| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hoid1i | Structured version Visualization version GIF version | ||
| Description: Composition of Hilbert space operator with unit identity. (Contributed by NM, 15-Nov-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hoaddrid.1 | ⊢ 𝑇: ℋ⟶ ℋ |
| Ref | Expression |
|---|---|
| hoid1i | ⊢ (𝑇 ∘ Iop ) = 𝑇 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iop 31697 | . . 3 ⊢ Iop = (projℎ‘ ℋ) | |
| 2 | 1 | coeq2i 5851 | . 2 ⊢ (𝑇 ∘ Iop ) = (𝑇 ∘ (projℎ‘ ℋ)) |
| 3 | hoaddrid.1 | . . . . . 6 ⊢ 𝑇: ℋ⟶ ℋ | |
| 4 | helch 31191 | . . . . . . 7 ⊢ ℋ ∈ Cℋ | |
| 5 | 4 | pjfi 31652 | . . . . . 6 ⊢ (projℎ‘ ℋ): ℋ⟶ ℋ |
| 6 | 3, 5 | hocoi 31712 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ((𝑇 ∘ (projℎ‘ ℋ))‘𝑥) = (𝑇‘((projℎ‘ ℋ)‘𝑥))) |
| 7 | pjch1 31618 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → ((projℎ‘ ℋ)‘𝑥) = 𝑥) | |
| 8 | 7 | fveq2d 6890 | . . . . 5 ⊢ (𝑥 ∈ ℋ → (𝑇‘((projℎ‘ ℋ)‘𝑥)) = (𝑇‘𝑥)) |
| 9 | 6, 8 | eqtrd 2769 | . . . 4 ⊢ (𝑥 ∈ ℋ → ((𝑇 ∘ (projℎ‘ ℋ))‘𝑥) = (𝑇‘𝑥)) |
| 10 | 9 | rgen 3052 | . . 3 ⊢ ∀𝑥 ∈ ℋ ((𝑇 ∘ (projℎ‘ ℋ))‘𝑥) = (𝑇‘𝑥) |
| 11 | 3, 5 | hocofi 31714 | . . . 4 ⊢ (𝑇 ∘ (projℎ‘ ℋ)): ℋ⟶ ℋ |
| 12 | 11, 3 | hoeqi 31709 | . . 3 ⊢ (∀𝑥 ∈ ℋ ((𝑇 ∘ (projℎ‘ ℋ))‘𝑥) = (𝑇‘𝑥) ↔ (𝑇 ∘ (projℎ‘ ℋ)) = 𝑇) |
| 13 | 10, 12 | mpbi 230 | . 2 ⊢ (𝑇 ∘ (projℎ‘ ℋ)) = 𝑇 |
| 14 | 2, 13 | eqtri 2757 | 1 ⊢ (𝑇 ∘ Iop ) = 𝑇 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∘ ccom 5669 ⟶wf 6537 ‘cfv 6541 ℋchba 30867 projℎcpjh 30885 Iop chio 30892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-inf2 9663 ax-cc 10457 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 ax-addf 11216 ax-mulf 11217 ax-hilex 30947 ax-hfvadd 30948 ax-hvcom 30949 ax-hvass 30950 ax-hv0cl 30951 ax-hvaddid 30952 ax-hfvmul 30953 ax-hvmulid 30954 ax-hvmulass 30955 ax-hvdistr1 30956 ax-hvdistr2 30957 ax-hvmul0 30958 ax-hfi 31027 ax-his1 31030 ax-his2 31031 ax-his3 31032 ax-his4 31033 ax-hcompl 31150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-om 7870 df-1st 7996 df-2nd 7997 df-supp 8168 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-oadd 8492 df-omul 8493 df-er 8727 df-map 8850 df-pm 8851 df-ixp 8920 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-fsupp 9384 df-fi 9433 df-sup 9464 df-inf 9465 df-oi 9532 df-card 9961 df-acn 9964 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-q 12973 df-rp 13017 df-xneg 13136 df-xadd 13137 df-xmul 13138 df-ioo 13373 df-ico 13375 df-icc 13376 df-fz 13530 df-fzo 13677 df-fl 13814 df-seq 14025 df-exp 14085 df-hash 14353 df-cj 15121 df-re 15122 df-im 15123 df-sqrt 15257 df-abs 15258 df-clim 15507 df-rlim 15508 df-sum 15706 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17254 df-plusg 17287 df-mulr 17288 df-starv 17289 df-sca 17290 df-vsca 17291 df-ip 17292 df-tset 17293 df-ple 17294 df-ds 17296 df-unif 17297 df-hom 17298 df-cco 17299 df-rest 17439 df-topn 17440 df-0g 17458 df-gsum 17459 df-topgen 17460 df-pt 17461 df-prds 17464 df-xrs 17519 df-qtop 17524 df-imas 17525 df-xps 17527 df-mre 17601 df-mrc 17602 df-acs 17604 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-mulg 19056 df-cntz 19305 df-cmn 19769 df-psmet 21319 df-xmet 21320 df-met 21321 df-bl 21322 df-mopn 21323 df-fbas 21324 df-fg 21325 df-cnfld 21328 df-top 22849 df-topon 22866 df-topsp 22888 df-bases 22901 df-cld 22974 df-ntr 22975 df-cls 22976 df-nei 23053 df-cn 23182 df-cnp 23183 df-lm 23184 df-haus 23270 df-tx 23517 df-hmeo 23710 df-fil 23801 df-fm 23893 df-flim 23894 df-flf 23895 df-xms 24276 df-ms 24277 df-tms 24278 df-cfil 25226 df-cau 25227 df-cmet 25228 df-grpo 30441 df-gid 30442 df-ginv 30443 df-gdiv 30444 df-ablo 30493 df-vc 30507 df-nv 30540 df-va 30543 df-ba 30544 df-sm 30545 df-0v 30546 df-vs 30547 df-nmcv 30548 df-ims 30549 df-dip 30649 df-ssp 30670 df-ph 30761 df-cbn 30811 df-hnorm 30916 df-hba 30917 df-hvsub 30919 df-hlim 30920 df-hcau 30921 df-sh 31155 df-ch 31169 df-oc 31200 df-ch0 31201 df-shs 31256 df-pjh 31343 df-iop 31697 |
| This theorem is referenced by: opsqrlem6 32093 hmopidmch 32101 hmopidmpj 32102 pjclem1 32143 pjclem3 32145 pjci 32148 |
| Copyright terms: Public domain | W3C validator |