![]() |
Metamath
Proof Explorer Theorem List (p. 311 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Definition | df-hba 31001 | Define base set of Hilbert space, for use if we want to develop Hilbert space independently from the axioms (see comments in ax-hilex 31031). Note that ℋ is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. This definition can be proved independently from those axioms as Theorem hhba 31199. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | ||
Definition | df-h0v 31002 | Define the zero vector of Hilbert space. Note that 0vec is considered a primitive in the Hilbert space axioms below, and we don't use this definition outside of this section. It is proved from the axioms as Theorem hh0v 31200. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 0ℎ = (0vec‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | ||
Definition | df-hvsub 31003* | Define vector subtraction. See hvsubvali 31052 for its value and hvsubcli 31053 for its closure. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
⊢ −ℎ = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑥 +ℎ (-1 ·ℎ 𝑦))) | ||
Definition | df-hlim 31004* | Define the limit relation for Hilbert space. See hlimi 31220 for its relational expression. Note that 𝑓:ℕ⟶ ℋ is an infinite sequence of vectors, i.e. a mapping from integers to vectors. Definition of converge in [Beran] p. 96. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
⊢ ⇝𝑣 = {〈𝑓, 𝑤〉 ∣ ((𝑓:ℕ⟶ ℋ ∧ 𝑤 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑧) −ℎ 𝑤)) < 𝑥)} | ||
Definition | df-hcau 31005* | Define the set of Cauchy sequences on a Hilbert space. See hcau 31216 for its membership relation. Note that 𝑓:ℕ⟶ ℋ is an infinite sequence of vectors, i.e. a mapping from integers to vectors. Definition of Cauchy sequence in [Beran] p. 96. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
⊢ Cauchy = {𝑓 ∈ ( ℋ ↑m ℕ) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑦) −ℎ (𝑓‘𝑧))) < 𝑥} | ||
Theorem | h2hva 31006 | The group (addition) operation of Hilbert space. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec ⇒ ⊢ +ℎ = ( +𝑣 ‘𝑈) | ||
Theorem | h2hsm 31007 | The scalar product operation of Hilbert space. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec ⇒ ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) | ||
Theorem | h2hnm 31008 | The norm function of Hilbert space. (Contributed by NM, 5-Jun-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec ⇒ ⊢ normℎ = (normCV‘𝑈) | ||
Theorem | h2hvs 31009 | The vector subtraction operation of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec & ⊢ ℋ = (BaseSet‘𝑈) ⇒ ⊢ −ℎ = ( −𝑣 ‘𝑈) | ||
Theorem | h2hmetdval 31010 | Value of the distance function of the metric space of Hilbert space. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec & ⊢ ℋ = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴𝐷𝐵) = (normℎ‘(𝐴 −ℎ 𝐵))) | ||
Theorem | h2hcau 31011 | The Cauchy sequences of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec & ⊢ ℋ = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑m ℕ)) | ||
Theorem | h2hlm 31012 | The limit sequences of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ NrmCVec & ⊢ ℋ = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ⇝𝑣 = ((⇝𝑡‘𝐽) ↾ ( ℋ ↑m ℕ)) | ||
Before introducing the 18 axioms for Hilbert space, we first prove them as the conclusions of Theorems axhilex-zf 31013 through axhcompl-zf 31030, using ZFC set theory only. These show that if we are given a known, fixed Hilbert space 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 that satisfies their hypotheses, then we can derive the Hilbert space axioms as theorems of ZFC set theory. In practice, in order to use these theorems to convert the Hilbert Space explorer to a ZFC-only subtheory, we would also have to provide definitions for the 3 (otherwise primitive) class constants +ℎ, ·ℎ, and ·ih before df-hnorm 31000 above. See also the comment in ax-hilex 31031. | ||
