Home | Metamath
Proof Explorer Theorem List (p. 311 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | abfmpel 31001* | Membership in an element of a mapping function-defined family of sets. (Contributed by Thierry Arnoux, 19-Oct-2016.) |
⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∣ 𝜑}) & ⊢ {𝑦 ∣ 𝜑} ∈ V & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ∈ (𝐹‘𝐴) ↔ 𝜓)) | ||
Theorem | fmptdF 31002 | Domain and codomain of the mapping operation; deduction form. This version of fmptd 6997 uses bound-variable hypothesis instead of distinct variable conditions. (Contributed by Thierry Arnoux, 28-Mar-2017.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐶 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) | ||
Theorem | fmptcof2 31003* | Composition of two functions expressed as ordered-pair class abstractions. (Contributed by FL, 21-Jun-2012.) (Revised by Mario Carneiro, 24-Jul-2014.) (Revised by Thierry Arnoux, 10-May-2017.) |
⊢ Ⅎ𝑥𝑆 & ⊢ Ⅎ𝑦𝑇 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑅 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑅)) & ⊢ (𝜑 → 𝐺 = (𝑦 ∈ 𝐵 ↦ 𝑆)) & ⊢ (𝑦 = 𝑅 → 𝑆 = 𝑇) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ 𝑇)) | ||
Theorem | fcomptf 31004* | Express composition of two functions as a maps-to applying both in sequence. This version has one less distinct variable restriction compared to fcompt 7014. (Contributed by Thierry Arnoux, 30-Jun-2017.) |
⊢ Ⅎ𝑥𝐵 ⇒ ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → (𝐴 ∘ 𝐵) = (𝑥 ∈ 𝐶 ↦ (𝐴‘(𝐵‘𝑥)))) | ||
Theorem | acunirnmpt 31005* | Axiom of choice for the union of the range of a mapping to function. (Contributed by Thierry Arnoux, 6-Nov-2019.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ≠ ∅) & ⊢ 𝐶 = ran (𝑗 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:𝐶⟶∪ 𝐶 ∧ ∀𝑦 ∈ 𝐶 ∃𝑗 ∈ 𝐴 (𝑓‘𝑦) ∈ 𝐵)) | ||
Theorem | acunirnmpt2 31006* | Axiom of choice for the union of the range of a mapping to function. (Contributed by Thierry Arnoux, 7-Nov-2019.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ≠ ∅) & ⊢ 𝐶 = ∪ ran (𝑗 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝑗 = (𝑓‘𝑥) → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:𝐶⟶𝐴 ∧ ∀𝑥 ∈ 𝐶 𝑥 ∈ 𝐷)) | ||
Theorem | acunirnmpt2f 31007* | Axiom of choice for the union of the range of a mapping to function. (Contributed by Thierry Arnoux, 7-Nov-2019.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ≠ ∅) & ⊢ Ⅎ𝑗𝐴 & ⊢ Ⅎ𝑗𝐶 & ⊢ Ⅎ𝑗𝐷 & ⊢ 𝐶 = ∪ 𝑗 ∈ 𝐴 𝐵 & ⊢ (𝑗 = (𝑓‘𝑥) → 𝐵 = 𝐷) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:𝐶⟶𝐴 ∧ ∀𝑥 ∈ 𝐶 𝑥 ∈ 𝐷)) | ||
Theorem | aciunf1lem 31008* | Choice in an index union. (Contributed by Thierry Arnoux, 8-Nov-2019.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ≠ ∅) & ⊢ Ⅎ𝑗𝐴 & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:∪ 𝑗 ∈ 𝐴 𝐵–1-1→∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑥)) = 𝑥)) | ||
Theorem | aciunf1 31009* | Choice in an index union. (Contributed by Thierry Arnoux, 4-May-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:∪ 𝑗 ∈ 𝐴 𝐵–1-1→∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∧ ∀𝑘 ∈ ∪ 𝑗 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑘)) = 𝑘)) | ||
Theorem | ofoprabco 31010* | Function operation as a composition with an operation. (Contributed by Thierry Arnoux, 4-Jun-2017.) |
⊢ Ⅎ𝑎𝑀 & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐺:𝐴⟶𝐶) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 = (𝑎 ∈ 𝐴 ↦ 〈(𝐹‘𝑎), (𝐺‘𝑎)〉)) & ⊢ (𝜑 → 𝑁 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ (𝑥𝑅𝑦))) ⇒ ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑁 ∘ 𝑀)) | ||
