![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lcmf0val | Structured version Visualization version GIF version |
Description: The value, by convention, of the least common multiple for a set containing 0 is 0. (Contributed by AV, 21-Apr-2020.) (Proof shortened by AV, 16-Sep-2020.) |
Ref | Expression |
---|---|
lcmf0val | ⊢ ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → (lcm‘𝑍) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lcmf 16535 | . 2 ⊢ lcm = (𝑧 ∈ 𝒫 ℤ ↦ if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑧 𝑚 ∥ 𝑛}, ℝ, < ))) | |
2 | eleq2 2821 | . . . 4 ⊢ (𝑧 = 𝑍 → (0 ∈ 𝑧 ↔ 0 ∈ 𝑍)) | |
3 | raleq 3321 | . . . . . 6 ⊢ (𝑧 = 𝑍 → (∀𝑚 ∈ 𝑧 𝑚 ∥ 𝑛 ↔ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛)) | |
4 | 3 | rabbidv 3439 | . . . . 5 ⊢ (𝑧 = 𝑍 → {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑧 𝑚 ∥ 𝑛} = {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛}) |
5 | 4 | infeq1d 9478 | . . . 4 ⊢ (𝑧 = 𝑍 → inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑧 𝑚 ∥ 𝑛}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛}, ℝ, < )) |
6 | 2, 5 | ifbieq2d 4554 | . . 3 ⊢ (𝑧 = 𝑍 → if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑧 𝑚 ∥ 𝑛}, ℝ, < )) = if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛}, ℝ, < ))) |
7 | iftrue 4534 | . . . 4 ⊢ (0 ∈ 𝑍 → if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛}, ℝ, < )) = 0) | |
8 | 7 | adantl 481 | . . 3 ⊢ ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛}, ℝ, < )) = 0) |
9 | 6, 8 | sylan9eqr 2793 | . 2 ⊢ (((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) ∧ 𝑧 = 𝑍) → if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑧 𝑚 ∥ 𝑛}, ℝ, < )) = 0) |
10 | zex 12574 | . . . . . 6 ⊢ ℤ ∈ V | |
11 | 10 | ssex 5321 | . . . . 5 ⊢ (𝑍 ⊆ ℤ → 𝑍 ∈ V) |
12 | elpwg 4605 | . . . . 5 ⊢ (𝑍 ∈ V → (𝑍 ∈ 𝒫 ℤ ↔ 𝑍 ⊆ ℤ)) | |
13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝑍 ⊆ ℤ → (𝑍 ∈ 𝒫 ℤ ↔ 𝑍 ⊆ ℤ)) |
14 | 13 | ibir 268 | . . 3 ⊢ (𝑍 ⊆ ℤ → 𝑍 ∈ 𝒫 ℤ) |
15 | 14 | adantr 480 | . 2 ⊢ ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → 𝑍 ∈ 𝒫 ℤ) |
16 | simpr 484 | . 2 ⊢ ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → 0 ∈ 𝑍) | |
17 | 1, 9, 15, 16 | fvmptd2 7006 | 1 ⊢ ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → (lcm‘𝑍) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∀wral 3060 {crab 3431 Vcvv 3473 ⊆ wss 3948 ifcif 4528 𝒫 cpw 4602 class class class wbr 5148 ‘cfv 6543 infcinf 9442 ℝcr 11115 0cc0 11116 < clt 11255 ℕcn 12219 ℤcz 12565 ∥ cdvds 16204 lcmclcmf 16533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-cnex 11172 ax-resscn 11173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7415 df-sup 9443 df-inf 9444 df-neg 11454 df-z 12566 df-lcmf 16535 |
This theorem is referenced by: lcmfcl 16572 lcmfeq0b 16574 dvdslcmf 16575 lcmftp 16580 lcmfunsnlem2 16584 |
Copyright terms: Public domain | W3C validator |