MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmf0val Structured version   Visualization version   GIF version

Theorem lcmf0val 16551
Description: The value, by convention, of the least common multiple for a set containing 0 is 0. (Contributed by AV, 21-Apr-2020.) (Proof shortened by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcmf0val ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → (lcm𝑍) = 0)

Proof of Theorem lcmf0val
Dummy variables 𝑚 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lcmf 16520 . 2 lcm = (𝑧 ∈ 𝒫 ℤ ↦ if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛}, ℝ, < )))
2 eleq2 2817 . . . 4 (𝑧 = 𝑍 → (0 ∈ 𝑧 ↔ 0 ∈ 𝑍))
3 raleq 3287 . . . . . 6 (𝑧 = 𝑍 → (∀𝑚𝑧 𝑚𝑛 ↔ ∀𝑚𝑍 𝑚𝑛))
43rabbidv 3404 . . . . 5 (𝑧 = 𝑍 → {𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛} = {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛})
54infeq1d 9387 . . . 4 (𝑧 = 𝑍 → inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < ))
62, 5ifbieq2d 4505 . . 3 (𝑧 = 𝑍 → if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛}, ℝ, < )) = if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < )))
7 iftrue 4484 . . . 4 (0 ∈ 𝑍 → if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < )) = 0)
87adantl 481 . . 3 ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < )) = 0)
96, 8sylan9eqr 2786 . 2 (((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) ∧ 𝑧 = 𝑍) → if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛}, ℝ, < )) = 0)
10 zex 12498 . . . . . 6 ℤ ∈ V
1110ssex 5263 . . . . 5 (𝑍 ⊆ ℤ → 𝑍 ∈ V)
12 elpwg 4556 . . . . 5 (𝑍 ∈ V → (𝑍 ∈ 𝒫 ℤ ↔ 𝑍 ⊆ ℤ))
1311, 12syl 17 . . . 4 (𝑍 ⊆ ℤ → (𝑍 ∈ 𝒫 ℤ ↔ 𝑍 ⊆ ℤ))
1413ibir 268 . . 3 (𝑍 ⊆ ℤ → 𝑍 ∈ 𝒫 ℤ)
1514adantr 480 . 2 ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → 𝑍 ∈ 𝒫 ℤ)
16 simpr 484 . 2 ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → 0 ∈ 𝑍)
171, 9, 15, 16fvmptd2 6942 1 ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → (lcm𝑍) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3396  Vcvv 3438  wss 3905  ifcif 4478  𝒫 cpw 4553   class class class wbr 5095  cfv 6486  infcinf 9350  cr 11027  0cc0 11028   < clt 11168  cn 12146  cz 12489  cdvds 16181  lcmclcmf 16518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-cnex 11084  ax-resscn 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-sup 9351  df-inf 9352  df-neg 11368  df-z 12490  df-lcmf 16520
This theorem is referenced by:  lcmfcl  16557  lcmfeq0b  16559  dvdslcmf  16560  lcmftp  16565  lcmfunsnlem2  16569
  Copyright terms: Public domain W3C validator