Theorem | ofpreima 31011* | Express the preimage of a function operation as a union of preimages. (Contributed by Thierry Arnoux, 8-Mar-2018.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐺:𝐴⟶𝐶) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 Fn (𝐵 × 𝐶)) ⇒ ⊢ (𝜑 → (◡(𝐹 ∘f 𝑅𝐺) “ 𝐷) = ∪ 𝑝 ∈ (◡𝑅 “ 𝐷)((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) | ||
Theorem | ofpreima2 31012* | Express the preimage of a function operation as a union of preimages. This version of ofpreima 31011 iterates the union over a smaller set. (Contributed by Thierry Arnoux, 8-Mar-2018.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐺:𝐴⟶𝐶) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 Fn (𝐵 × 𝐶)) ⇒ ⊢ (𝜑 → (◡(𝐹 ∘f 𝑅𝐺) “ 𝐷) = ∪ 𝑝 ∈ ((◡𝑅 “ 𝐷) ∩ (ran 𝐹 × ran 𝐺))((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) | ||
Theorem | funcnvmpt 31013* | Condition for a function in maps-to notation to be single-rooted. (Contributed by Thierry Arnoux, 28-Feb-2017.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐹 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → (Fun ◡𝐹 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 = 𝐵)) | ||
Theorem | funcnv5mpt 31014* | Two ways to say that a function in maps-to notation is single-rooted. (Contributed by Thierry Arnoux, 1-Mar-2017.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐹 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝑥 = 𝑧 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (Fun ◡𝐹 ↔ ∀𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥 = 𝑧 ∨ 𝐵 ≠ 𝐶))) | ||
Theorem | funcnv4mpt 31015* | Two ways to say that a function in maps-to notation is single-rooted. (Contributed by Thierry Arnoux, 2-Mar-2017.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐹 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → (Fun ◡𝐹 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ ⦋𝑖 / 𝑥⦌𝐵 ≠ ⦋𝑗 / 𝑥⦌𝐵))) | ||
Theorem | preimane 31016 | Different elements have different preimages. (Contributed by Thierry Arnoux, 7-May-2023.) |
⊢ (𝜑 → Fun 𝐹) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ (𝜑 → 𝑋 ∈ ran 𝐹) & ⊢ (𝜑 → 𝑌 ∈ ran 𝐹) ⇒ ⊢ (𝜑 → (◡𝐹 “ {𝑋}) ≠ (◡𝐹 “ {𝑌})) | ||
Theorem | fnpreimac 31017* | Choose a set 𝑥 containing a preimage of each element of a given set 𝐵. (Contributed by Thierry Arnoux, 7-May-2023.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹) → ∃𝑥 ∈ 𝒫 𝐴(𝑥 ≈ 𝐵 ∧ (𝐹 “ 𝑥) = 𝐵)) | ||
Theorem | fgreu 31018* | Exactly one point of a function's graph has a given first element. (Contributed by Thierry Arnoux, 1-Apr-2018.) |
⊢ ((Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹) → ∃!𝑝 ∈ 𝐹 𝑋 = (1st ‘𝑝)) | ||
Theorem | fcnvgreu 31019* | If the converse of a relation 𝐴 is a function, exactly one point of its graph has a given second element (that is, function value). (Contributed by Thierry Arnoux, 1-Apr-2018.) |
⊢ (((Rel 𝐴 ∧ Fun ◡𝐴) ∧ 𝑌 ∈ ran 𝐴) → ∃!𝑝 ∈ 𝐴 𝑌 = (2nd ‘𝑝)) | ||
Theorem | rnmposs 31020* | The range of an operation given by the maps-to notation as a subset. (Contributed by Thierry Arnoux, 23-May-2017.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 → ran 𝐹 ⊆ 𝐷) | ||
Theorem | mptssALT 31021* | Deduce subset relation of mapping-to function graphs from a subset relation of domains. Alternative proof of mptss 5953. (Contributed by Thierry Arnoux, 30-May-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) ⊆ (𝑥 ∈ 𝐵 ↦ 𝐶)) | ||
Theorem | dfcnv2 31022* | Alternative definition of the converse of a relation. (Contributed by Thierry Arnoux, 31-Mar-2018.) |
⊢ (ran 𝑅 ⊆ 𝐴 → ◡𝑅 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × (◡𝑅 “ {𝑥}))) | ||
