MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmf0val Structured version   Visualization version   GIF version

Theorem lcmf0val 15958
Description: The value, by convention, of the least common multiple for a set containing 0 is 0. (Contributed by AV, 21-Apr-2020.) (Proof shortened by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcmf0val ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → (lcm𝑍) = 0)

Proof of Theorem lcmf0val
Dummy variables 𝑚 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lcmf 15927 . 2 lcm = (𝑧 ∈ 𝒫 ℤ ↦ if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛}, ℝ, < )))
2 eleq2 2899 . . . 4 (𝑧 = 𝑍 → (0 ∈ 𝑧 ↔ 0 ∈ 𝑍))
3 raleq 3404 . . . . . 6 (𝑧 = 𝑍 → (∀𝑚𝑧 𝑚𝑛 ↔ ∀𝑚𝑍 𝑚𝑛))
43rabbidv 3479 . . . . 5 (𝑧 = 𝑍 → {𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛} = {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛})
54infeq1d 8933 . . . 4 (𝑧 = 𝑍 → inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < ))
62, 5ifbieq2d 4490 . . 3 (𝑧 = 𝑍 → if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛}, ℝ, < )) = if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < )))
7 iftrue 4471 . . . 4 (0 ∈ 𝑍 → if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < )) = 0)
87adantl 484 . . 3 ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < )) = 0)
96, 8sylan9eqr 2876 . 2 (((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) ∧ 𝑧 = 𝑍) → if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛}, ℝ, < )) = 0)
10 zex 11982 . . . . . 6 ℤ ∈ V
1110ssex 5216 . . . . 5 (𝑍 ⊆ ℤ → 𝑍 ∈ V)
12 elpwg 4543 . . . . 5 (𝑍 ∈ V → (𝑍 ∈ 𝒫 ℤ ↔ 𝑍 ⊆ ℤ))
1311, 12syl 17 . . . 4 (𝑍 ⊆ ℤ → (𝑍 ∈ 𝒫 ℤ ↔ 𝑍 ⊆ ℤ))
1413ibir 270 . . 3 (𝑍 ⊆ ℤ → 𝑍 ∈ 𝒫 ℤ)
1514adantr 483 . 2 ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → 𝑍 ∈ 𝒫 ℤ)
16 simpr 487 . 2 ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → 0 ∈ 𝑍)
171, 9, 15, 16fvmptd2 6769 1 ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → (lcm𝑍) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1530  wcel 2107  wral 3136  {crab 3140  Vcvv 3493  wss 3934  ifcif 4465  𝒫 cpw 4537   class class class wbr 5057  cfv 6348  infcinf 8897  cr 10528  0cc0 10529   < clt 10667  cn 11630  cz 11973  cdvds 15599  lcmclcmf 15925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pr 5320  ax-cnex 10585  ax-resscn 10586
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-iota 6307  df-fun 6350  df-fv 6356  df-ov 7151  df-sup 8898  df-inf 8899  df-neg 10865  df-z 11974  df-lcmf 15927
This theorem is referenced by:  lcmfcl  15964  lcmfeq0b  15966  dvdslcmf  15967  lcmftp  15972  lcmfunsnlem2  15976
  Copyright terms: Public domain W3C validator