐵 = (Base‘𝐴)       ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑀 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))))
 
Theoremsubmateqlem1 31072 Lemma for submateq 31074. (Contributed by Thierry Arnoux, 25-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   (𝜑𝐾 ∈ (1...𝑁))    &   (𝜑𝑀 ∈ (1...(𝑁 − 1)))    &   (𝜑𝐾𝑀)       (𝜑 → (𝑀 ∈ (𝐾...𝑁) ∧ (𝑀 + 1) ∈ ((1...𝑁) ∖ {𝐾})))
 
Theoremsubmateqlem2 31073 Lemma for submateq 31074. (Contributed by Thierry Arnoux, 26-Aug-2020.)
(𝜑𝑁 ∈ ℕ)    &   (𝜑𝐾 ∈ (1...𝑁))    &   (𝜑𝑀 ∈ (1...(𝑁 − 1)))    &   (𝜑𝑀 < 𝐾)       (𝜑 → (𝑀 ∈ (1..^𝐾) ∧ 𝑀 ∈ ((1...𝑁) ∖ {𝐾})))
 
Theoremsubmateq 31074* Sufficient condition for two submatrices to be equal. (Contributed by Thierry Arnoux, 25-Aug-2020.)
𝐴 = ((1...𝑁) Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐼 ∈ (1...𝑁))    &   (𝜑𝐽 ∈ (1...𝑁))    &   (𝜑𝐸𝐵)    &   (𝜑𝐹𝐵)    &   ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝐸𝑗) = (𝑖𝐹𝑗))       (𝜑 → (𝐼(subMat1‘𝐸)𝐽) = (𝐼(subMat1‘𝐹)𝐽))
 
Theoremsubmatminr1 31075 If we take a submatrix by removing the row 𝐼 and column 𝐽, then the result is the same on the matrix with row 𝐼 and column 𝐽 modified by the minMatR1 operator. (Contributed by Thierry Arnoux, 25-Aug-2020.)
𝐴 = ((1...𝑁) Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐼 ∈ (1...𝑁))    &   (𝜑𝐽 ∈ (1...𝑁))    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑀𝐵)    &   𝐸 = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)       (𝜑 → (𝐼(subMat1‘𝑀)𝐽) = (𝐼(subMat1‘𝐸)𝐽))
 
20.3.11.2  Matrix literals
 
Syntaxclmat 31076 Extend class notation with the literal matrix conversion function.
class litMat
 
Definitiondf-lmat 31077* Define a function converting words of words into matrices. (Contributed by Thierry Arnoux, 28-Aug-2020.)
litMat = (𝑚 ∈ V ↦ (𝑖 ∈ (1...(♯‘𝑚)), 𝑗 ∈ (1...(♯‘(𝑚‘0))) ↦ ((𝑚‘(𝑖 − 1))‘(𝑗 − 1))))
 
Theoremlmatval 31078* Value of the literal matrix conversion function. (Contributed by Thierry Arnoux, 28-Aug-2020.)
(𝑀𝑉 → (litMat‘𝑀) = (𝑖 ∈ (1...(♯‘𝑀)), 𝑗 ∈ (1...(♯‘(𝑀‘0))) ↦ ((𝑀‘(𝑖 − 1))‘(𝑗 − 1))))
 
Theoremlmatfval 31079* Entries of a literal matrix. (Contributed by Thierry Arnoux, 28-Aug-2020.)
𝑀 = (litMat‘𝑊)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑊 ∈ Word Word 𝑉)    &   (𝜑 → (♯‘𝑊) = 𝑁)    &   ((𝜑𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊𝑖)) = 𝑁)    &   (𝜑𝐼 ∈ (1...𝑁))    &   (𝜑𝐽 ∈ (1...𝑁))       (𝜑 → (𝐼𝑀𝐽) = ((𝑊‘(𝐼 − 1))‘(𝐽 − 1)))
 
Theoremlmatfvlem 31080* Useful lemma to extract literal matrix entries. Suggested by Mario Carneiro. (Contributed by Thierry Arnoux, 3-Sep-2020.)
𝑀 = (litMat‘𝑊)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑊 ∈ Word Word 𝑉)    &   (𝜑 → (♯‘𝑊) = 𝑁)    &   ((𝜑𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊𝑖)) = 𝑁)    &   𝐾 ∈ ℕ0    &   𝐿 ∈ ℕ0    &   𝐼𝑁    &   𝐽𝑁    &   (𝐾 + 1) = 𝐼    &   (𝐿 + 1) = 𝐽    &   (𝑊𝐾) = 𝑋    &   (𝜑 → (𝑋𝐿) = 𝑌)       (𝜑 → (𝐼𝑀𝐽) = 𝑌)
 