Theorem | fnimatp 31023 | The image of an unordered triple under a function. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
⊢ (𝜑 → 𝐹 Fn 𝐷) & ⊢ (𝜑 → 𝐴 ∈ 𝐷) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝐹 “ {𝐴, 𝐵, 𝐶}) = {(𝐹‘𝐴), (𝐹‘𝐵), (𝐹‘𝐶)}) | ||
Theorem | fnunres2 31024 | Restriction of a disjoint union to the domain of the second function. (Contributed by Thierry Arnoux, 12-Oct-2023.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐹 ∪ 𝐺) ↾ 𝐵) = 𝐺) | ||
Theorem | mpomptxf 31025* | Express a two-argument function as a one-argument function, or vice-versa. In this version 𝐵(𝑥) is not assumed to be constant w.r.t 𝑥. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by Thierry Arnoux, 31-Mar-2018.) |
⊢ Ⅎ𝑥𝐶 & ⊢ Ⅎ𝑦𝐶 & ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝐶 = 𝐷) ⇒ ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) | ||
Theorem | suppovss 31026* | A bound for the support of an operation. (Contributed by Thierry Arnoux, 19-Jul-2023.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝑦 ∈ 𝐵 ↦ 𝐶)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝑍 ∈ 𝐷) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ ((𝐺 supp (𝐵 × {𝑍})) × ∪ 𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍))) | ||
Theorem | fvdifsupp 31027 | Function value is zero outside of its support. (Contributed by Thierry Arnoux, 21-Jan-2024.) |
⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) ⇒ ⊢ (𝜑 → (𝐹‘𝑋) = 𝑍) | ||
Theorem | fmptssfisupp 31028* | The restriction of a mapping function has finite support if that function has finite support. (Contributed by Thierry Arnoux, 21-Jan-2024.) |
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) finSupp 𝑍) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐵) finSupp 𝑍) | ||
Theorem | suppiniseg 31029 | Relation between the support (𝐹 supp 𝑍) and the initial segment (◡𝐹 “ {𝑍}). (Contributed by Thierry Arnoux, 25-Jun-2024.) |
⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) = (◡𝐹 “ {𝑍})) | ||
Theorem | fsuppinisegfi 31030 | The initial segment (◡𝐹 “ {𝑌}) of a nonzero 𝑌 is finite if 𝐹 has finite support. (Contributed by Thierry Arnoux, 21-Jun-2024.) |
⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 0 ∈ 𝑊) & ⊢ (𝜑 → 𝑌 ∈ (V ∖ { 0 })) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (◡𝐹 “ {𝑌}) ∈ Fin) | ||
Theorem | fressupp 31031 | The restriction of a function to its support. (Contributed by Thierry Arnoux, 25-Jun-2024.) |
⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 ↾ (𝐹 supp 𝑍)) = (𝐹 ∖ (V × {𝑍}))) | ||
Theorem | fdifsuppconst 31032 | A function is a zero constant outside of its support. (Contributed by Thierry Arnoux, 22-Jun-2024.) |
⊢ 𝐴 = (dom 𝐹 ∖ (𝐹 supp 𝑍)) ⇒ ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 ↾ 𝐴) = (𝐴 × {𝑍})) | ||
Theorem | ressupprn 31033 | The range of a function restricted to its support. (Contributed by Thierry Arnoux, 25-Jun-2024.) |
⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊) → ran (𝐹 ↾ (𝐹 supp 0 )) = (ran 𝐹 ∖ { 0 })) | ||
Theorem | supppreima 31034 | Express the support of a function as the preimage of its range except zero. (Contributed by Thierry Arnoux, 24-Jun-2024.) |
⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = (◡𝐹 “ (ran 𝐹 ∖ {𝑍}))) | ||
Theorem | fsupprnfi 31035 | Finite support implies finite range. (Contributed by Thierry Arnoux, 24-Jun-2024.) |
⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ ( 0 ∈ 𝑊 ∧ 𝐹 finSupp 0 )) → ran 𝐹 ∈ Fin) | ||
Theorem | cosnopne 31036 | Composition of two ordered pair singletons with non-matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐴 ≠ 𝐷) ⇒ ⊢ (𝜑 → ({〈𝐴, 𝐵〉} ∘ {〈𝐶, 𝐷〉}) = ∅) | ||
Theorem | cosnop 31037 | Composition of two ordered pair singletons with matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) ⇒ ⊢ (𝜑 → ({〈𝐴, 𝐵〉} ∘ {〈𝐶, 𝐴〉}) = {〈𝐶, 𝐵〉}) | ||
Theorem | cnvprop 31038 | Converse of a pair of ordered pairs. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → ◡{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {〈𝐵, 𝐴〉, 〈𝐷, 𝐶〉}) | ||
Theorem | brprop 31039 | Binary relation for a pair of ordered pairs. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑋{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉}𝑌 ↔ ((𝑋 = 𝐴 ∧ 𝑌 = 𝐵) ∨ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷)))) | ||
Theorem | mptprop 31040* | Rewrite pairs of ordered pairs as mapping to functions. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ≠ 𝐶) ⇒ ⊢ (𝜑 → {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = (𝑥 ∈ {𝐴, 𝐶} ↦ if(𝑥 = 𝐴, 𝐵, 𝐷))) | ||
Theorem | coprprop 31041 | Composition of two pairs of ordered pairs with matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ≠ 𝐶) & ⊢ (𝜑 → 𝐸 ∈ 𝑋) & ⊢ (𝜑 → 𝐹 ∈ 𝑋) & ⊢ (𝜑 → 𝐸 ≠ 𝐹) ⇒ ⊢ (𝜑 → ({〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} ∘ {〈𝐸, 𝐴〉, 〈𝐹, 𝐶〉}) = {〈𝐸, 𝐵〉, 〈𝐹, 𝐷〉}) | ||
Theorem | gtiso 31042 | Two ways to write a strictly decreasing function on the reals. (Contributed by Thierry Arnoux, 6-Apr-2017.) |
⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ*) → (𝐹 Isom < , ◡ < (𝐴, 𝐵) ↔ 𝐹 Isom ≤ , ◡ ≤ (𝐴, 𝐵))) | ||
Theorem | isoun 31043* | Infer an isomorphism from a union of two isomorphisms. (Contributed by Thierry Arnoux, 30-Mar-2017.) |
⊢ (𝜑 → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) & ⊢ (𝜑 → 𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐷)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) → 𝑥𝑅𝑦) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷) → 𝑧𝑆𝑤) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴) → ¬ 𝑥𝑅𝑦) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐵) → ¬ 𝑧𝑆𝑤) & ⊢ (𝜑 → (𝐴 ∩ 𝐶) = ∅) & ⊢ (𝜑 → (𝐵 ∩ 𝐷) = ∅) ⇒ ⊢ (𝜑 → (𝐻 ∪ 𝐺) Isom 𝑅, 𝑆 ((𝐴 ∪ 𝐶), (𝐵 ∪ 𝐷))) | ||
Theorem | disjdsct 31044* | A disjoint collection is distinct, i.e. each set in this collection is different of all others, provided that it does not contain the empty set This can be expressed as "the converse of the mapping function is a function", or "the mapping function is single-rooted". (Cf. funcnv 6510) (Contributed by Thierry Arnoux, 28-Feb-2017.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (𝑉 ∖ {∅})) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) ⇒ ⊢ (𝜑 → Fun ◡(𝑥 ∈ 𝐴 ↦ 𝐵)) | ||
Theorem | df1stres 31045* | Definition for a restriction of the 1st (first member of an ordered pair) function. (Contributed by Thierry Arnoux, 27-Sep-2017.) |
⊢ (1st ↾ (𝐴 × 𝐵)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑥) | ||
Theorem | df2ndres 31046* | Definition for a restriction of the 2nd (second member of an ordered pair) function. (Contributed by Thierry Arnoux, 27-Sep-2017.) |
⊢ (2nd ↾ (𝐴 × 𝐵)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑦) | ||
Theorem | 1stpreimas 31047 | The preimage of a singleton. (Contributed by Thierry Arnoux, 27-Apr-2020.) |
⊢ ((Rel 𝐴 ∧ 𝑋 ∈ 𝑉) → (◡(1st ↾ 𝐴) “ {𝑋}) = ({𝑋} × (𝐴 “ {𝑋}))) | ||
Theorem | 1stpreima 31048 | The preimage by 1st is a 'vertical band'. (Contributed by Thierry Arnoux, 13-Oct-2017.) |
⊢ (𝐴 ⊆ 𝐵 → (◡(1st ↾ (𝐵 × 𝐶)) “ 𝐴) = (𝐴 × 𝐶)) | ||
Theorem | 2ndpreima 31049 | The preimage by 2nd is an 'horizontal band'. (Contributed by Thierry Arnoux, 13-Oct-2017.) |
⊢ (𝐴 ⊆ 𝐶 → (◡(2nd ↾ (𝐵 × 𝐶)) “ 𝐴) = (𝐵 × 𝐴)) | ||