Theorem | axhilex-zf 31013 | Derive Axiom ax-hilex 31031 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ℋ ∈ V | ||
Theorem | axhfvadd-zf 31014 | Derive Axiom ax-hfvadd 31032 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | ||
Theorem | axhvcom-zf 31015 | Derive Axiom ax-hvcom 31033 from Hilbert space under ZF set theory. (Contributed by NM, 27-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) | ||
Theorem | axhvass-zf 31016 | Derive Axiom ax-hvass 31034 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = (𝐴 +ℎ (𝐵 +ℎ 𝐶))) | ||
Theorem | axhv0cl-zf 31017 | Derive Axiom ax-hv0cl 31035 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ 0ℎ ∈ ℋ | ||
Theorem | axhvaddid-zf 31018 | Derive Axiom ax-hvaddid 31036 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) | ||
Theorem | axhfvmul-zf 31019 | Derive Axiom ax-hfvmul 31037 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ | ||
Theorem | axhvmulid-zf 31020 | Derive Axiom ax-hvmulid 31038 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ (𝐴 ∈ ℋ → (1 ·ℎ 𝐴) = 𝐴) | ||
Theorem | axhvmulass-zf 31021 | Derive Axiom ax-hvmulass 31039 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶))) | ||
Theorem | axhvdistr1-zf 31022 | Derive Axiom ax-hvdistr1 31040 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 +ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) +ℎ (𝐴 ·ℎ 𝐶))) | ||
Theorem | axhvdistr2-zf 31023 | Derive Axiom ax-hvdistr2 31041 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) +ℎ (𝐵 ·ℎ 𝐶))) | ||
Theorem | axhvmul0-zf 31024 | Derive Axiom ax-hvmul0 31042 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ (𝐴 ∈ ℋ → (0 ·ℎ 𝐴) = 0ℎ) | ||
Theorem | axhfi-zf 31025 | Derive Axiom ax-hfi 31111 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD & ⊢ ·ih = (·𝑖OLD‘𝑈) ⇒ ⊢ ·ih :( ℋ × ℋ)⟶ℂ | ||
Theorem | axhis1-zf 31026 | Derive Axiom ax-his1 31114 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD & ⊢ ·ih = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴))) | ||
Theorem | axhis2-zf 31027 | Derive Axiom ax-his2 31115 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD & ⊢ ·ih = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) ·ih 𝐶) = ((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐶))) | ||
Theorem | axhis3-zf 31028 | Derive Axiom ax-his3 31116 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD & ⊢ ·ih = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶))) | ||
Theorem | axhis4-zf 31029 | Derive Axiom ax-his4 31117 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD & ⊢ ·ih = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → 0 < (𝐴 ·ih 𝐴)) | ||
Theorem | axhcompl-zf 31030* | Derive Axiom ax-hcompl 31234 from Hilbert space under ZF set theory. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) | ||
Here we introduce the axioms a complex Hilbert space, which is the foundation for quantum mechanics and quantum field theory. The 18 axioms for a complex Hilbert space consist of ax-hilex 31031, ax-hfvadd 31032, ax-hvcom 31033, ax-hvass 31034, ax-hv0cl 31035, ax-hvaddid 31036, ax-hfvmul 31037, ax-hvmulid 31038, ax-hvmulass 31039, ax-hvdistr1 31040, ax-hvdistr2 31041, ax-hvmul0 31042, ax-hfi 31111, ax-his1 31114, ax-his2 31115, ax-his3 31116, ax-his4 31117, and ax-hcompl 31234. The axioms specify the properties of 5 primitive symbols, ℋ, +ℎ, ·ℎ, 0ℎ, and ·ih. If we can prove in ZFC set theory that a class 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 is a complex Hilbert space, i.e. that 𝑈 ∈ CHilOLD, then these axioms can be proved as Theorems axhilex-zf 31013, axhfvadd-zf 31014, axhvcom-zf 31015, axhvass-zf 31016, axhv0cl-zf 31017, axhvaddid-zf 31018, axhfvmul-zf 31019, axhvmulid-zf 31020, axhvmulass-zf 31021, axhvdistr1-zf 31022, axhvdistr2-zf 31023, axhvmul0-zf 31024, axhfi-zf 31025, axhis1-zf 31026, axhis2-zf 31027, axhis3-zf 31028, axhis4-zf 31029, and axhcompl-zf 31030 respectively. In that case, the theorems of the Hilbert Space Explorer will become theorems of ZFC set theory. See also the comments in axhilex-zf 31013. | ||