Theoremlmatcl 31081* Closure of the literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.)
𝑀 = (litMat‘𝑊)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑊 ∈ Word Word 𝑉)    &   (𝜑 → (♯‘𝑊) = 𝑁)    &   ((𝜑𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊𝑖)) = 𝑁)    &   𝑉 = (Base‘𝑅)    &   𝑂 = ((1...𝑁) Mat 𝑅)    &   𝑃 = (Base‘𝑂)    &   (𝜑𝑅𝑋)       (𝜑𝑀𝑃)
 
Theoremlmat22lem 31082* Lemma for lmat22e11 31083 and co. (Contributed by Thierry Arnoux, 28-Aug-2020.)
𝑀 = (litMat‘⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩)    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑉)    &   (𝜑𝐶𝑉)    &   (𝜑𝐷𝑉)       ((𝜑𝑖 ∈ (0..^2)) → (♯‘(⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖)) = 2)
 
Theoremlmat22e11 31083 Entry of a 2x2 literal matrix. (Contributed by Thierry Arnoux, 28-Aug-2020.)
𝑀 = (litMat‘⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩)    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑉)    &   (𝜑𝐶𝑉)    &   (𝜑𝐷𝑉)       (𝜑 → (1𝑀1) = 𝐴)
 
Theoremlmat22e12 31084 Entry of a 2x2 literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.)
𝑀 = (litMat‘⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩)    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑉)    &   (𝜑𝐶𝑉)    &   (𝜑𝐷𝑉)       (𝜑 → (1𝑀2) = 𝐵)
 
Theoremlmat22e21 31085 Entry of a 2x2 literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.)
𝑀 = (litMat‘⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩)    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑉)    &   (𝜑𝐶𝑉)    &   (𝜑𝐷𝑉)       (𝜑 → (2𝑀1) = 𝐶)
 
Theoremlmat22e22 31086 Entry of a 2x2 literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.)
𝑀 = (litMat‘⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩)    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑉)    &   (𝜑𝐶𝑉)    &   (𝜑𝐷𝑉)       (𝜑 → (2𝑀2) = 𝐷)
 
Theoremlmat22det 31087 The determinant of a literal 2x2 complex matrix. (Contributed by Thierry Arnoux, 1-Sep-2020.)
𝑀 = (litMat‘⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩)    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑉)    &   (𝜑𝐶𝑉)    &   (𝜑𝐷𝑉)    &    · = (.r𝑅)    &    = (-g𝑅)    &   𝑉 = (Base‘𝑅)    &   𝐽 = ((1...2) maDet 𝑅)    &   (𝜑𝑅 ∈ Ring)       (𝜑 → (𝐽𝑀) = ((𝐴 · 𝐷) (𝐶 · 𝐵)))
 
20.3.11.3  Laplace expansion of determinants
 
Theoremmdetpmtr1 31088* The determinant of a matrix with permuted rows is the determinant of the original matrix multiplied by the sign of the permutation. (Contributed by Thierry Arnoux, 22-Aug-2020.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝐷 = (𝑁 maDet 𝑅)    &   𝐺 = (Base‘(SymGrp‘𝑁))    &   𝑆 = (pmSgn‘𝑁)    &   𝑍 = (ℤRHom‘𝑅)    &    · = (.r𝑅)    &   𝐸 = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑃𝑖)𝑀𝑗))       (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝐷𝑀) = (((𝑍𝑆)‘𝑃) · (𝐷𝐸)))
 
Theoremmdetpmtr2 31089* The determinant of a matrix with permuted columns is the determinant of the original matrix multiplied by the sign of the permutation. (Contributed by Thierry Arnoux, 22-Aug-2020.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝐷 = (𝑁 maDet 𝑅)    &   𝐺 = (Base‘(SymGrp‘𝑁))    &   𝑆 = (pmSgn‘𝑁)    &   𝑍 = (ℤRHom‘𝑅)    &    · = (.r𝑅)    &   𝐸 = (𝑖𝑁, 𝑗𝑁 ↦ (𝑖𝑀(𝑃𝑗)))       (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑀𝐵𝑃𝐺)) → (𝐷𝑀) = (((𝑍𝑆)‘𝑃) · (𝐷𝐸)))
 
Theoremmdetpmtr12 31090* The determinant of a matrix with permuted rows and columns is the determinant of the original matrix multiplied by the product of the signs of the permutations. (Contributed by Thierry Arnoux, 22-Aug-2020.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝐷 = (𝑁 maDet 𝑅)    &   𝐺 = (Base‘(SymGrp‘𝑁))    &   𝑆 = (pmSgn‘𝑁)    &   𝑍 = (ℤRHom‘𝑅)    &    · = (.r𝑅)    &   𝐸 = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑃𝑖)𝑀(𝑄𝑗)))    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝑁 ∈ Fin)    &   (𝜑𝑀𝐵)    &   (𝜑𝑃𝐺)    &   (𝜑𝑄𝐺)       (𝜑 → (𝐷𝑀) = ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐷𝐸)))
 
Theoremmdetlap1 31091* A Laplace expansion of the determinant of a matrix, using the adjunct (cofactor) matrix. (Contributed by Thierry Arnoux, 16-Aug-2020.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝐷 = (𝑁 maDet 𝑅)    &   𝐾 = (𝑁 maAdju 𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ CRing ∧ 𝑀𝐵𝐼𝑁) → (𝐷𝑀) = (𝑅 Σg (𝑗𝑁 ↦ ((𝐼𝑀𝑗) · (𝑗(𝐾𝑀)𝐼)))))
 
Theoremmadjusmdetlem1 31092* Lemma for madjusmdet 31096. (Contributed by Thierry Arnoux, 22-Aug-2020.)
𝐵 = (Base‘𝐴)    &   𝐴 = ((1...𝑁) Mat 𝑅)    &   𝐷 = ((1...𝑁) maDet 𝑅)    &   𝐾 = ((1...𝑁) maAdju 𝑅)    &    · = (.r𝑅)    &   𝑍 = (ℤRHom‘𝑅)    &   𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝐼 ∈ (1...𝑁))    &   (𝜑𝐽 ∈ (1...𝑁))    &   (𝜑𝑀𝐵)    &   𝐺 = (Base‘(SymGrp‘(1...𝑁)))    &   𝑆 = (pmSgn‘(1...𝑁))    &   𝑈 = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)    &   𝑊 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑃𝑖)𝑈(𝑄𝑗)))    &   (𝜑𝑃𝐺)    &   (𝜑𝑄𝐺)    &   (𝜑 → (𝑃𝑁) = 𝐼)    &   (𝜑 → (𝑄𝑁) = 𝐽)    &   (𝜑 → (𝐼(subMat1‘𝑈)𝐽) = (𝑁(subMat1‘𝑊)𝑁))       (𝜑 → (𝐽(𝐾𝑀)𝐼) = ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽))))
 
Theoremmadjusmdetlem2 31093* Lemma for madjusmdet 31096. (Contributed by Thierry Arnoux, 26-Aug-2020.)
𝐵 = (Base‘𝐴)    &   𝐴 = ((1...𝑁) Mat 𝑅)    &   𝐷 = ((1...𝑁) maDet 𝑅)    &   𝐾 = ((1...𝑁) maAdju 𝑅)    &    · = (.r𝑅)    &   𝑍 = (ℤRHom‘𝑅)    &   𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝐼 ∈ (1...𝑁))    &   (𝜑𝐽 ∈ (1...𝑁))    &   (𝜑𝑀𝐵)    &   𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))    &   𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖𝑁, (𝑖 − 1), 𝑖)))       ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)) = ((𝑃𝑆)‘𝑋))
 
Theoremmadjusmdetlem3 31094* Lemma for madjusmdet 31096. (Contributed by Thierry Arnoux, 27-Aug-2020.)
𝐵 = (Base‘𝐴)    &   𝐴 = ((1...𝑁) Mat 𝑅)    &   𝐷 = ((1...𝑁) maDet 𝑅)    &   𝐾 = ((1...𝑁) maAdju 𝑅)    &    · = (.r𝑅)    &   𝑍 = (ℤRHom‘𝑅)    &   𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝐼 ∈ (1...𝑁))    &   (𝜑𝐽 ∈ (1...𝑁))    &   (𝜑𝑀𝐵)    &   𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))    &   𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖𝑁, (𝑖 − 1), 𝑖)))    &   𝑄 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝐽, if(𝑗𝐽, (𝑗 − 1), 𝑗)))    &   𝑇 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝑁, if(𝑗𝑁, (𝑗 − 1), 𝑗)))    &   𝑊 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗)))    &   (𝜑𝑈𝐵)       (𝜑 → (𝐼(subMat1‘𝑈)𝐽) = (𝑁(subMat1‘𝑊)𝑁))
 
Theoremmadjusmdetlem4 31095* Lemma for madjusmdet 31096. (Contributed by Thierry Arnoux, 22-Aug-2020.)
𝐵 = (Base‘𝐴)    &   𝐴 = ((1...𝑁) Mat 𝑅)    &   𝐷 = ((1...𝑁) maDet 𝑅)    &   𝐾 = ((1...𝑁) maAdju 𝑅)    &    · = (.r𝑅)    &   𝑍 = (ℤRHom‘𝑅)    &   𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝐼 ∈ (1...𝑁))    &   (𝜑𝐽 ∈ (1...𝑁))    &   (𝜑𝑀𝐵)    &   𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))    &   𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖𝑁, (𝑖 − 1), 𝑖)))    &   𝑄 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝐽, if(𝑗𝐽, (𝑗 − 1), 𝑗)))    &   𝑇 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝑁, if(𝑗𝑁, (𝑗 − 1), 𝑗)))       (𝜑 → (𝐽(𝐾𝑀)𝐼) = ((𝑍‘(-1↑(𝐼 + 𝐽))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽))))
 
Theoremmadjusmdet 31096 Express the cofactor of the matrix, i.e. the entries of its adjunct matrix, using determinant of submatrices. (Contributed by Thierry Arnoux, 23-Aug-2020.)
𝐵 = (Base‘𝐴)    &   𝐴 = ((1...𝑁) Mat 𝑅)    &   𝐷 = ((1...𝑁) maDet 𝑅)    &   𝐾 = ((1...𝑁) maAdju 𝑅)    &    · = (.r𝑅)    &   𝑍 = (ℤRHom‘𝑅)    &   𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝐼 ∈ (1...𝑁))    &   (𝜑𝐽 ∈ (1...𝑁))    &   (𝜑𝑀𝐵)       (𝜑 → (𝐽(𝐾𝑀)𝐼) = ((𝑍‘(-1↑(𝐼 + 𝐽))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽))))
 
Theoremmdetlap 31097* Laplace expansion of the determinant of a square matrix. (Contributed by Thierry Arnoux, 19-Aug-2020.)
𝐵 = (Base‘𝐴)    &   𝐴 = ((1...𝑁) Mat 𝑅)    &   𝐷 = ((1...𝑁) maDet 𝑅)    &   𝐾 = ((1...𝑁) maAdju 𝑅)    &    · = (.r𝑅)    &   𝑍 = (ℤRHom‘𝑅)    &   𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝐼 ∈ (1...𝑁))    &   (𝜑𝐽 ∈ (1...𝑁))    &   (𝜑𝑀𝐵)       (𝜑 → (𝐷𝑀) = (𝑅 Σg (𝑗 ∈ (1...𝑁) ↦ ((𝑍‘(-1↑(𝐼 + 𝑗))) · ((𝐼𝑀𝑗) · (𝐸‘(𝐼(subMat1‘𝑀)𝑗)))))))
 
20.3.12  Topology
 
20.3.12.1  Open maps
 
Theoremtxomap 31098* Given two open maps 𝐹 and 𝐺, 𝐻 mapping pairs of sets, is also an open map for the product topology. (Contributed by Thierry Arnoux, 29-Dec-2019.)
(𝜑𝐹:𝑋𝑍)    &   (𝜑𝐺:𝑌𝑇)    &   (𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐾 ∈ (TopOn‘𝑌))    &   (𝜑𝐿 ∈ (TopOn‘𝑍))    &   (𝜑𝑀 ∈ (TopOn‘𝑇))    &   ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ 𝐿)    &   ((𝜑𝑦𝐾) → (𝐺𝑦) ∈ 𝑀)    &   (𝜑𝐴 ∈ (𝐽 ×t 𝐾))    &   𝐻 = (𝑥𝑋, 𝑦𝑌 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩)       (𝜑 → (𝐻𝐴) ∈ (𝐿 ×t 𝑀))
 
20.3.12.2  Topology of the unit circle
 
Theoremqtopt1 31099* If every equivalence class is closed, then the quotient space is T1 . (Contributed by Thierry Arnoux, 5-Jan-2020.)
𝑋 = 𝐽    &   (𝜑𝐽 ∈ Fre)    &   (𝜑𝐹:𝑋onto𝑌)    &   ((𝜑𝑥𝑌) → (𝐹 “ {𝑥}) ∈ (Clsd‘𝐽))       (𝜑 → (𝐽 qTop 𝐹) ∈ Fre)
 
Theoremqtophaus 31100* If an open map's graph in the product space (𝐽 ×t 𝐽) is closed, then its quotient topology is Hausdorff. (Contributed by Thierry Arnoux, 4-Jan-2020.)
𝑋 = 𝐽    &    = (𝐹𝐹)    &   𝐻 = (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)    &   (𝜑𝐽 ∈ Haus)    &   (𝜑𝐹:𝑋onto𝑌)    &   ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ (𝐽 qTop 𝐹))    &   (𝜑 ∈ (Clsd‘(𝐽 ×t 𝐽)))       (𝜑 → (𝐽 qTop 𝐹) ∈ Haus)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-44926
  Copyright terms: Public domain < Previous  Next >