Theorem | curry2ima 31050* | The image of a curried function with a constant second argument. (Contributed by Thierry Arnoux, 25-Sep-2017.) |
⊢ 𝐺 = (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) ⇒ ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → (𝐺 “ 𝐷) = {𝑦 ∣ ∃𝑥 ∈ 𝐷 𝑦 = (𝑥𝐹𝐶)}) | ||
Theorem | preiman0 31051 | The preimage of a nonempty set is nonempty. (Contributed by Thierry Arnoux, 9-Jun-2024.) |
⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) → (◡𝐹 “ 𝐴) ≠ ∅) | ||
Theorem | intimafv 31052* | The intersection of an image set, as an indexed intersection of function values. (Contributed by Thierry Arnoux, 15-Jun-2024.) |
⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ∩ (𝐹 “ 𝐴) = ∩ 𝑥 ∈ 𝐴 (𝐹‘𝑥)) | ||
Theorem | supssd 31053* | Inequality deduction for supremum of a subset. (Contributed by Thierry Arnoux, 21-Mar-2017.) |
⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧))) ⇒ ⊢ (𝜑 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅sup(𝐵, 𝐴, 𝑅)) | ||
Theorem | infssd 31054* | Inequality deduction for infimum of a subset. (Contributed by AV, 4-Oct-2020.) |
⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝐶 ⊆ 𝐵) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐶 𝑧𝑅𝑦))) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) ⇒ ⊢ (𝜑 → ¬ inf(𝐶, 𝐴, 𝑅)𝑅inf(𝐵, 𝐴, 𝑅)) | ||
Theorem | imafi2 31055 | The image by a finite set is finite. See also imafi 8967. (Contributed by Thierry Arnoux, 25-Apr-2020.) |
⊢ (𝐴 ∈ Fin → (𝐴 “ 𝐵) ∈ Fin) | ||
Theorem | unifi3 31056 | If a union is finite, then all its elements are finite. See unifi 9117. (Contributed by Thierry Arnoux, 27-Aug-2017.) |
⊢ (∪ 𝐴 ∈ Fin → 𝐴 ⊆ Fin) | ||
Theorem | snct 31057 | A singleton is countable. (Contributed by Thierry Arnoux, 16-Sep-2016.) |
⊢ (𝐴 ∈ 𝑉 → {𝐴} ≼ ω) | ||
Theorem | prct 31058 | An unordered pair is countable. (Contributed by Thierry Arnoux, 16-Sep-2016.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ≼ ω) | ||
Theorem | mpocti 31059* | An operation is countable if both its domains are countable. (Contributed by Thierry Arnoux, 17-Sep-2017.) |
⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 ⇒ ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ≼ ω) | ||
Theorem | abrexct 31060* | An image set of a countable set is countable. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
⊢ (𝐴 ≼ ω → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ≼ ω) | ||
Theorem | mptctf 31061 | A countable mapping set is countable, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Thierry Arnoux, 8-Mar-2017.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 ≼ ω → (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ ω) | ||
Theorem | abrexctf 31062* | An image set of a countable set is countable, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Thierry Arnoux, 8-Mar-2017.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 ≼ ω → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ≼ ω) | ||
Theorem | padct 31063* | Index a countable set with integers and pad with 𝑍. (Contributed by Thierry Arnoux, 1-Jun-2020.) |
⊢ ((𝐴 ≼ ω ∧ 𝑍 ∈ 𝑉 ∧ ¬ 𝑍 ∈ 𝐴) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) | ||
Theorem | cnvoprabOLD 31064* | The converse of a class abstraction of nested ordered pairs. Obsolete version of cnvoprab 7909 as of 16-Oct-2022, which has nonfreeness hypotheses instead of disjoint variable conditions. (Contributed by Thierry Arnoux, 17-Aug-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜓 & ⊢ (𝑎 = 〈𝑥, 𝑦〉 → (𝜓 ↔ 𝜑)) & ⊢ (𝜓 → 𝑎 ∈ (V × V)) ⇒ ⊢ ◡{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑧, 𝑎〉 ∣ 𝜓} | ||