Axiom | ax-hilex 31031 | This is our first axiom for a complex Hilbert space, which is the foundation for quantum mechanics and quantum field theory. We assume that there exists a primitive class, ℋ, which contains objects called vectors. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
⊢ ℋ ∈ V | ||
Axiom | ax-hfvadd 31032 | Vector addition is an operation on ℋ. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | ||
Axiom | ax-hvcom 31033 | Vector addition is commutative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) | ||
Axiom | ax-hvass 31034 | Vector addition is associative. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = (𝐴 +ℎ (𝐵 +ℎ 𝐶))) | ||
Axiom | ax-hv0cl 31035 | The zero vector is in the vector space. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
⊢ 0ℎ ∈ ℋ | ||
Axiom | ax-hvaddid 31036 | Addition with the zero vector. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) | ||
Axiom | ax-hfvmul 31037 | Scalar multiplication is an operation on ℂ and ℋ. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ | ||
Axiom | ax-hvmulid 31038 | Scalar multiplication by one. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → (1 ·ℎ 𝐴) = 𝐴) | ||
Axiom | ax-hvmulass 31039 | Scalar multiplication associative law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶))) | ||
Axiom | ax-hvdistr1 31040 | Scalar multiplication distributive law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 +ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) +ℎ (𝐴 ·ℎ 𝐶))) | ||
Axiom | ax-hvdistr2 31041 | Scalar multiplication distributive law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) +ℎ (𝐵 ·ℎ 𝐶))) | ||
Axiom | ax-hvmul0 31042 | Scalar multiplication by zero. We can derive the existence of the negative of a vector from this axiom (see hvsubid 31058 and hvsubval 31048). (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → (0 ·ℎ 𝐴) = 0ℎ) | ||
Theorem | hvmulex 31043 | The Hilbert space scalar product operation is a set. (Contributed by NM, 17-Apr-2007.) (New usage is discouraged.) |
⊢ ·ℎ ∈ V | ||
Theorem | hvaddcl 31044 | Closure of vector addition. (Contributed by NM, 18-Apr-2007.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) ∈ ℋ) | ||
Theorem | hvmulcl 31045 | Closure of scalar multiplication. (Contributed by NM, 19-Apr-2007.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) | ||
Theorem | hvmulcli 31046 | Closure inference for scalar multiplication. (Contributed by NM, 1-Aug-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (𝐴 ·ℎ 𝐵) ∈ ℋ | ||
Theorem | hvsubf 31047 | Mapping domain and codomain of vector subtraction. (Contributed by NM, 6-Sep-2007.) (New usage is discouraged.) |
⊢ −ℎ :( ℋ × ℋ)⟶ ℋ | ||
Theorem | hvsubval 31048 | Value of vector subtraction. (Contributed by NM, 5-Sep-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) | ||
Theorem | hvsubcl 31049 | Closure of vector subtraction. (Contributed by NM, 17-Aug-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) ∈ ℋ) | ||
Theorem | hvaddcli 31050 | Closure of vector addition. (Contributed by NM, 1-Aug-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (𝐴 +ℎ 𝐵) ∈ ℋ | ||
Theorem | hvcomi 31051 | Commutation of vector addition. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴) | ||
Theorem | hvsubvali 31052 | Value of vector subtraction definition. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵)) | ||
Theorem | hvsubcli 31053 | Closure of vector subtraction. (Contributed by NM, 2-Aug-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (𝐴 −ℎ 𝐵) ∈ ℋ | ||
Theorem | ifhvhv0 31054 | Prove if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ. (Contributed by David A. Wheeler, 7-Dec-2018.) (New usage is discouraged.) |
⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈ ℋ | ||
Theorem | hvaddlid 31055 | Addition with the zero vector. (Contributed by NM, 18-Oct-1999.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → (0ℎ +ℎ 𝐴) = 𝐴) | ||
Theorem | hvmul0 31056 | Scalar multiplication with the zero vector. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℂ → (𝐴 ·ℎ 0ℎ) = 0ℎ) | ||
Theorem | hvmul0or 31057 | If a scalar product is zero, one of its factors must be zero. (Contributed by NM, 19-May-2005.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) = 0ℎ ↔ (𝐴 = 0 ∨ 𝐵 = 0ℎ))) | ||
Theorem | hvsubid 31058 | Subtraction of a vector from itself. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → (𝐴 −ℎ 𝐴) = 0ℎ) | ||
Theorem | hvnegid 31059 | Addition of negative of a vector to itself. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ (-1 ·ℎ 𝐴)) = 0ℎ) | ||
Theorem | hv2neg 31060 | Two ways to express the negative of a vector. (Contributed by NM, 23-May-2005.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → (0ℎ −ℎ 𝐴) = (-1 ·ℎ 𝐴)) | ||
Theorem | hvaddlidi 31061 | Addition with the zero vector. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ ⇒ ⊢ (0ℎ +ℎ 𝐴) = 𝐴 | ||
Theorem | hvnegidi 31062 | Addition of negative of a vector to itself. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ ⇒ ⊢ (𝐴 +ℎ (-1 ·ℎ 𝐴)) = 0ℎ | ||
Theorem | hv2negi 31063 | Two ways to express the negative of a vector. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ ⇒ ⊢ (0ℎ −ℎ 𝐴) = (-1 ·ℎ 𝐴) | ||
Theorem | hvm1neg 31064 | Convert minus one times a scalar product to the negative of the scalar. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (-1 ·ℎ (𝐴 ·ℎ 𝐵)) = (-𝐴 ·ℎ 𝐵)) | ||
Theorem | hvaddsubval 31065 | Value of vector addition in terms of vector subtraction. (Contributed by NM, 10-Jun-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐴 −ℎ (-1 ·ℎ 𝐵))) | ||
Theorem | hvadd32 31066 | Commutative/associative law. (Contributed by NM, 16-Oct-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = ((𝐴 +ℎ 𝐶) +ℎ 𝐵)) | ||
Theorem | hvadd12 31067 | Commutative/associative law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 +ℎ (𝐵 +ℎ 𝐶)) = (𝐵 +ℎ (𝐴 +ℎ 𝐶))) | ||
Theorem | hvadd4 31068 | Hilbert vector space addition law. (Contributed by NM, 16-Oct-1999.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 +ℎ 𝐵) +ℎ (𝐶 +ℎ 𝐷)) = ((𝐴 +ℎ 𝐶) +ℎ (𝐵 +ℎ 𝐷))) | ||
Theorem | hvsub4 31069 | Hilbert vector space addition/subtraction law. (Contributed by NM, 17-Oct-1999.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 +ℎ 𝐵) −ℎ (𝐶 +ℎ 𝐷)) = ((𝐴 −ℎ 𝐶) +ℎ (𝐵 −ℎ 𝐷))) | ||
Theorem | hvaddsub12 31070 | Commutative/associative law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 +ℎ (𝐵 −ℎ 𝐶)) = (𝐵 +ℎ (𝐴 −ℎ 𝐶))) | ||
Theorem | hvpncan 31071 | Addition/subtraction cancellation law for vectors in Hilbert space. (Contributed by NM, 7-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 +ℎ 𝐵) −ℎ 𝐵) = 𝐴) | ||
Theorem | hvpncan2 31072 | Addition/subtraction cancellation law for vectors in Hilbert space. (Contributed by NM, 7-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 +ℎ 𝐵) −ℎ 𝐴) = 𝐵) | ||
Theorem | hvaddsubass 31073 | Associativity of sum and difference of Hilbert space vectors. (Contributed by NM, 27-Aug-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) −ℎ 𝐶) = (𝐴 +ℎ (𝐵 −ℎ 𝐶))) | ||
Theorem | hvpncan3 31074 | Subtraction and addition of equal Hilbert space vectors. (Contributed by NM, 27-Aug-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ (𝐵 −ℎ 𝐴)) = 𝐵) | ||
Theorem | hvmulcom 31075 | Scalar multiplication commutative law. (Contributed by NM, 19-May-2005.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) = (𝐵 ·ℎ (𝐴 ·ℎ 𝐶))) | ||
Theorem | hvsubass 31076 | Hilbert vector space associative law for subtraction. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐵) −ℎ 𝐶) = (𝐴 −ℎ (𝐵 +ℎ 𝐶))) | ||
Theorem | hvsub32 31077 | Hilbert vector space commutative/associative law. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐵) −ℎ 𝐶) = ((𝐴 −ℎ 𝐶) −ℎ 𝐵)) | ||
Theorem | hvmulassi 31078 | Scalar multiplication associative law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) | ||
Theorem | hvmulcomi 31079 | Scalar multiplication commutative law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) = (𝐵 ·ℎ (𝐴 ·ℎ 𝐶)) | ||
Theorem | hvmul2negi 31080 | Double negative in scalar multiplication. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ (-𝐴 ·ℎ (-𝐵 ·ℎ 𝐶)) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) | ||
Theorem | hvsubdistr1 31081 | Scalar multiplication distributive law for subtraction. (Contributed by NM, 19-May-2005.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 −ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) −ℎ (𝐴 ·ℎ 𝐶))) | ||
Theorem | hvsubdistr2 31082 | Scalar multiplication distributive law for subtraction. (Contributed by NM, 19-May-2005.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 − 𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶))) | ||
Theorem | hvdistr1i 31083 | Scalar multiplication distributive law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ (𝐴 ·ℎ (𝐵 +ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) +ℎ (𝐴 ·ℎ 𝐶)) | ||
Theorem | hvsubdistr1i 31084 | Scalar multiplication distributive law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ (𝐴 ·ℎ (𝐵 −ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) −ℎ (𝐴 ·ℎ 𝐶)) | ||
Theorem | hvassi 31085 | Hilbert vector space associative law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = (𝐴 +ℎ (𝐵 +ℎ 𝐶)) | ||
Theorem | hvadd32i 31086 | Hilbert vector space commutative/associative law. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = ((𝐴 +ℎ 𝐶) +ℎ 𝐵) | ||
Theorem | hvsubassi 31087 | Hilbert vector space associative law for subtraction. (Contributed by NM, 7-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ ((𝐴 −ℎ 𝐵) −ℎ 𝐶) = (𝐴 −ℎ (𝐵 +ℎ 𝐶)) | ||
Theorem | hvsub32i 31088 | Hilbert vector space commutative/associative law. (Contributed by NM, 7-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ ((𝐴 −ℎ 𝐵) −ℎ 𝐶) = ((𝐴 −ℎ 𝐶) −ℎ 𝐵) | ||
Theorem | hvadd12i 31089 | Hilbert vector space commutative/associative law. (Contributed by NM, 11-Sep-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ (𝐴 +ℎ (𝐵 +ℎ 𝐶)) = (𝐵 +ℎ (𝐴 +ℎ 𝐶)) | ||
Theorem | hvadd4i 31090 | Hilbert vector space addition law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ & ⊢ 𝐷 ∈ ℋ ⇒ ⊢ ((𝐴 +ℎ 𝐵) +ℎ (𝐶 +ℎ 𝐷)) = ((𝐴 +ℎ 𝐶) +ℎ (𝐵 +ℎ 𝐷)) | ||
Theorem | hvsubsub4i 31091 | Hilbert vector space addition law. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ & ⊢ 𝐷 ∈ ℋ ⇒ ⊢ ((𝐴 −ℎ 𝐵) −ℎ (𝐶 −ℎ 𝐷)) = ((𝐴 −ℎ 𝐶) −ℎ (𝐵 −ℎ 𝐷)) | ||
Theorem | hvsubsub4 31092 | Hilbert vector space addition/subtraction law. (Contributed by NM, 2-Apr-2000.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 −ℎ 𝐵) −ℎ (𝐶 −ℎ 𝐷)) = ((𝐴 −ℎ 𝐶) −ℎ (𝐵 −ℎ 𝐷))) | ||
Theorem | hv2times 31093 | Two times a vector. (Contributed by NM, 22-Jun-2006.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℋ → (2 ·ℎ 𝐴) = (𝐴 +ℎ 𝐴)) | ||
Theorem | hvnegdii 31094 | Distribution of negative over subtraction. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ (-1 ·ℎ (𝐴 −ℎ 𝐵)) = (𝐵 −ℎ 𝐴) | ||
Theorem | hvsubeq0i 31095 | If the difference between two vectors is zero, they are equal. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ ((𝐴 −ℎ 𝐵) = 0ℎ ↔ 𝐴 = 𝐵) | ||
Theorem | hvsubcan2i 31096 | Vector cancellation law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ ((𝐴 +ℎ 𝐵) +ℎ (𝐴 −ℎ 𝐵)) = (2 ·ℎ 𝐴) | ||
Theorem | hvaddcani 31097 | Cancellation law for vector addition. (Contributed by NM, 11-Sep-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ ((𝐴 +ℎ 𝐵) = (𝐴 +ℎ 𝐶) ↔ 𝐵 = 𝐶) | ||
Theorem | hvsubaddi 31098 | Relationship between vector subtraction and addition. (Contributed by NM, 11-Sep-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℋ ⇒ ⊢ ((𝐴 −ℎ 𝐵) = 𝐶 ↔ (𝐵 +ℎ 𝐶) = 𝐴) | ||
Theorem | hvnegdi 31099 | Distribution of negative over subtraction. (Contributed by NM, 2-Apr-2000.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (-1 ·ℎ (𝐴 −ℎ 𝐵)) = (𝐵 −ℎ 𝐴)) | ||
Theorem | hvsubeq0 31100 | If the difference between two vectors is zero, they are equal. (Contributed by NM, 23-Oct-1999.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 −ℎ 𝐵) = 0ℎ ↔ 𝐴 = 𝐵)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |