![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lcmf0val | Structured version Visualization version GIF version |
Description: The value, by convention, of the least common multiple for a set containing 0 is 0. (Contributed by AV, 21-Apr-2020.) (Proof shortened by AV, 16-Sep-2020.) |
Ref | Expression |
---|---|
lcmf0val | ⊢ ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → (lcm‘𝑍) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lcmf 15710 | . 2 ⊢ lcm = (𝑧 ∈ 𝒫 ℤ ↦ if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑧 𝑚 ∥ 𝑛}, ℝ, < ))) | |
2 | eleq2 2848 | . . . 4 ⊢ (𝑧 = 𝑍 → (0 ∈ 𝑧 ↔ 0 ∈ 𝑍)) | |
3 | raleq 3330 | . . . . . 6 ⊢ (𝑧 = 𝑍 → (∀𝑚 ∈ 𝑧 𝑚 ∥ 𝑛 ↔ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛)) | |
4 | 3 | rabbidv 3386 | . . . . 5 ⊢ (𝑧 = 𝑍 → {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑧 𝑚 ∥ 𝑛} = {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛}) |
5 | 4 | infeq1d 8671 | . . . 4 ⊢ (𝑧 = 𝑍 → inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑧 𝑚 ∥ 𝑛}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛}, ℝ, < )) |
6 | 2, 5 | ifbieq2d 4332 | . . 3 ⊢ (𝑧 = 𝑍 → if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑧 𝑚 ∥ 𝑛}, ℝ, < )) = if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛}, ℝ, < ))) |
7 | iftrue 4313 | . . . 4 ⊢ (0 ∈ 𝑍 → if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛}, ℝ, < )) = 0) | |
8 | 7 | adantl 475 | . . 3 ⊢ ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛}, ℝ, < )) = 0) |
9 | 6, 8 | sylan9eqr 2836 | . 2 ⊢ (((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) ∧ 𝑧 = 𝑍) → if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑧 𝑚 ∥ 𝑛}, ℝ, < )) = 0) |
10 | zex 11737 | . . . . . 6 ⊢ ℤ ∈ V | |
11 | 10 | ssex 5039 | . . . . 5 ⊢ (𝑍 ⊆ ℤ → 𝑍 ∈ V) |
12 | elpwg 4387 | . . . . 5 ⊢ (𝑍 ∈ V → (𝑍 ∈ 𝒫 ℤ ↔ 𝑍 ⊆ ℤ)) | |
13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝑍 ⊆ ℤ → (𝑍 ∈ 𝒫 ℤ ↔ 𝑍 ⊆ ℤ)) |
14 | 13 | ibir 260 | . . 3 ⊢ (𝑍 ⊆ ℤ → 𝑍 ∈ 𝒫 ℤ) |
15 | 14 | adantr 474 | . 2 ⊢ ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → 𝑍 ∈ 𝒫 ℤ) |
16 | simpr 479 | . 2 ⊢ ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → 0 ∈ 𝑍) | |
17 | 1, 9, 15, 16 | fvmptd2 6549 | 1 ⊢ ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → (lcm‘𝑍) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∀wral 3090 {crab 3094 Vcvv 3398 ⊆ wss 3792 ifcif 4307 𝒫 cpw 4379 class class class wbr 4886 ‘cfv 6135 infcinf 8635 ℝcr 10271 0cc0 10272 < clt 10411 ℕcn 11374 ℤcz 11728 ∥ cdvds 15387 lcmclcmf 15708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pr 5138 ax-cnex 10328 ax-resscn 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-iota 6099 df-fun 6137 df-fv 6143 df-ov 6925 df-sup 8636 df-inf 8637 df-neg 10609 df-z 11729 df-lcmf 15710 |
This theorem is referenced by: lcmfcl 15747 lcmfeq0b 15749 dvdslcmf 15750 lcmftp 15755 lcmfunsnlem2 15759 |
Copyright terms: Public domain | W3C validator |