Theorem | f1od2 31065* | Sufficient condition for a binary function expressed in maps-to notation to be bijective. (Contributed by Thierry Arnoux, 17-Aug-2017.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → (𝐼 ∈ 𝑋 ∧ 𝐽 ∈ 𝑌)) & ⊢ (𝜑 → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ (𝑧 ∈ 𝐷 ∧ (𝑥 = 𝐼 ∧ 𝑦 = 𝐽)))) ⇒ ⊢ (𝜑 → 𝐹:(𝐴 × 𝐵)–1-1-onto→𝐷) | ||
Theorem | fcobij 31066* | Composing functions with a bijection yields a bijection between sets of functions. (Contributed by Thierry Arnoux, 25-Aug-2017.) |
⊢ (𝜑 → 𝐺:𝑆–1-1-onto→𝑇) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑓 ∈ (𝑆 ↑m 𝑅) ↦ (𝐺 ∘ 𝑓)):(𝑆 ↑m 𝑅)–1-1-onto→(𝑇 ↑m 𝑅)) | ||
Theorem | fcobijfs 31067* | Composing finitely supported functions with a bijection yields a bijection between sets of finitely supported functions. See also mapfien 9176. (Contributed by Thierry Arnoux, 25-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
⊢ (𝜑 → 𝐺:𝑆–1-1-onto→𝑇) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ 𝑊) & ⊢ (𝜑 → 𝑂 ∈ 𝑆) & ⊢ 𝑄 = (𝐺‘𝑂) & ⊢ 𝑋 = {𝑔 ∈ (𝑆 ↑m 𝑅) ∣ 𝑔 finSupp 𝑂} & ⊢ 𝑌 = {ℎ ∈ (𝑇 ↑m 𝑅) ∣ ℎ finSupp 𝑄} ⇒ ⊢ (𝜑 → (𝑓 ∈ 𝑋 ↦ (𝐺 ∘ 𝑓)):𝑋–1-1-onto→𝑌) | ||
Theorem | suppss3 31068* | Deduce a function's support's inclusion in another function's support. (Contributed by Thierry Arnoux, 7-Sep-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = 𝑍) → 𝐵 = 𝑍) ⇒ ⊢ (𝜑 → (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍)) | ||
Theorem | fsuppcurry1 31069* | Finite support of a curried function with a constant first argument. (Contributed by Thierry Arnoux, 7-Jul-2023.) |
⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥)) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 Fn (𝐴 × 𝐵)) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐹 finSupp 𝑍) ⇒ ⊢ (𝜑 → 𝐺 finSupp 𝑍) | ||
Theorem | fsuppcurry2 31070* | Finite support of a curried function with a constant second argument. (Contributed by Thierry Arnoux, 7-Jul-2023.) |
⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶)) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 Fn (𝐴 × 𝐵)) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 finSupp 𝑍) ⇒ ⊢ (𝜑 → 𝐺 finSupp 𝑍) | ||
Theorem | offinsupp1 31071* | Finite support for a function operation. (Contributed by Thierry Arnoux, 8-Jul-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) & ⊢ (𝜑 → 𝐺:𝐴⟶𝑇) & ⊢ (𝜑 → 𝐹 finSupp 𝑌) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝑌𝑅𝑥) = 𝑍) ⇒ ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) finSupp 𝑍) | ||
Theorem | ffs2 31072 | Rewrite a function's support based with its range rather than the universal class. See also frnsuppeq 8000. (Contributed by Thierry Arnoux, 27-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
⊢ 𝐶 = (𝐵 ∖ {𝑍}) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 supp 𝑍) = (◡𝐹 “ 𝐶)) | ||
Theorem | ffsrn 31073 | The range of a finitely supported function is finite. (Contributed by Thierry Arnoux, 27-Aug-2017.) |
⊢ (𝜑 → 𝑍 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → Fun 𝐹) & ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) ⇒ ⊢ (𝜑 → ran 𝐹 ∈ Fin) | ||
Theorem | resf1o 31074* | Restriction of functions to a superset of their support creates a bijection. (Contributed by Thierry Arnoux, 12-Sep-2017.) |
⊢ 𝑋 = {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (◡𝑓 “ (𝐵 ∖ {𝑍})) ⊆ 𝐶} & ⊢ 𝐹 = (𝑓 ∈ 𝑋 ↦ (𝑓 ↾ 𝐶)) ⇒ ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) → 𝐹:𝑋–1-1-onto→(𝐵 ↑m 𝐶)) | ||
Theorem | maprnin 31075* | Restricting the range of the mapping operator. (Contributed by Thierry Arnoux, 30-Aug-2017.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((𝐵 ∩ 𝐶) ↑m 𝐴) = {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ran 𝑓 ⊆ 𝐶} | ||
Theorem | fpwrelmapffslem 31076* | Lemma for fpwrelmapffs 31078. For this theorem, the sets 𝐴 and 𝐵 could be infinite, but the relation 𝑅 itself is finite. (Contributed by Thierry Arnoux, 1-Sep-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝜑 → 𝐹:𝐴⟶𝒫 𝐵) & ⊢ (𝜑 → 𝑅 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))}) ⇒ ⊢ (𝜑 → (𝑅 ∈ Fin ↔ (ran 𝐹 ⊆ Fin ∧ (𝐹 supp ∅) ∈ Fin))) | ||
Theorem | fpwrelmap 31077* | Define a canonical mapping between functions from 𝐴 into subsets of 𝐵 and the relations with domain 𝐴 and range within 𝐵. Note that the same relation is used in axdc2lem 10213 and marypha2lem1 9203. (Contributed by Thierry Arnoux, 28-Aug-2017.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝑀 = (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ⇒ ⊢ 𝑀:(𝒫 𝐵 ↑m 𝐴)–1-1-onto→𝒫 (𝐴 × 𝐵) | ||
Theorem | fpwrelmapffs 31078* | Define a canonical mapping between finite relations (finite subsets of a cartesian product) and functions with finite support into finite subsets. (Contributed by Thierry Arnoux, 28-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝑀 = (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) & ⊢ 𝑆 = {𝑓 ∈ ((𝒫 𝐵 ∩ Fin) ↑m 𝐴) ∣ (𝑓 supp ∅) ∈ Fin} ⇒ ⊢ (𝑀 ↾ 𝑆):𝑆–1-1-onto→(𝒫 (𝐴 × 𝐵) ∩ Fin) | ||
Theorem | creq0 31079 | The real representation of complex numbers is zero iff both its terms are zero. Cf. crne0 11975. (Contributed by Thierry Arnoux, 20-Aug-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 = 0 ∧ 𝐵 = 0) ↔ (𝐴 + (i · 𝐵)) = 0)) | ||
Theorem | 1nei 31080 | The imaginary unit i is not one. (Contributed by Thierry Arnoux, 20-Aug-2023.) |
⊢ 1 ≠ i | ||
Theorem | 1neg1t1neg1 31081 | An integer unit times itself. (Contributed by Thierry Arnoux, 23-Aug-2020.) |
⊢ (𝑁 ∈ {-1, 1} → (𝑁 · 𝑁) = 1) | ||
Theorem | nnmulge 31082 | Multiplying by a positive integer 𝑀 yields greater than or equal nonnegative integers. (Contributed by Thierry Arnoux, 13-Dec-2021.) |
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ (𝑀 · 𝑁)) | ||
Theorem | lt2addrd 31083* | If the right-hand side of a 'less than' relationship is an addition, then we can express the left-hand side as an addition, too, where each term is respectively less than each term of the original right side. (Contributed by Thierry Arnoux, 15-Mar-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < (𝐵 + 𝐶)) ⇒ ⊢ (𝜑 → ∃𝑏 ∈ ℝ ∃𝑐 ∈ ℝ (𝐴 = (𝑏 + 𝑐) ∧ 𝑏 < 𝐵 ∧ 𝑐 < 𝐶)) | ||
Theorem | xrlelttric 31084 | Trichotomy law for extended reals. (Contributed by Thierry Arnoux, 12-Sep-2017.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ∨ 𝐵 < 𝐴)) | ||
Theorem | xaddeq0 31085 | Two extended reals which add up to zero are each other's negatives. (Contributed by Thierry Arnoux, 13-Jun-2017.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) = 0 ↔ 𝐴 = -𝑒𝐵)) | ||
Theorem | xrinfm 31086 | The extended real numbers are unbounded below. (Contributed by Thierry Arnoux, 18-Feb-2018.) (Revised by AV, 28-Sep-2020.) |
⊢ inf(ℝ*, ℝ*, < ) = -∞ | ||
Theorem | le2halvesd 31087 | A sum is less than the whole if each term is less than half. (Contributed by Thierry Arnoux, 29-Nov-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ (𝐶 / 2)) & ⊢ (𝜑 → 𝐵 ≤ (𝐶 / 2)) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ≤ 𝐶) | ||
Theorem | xraddge02 31088 | A number is less than or equal to itself plus a nonnegative number. (Contributed by Thierry Arnoux, 28-Dec-2016.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (0 ≤ 𝐵 → 𝐴 ≤ (𝐴 +𝑒 𝐵))) | ||
Theorem | xrge0addge 31089 | A number is less than or equal to itself plus a nonnegative number. (Contributed by Thierry Arnoux, 19-Jul-2020.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ (0[,]+∞)) → 𝐴 ≤ (𝐴 +𝑒 𝐵)) | ||
Theorem | xlt2addrd 31090* | If the right-hand side of a 'less than' relationship is an addition, then we can express the left-hand side as an addition, too, where each term is respectively less than each term of the original right side. (Contributed by Thierry Arnoux, 15-Mar-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ≠ -∞) & ⊢ (𝜑 → 𝐶 ≠ -∞) & ⊢ (𝜑 → 𝐴 < (𝐵 +𝑒 𝐶)) ⇒ ⊢ (𝜑 → ∃𝑏 ∈ ℝ* ∃𝑐 ∈ ℝ* (𝐴 = (𝑏 +𝑒 𝑐) ∧ 𝑏 < 𝐵 ∧ 𝑐 < 𝐶)) | ||
Theorem | xrsupssd 31091 | Inequality deduction for supremum of an extended real subset. (Contributed by Thierry Arnoux, 21-Mar-2017.) |
⊢ (𝜑 → 𝐵 ⊆ 𝐶) & ⊢ (𝜑 → 𝐶 ⊆ ℝ*) ⇒ ⊢ (𝜑 → sup(𝐵, ℝ*, < ) ≤ sup(𝐶, ℝ*, < )) | ||
Theorem | xrge0infss 31092* | Any subset of nonnegative extended reals has an infimum. (Contributed by Thierry Arnoux, 16-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
⊢ (𝐴 ⊆ (0[,]+∞) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) | ||
Theorem | xrge0infssd 31093 | Inequality deduction for infimum of a nonnegative extended real subset. (Contributed by Thierry Arnoux, 16-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
⊢ (𝜑 → 𝐶 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ⊆ (0[,]+∞)) ⇒ ⊢ (𝜑 → inf(𝐵, (0[,]+∞), < ) ≤ inf(𝐶, (0[,]+∞), < )) | ||
Theorem | xrge0addcld 31094 | Nonnegative extended reals are closed under addition. (Contributed by Thierry Arnoux, 16-Sep-2019.) |
⊢ (𝜑 → 𝐴 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → (𝐴 +𝑒 𝐵) ∈ (0[,]+∞)) | ||
Theorem | xrge0subcld 31095 | Condition for closure of nonnegative extended reals under subtraction. (Contributed by Thierry Arnoux, 27-May-2020.) |
⊢ (𝜑 → 𝐴 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐵 ≤ 𝐴) ⇒ ⊢ (𝜑 → (𝐴 +𝑒 -𝑒𝐵) ∈ (0[,]+∞)) | ||
Theorem | infxrge0lb 31096 | A member of a set of nonnegative extended reals is greater than or equal to the set's infimum. (Contributed by Thierry Arnoux, 19-Jul-2020.) (Revised by AV, 4-Oct-2020.) |
⊢ (𝜑 → 𝐴 ⊆ (0[,]+∞)) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → inf(𝐴, (0[,]+∞), < ) ≤ 𝐵) | ||
Theorem | infxrge0glb 31097* | The infimum of a set of nonnegative extended reals is the greatest lower bound. (Contributed by Thierry Arnoux, 19-Jul-2020.) (Revised by AV, 4-Oct-2020.) |
⊢ (𝜑 → 𝐴 ⊆ (0[,]+∞)) & ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → (inf(𝐴, (0[,]+∞), < ) < 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑥 < 𝐵)) | ||
Theorem | infxrge0gelb 31098* | The infimum of a set of nonnegative extended reals is greater than or equal to a lower bound. (Contributed by Thierry Arnoux, 19-Jul-2020.) (Revised by AV, 4-Oct-2020.) |
⊢ (𝜑 → 𝐴 ⊆ (0[,]+∞)) & ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → (𝐵 ≤ inf(𝐴, (0[,]+∞), < ) ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑥)) | ||
Theorem | xrofsup 31099 | The supremum is preserved by extended addition set operation. (Provided minus infinity is not involved as it does not behave well with addition.) (Contributed by Thierry Arnoux, 20-Mar-2017.) |
⊢ (𝜑 → 𝑋 ⊆ ℝ*) & ⊢ (𝜑 → 𝑌 ⊆ ℝ*) & ⊢ (𝜑 → sup(𝑋, ℝ*, < ) ≠ -∞) & ⊢ (𝜑 → sup(𝑌, ℝ*, < ) ≠ -∞) & ⊢ (𝜑 → 𝑍 = ( +𝑒 “ (𝑋 × 𝑌))) ⇒ ⊢ (𝜑 → sup(𝑍, ℝ*, < ) = (sup(𝑋, ℝ*, < ) +𝑒 sup(𝑌, ℝ*, < ))) | ||
Theorem | supxrnemnf 31100 | The supremum of a nonempty set of extended reals which does not contain minus infinity is not minus infinity. (Contributed by Thierry Arnoux, 21-Mar-2017.) |
⊢ ((𝐴 ⊆ ℝ* ∧ 𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) ≠ -∞) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |