MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmf0val Structured version   Visualization version   GIF version

Theorem lcmf0val 15741
Description: The value, by convention, of the least common multiple for a set containing 0 is 0. (Contributed by AV, 21-Apr-2020.) (Proof shortened by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcmf0val ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → (lcm𝑍) = 0)

Proof of Theorem lcmf0val
Dummy variables 𝑚 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lcmf 15710 . 2 lcm = (𝑧 ∈ 𝒫 ℤ ↦ if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛}, ℝ, < )))
2 eleq2 2848 . . . 4 (𝑧 = 𝑍 → (0 ∈ 𝑧 ↔ 0 ∈ 𝑍))
3 raleq 3330 . . . . . 6 (𝑧 = 𝑍 → (∀𝑚𝑧 𝑚𝑛 ↔ ∀𝑚𝑍 𝑚𝑛))
43rabbidv 3386 . . . . 5 (𝑧 = 𝑍 → {𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛} = {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛})
54infeq1d 8671 . . . 4 (𝑧 = 𝑍 → inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < ))
62, 5ifbieq2d 4332 . . 3 (𝑧 = 𝑍 → if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛}, ℝ, < )) = if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < )))
7 iftrue 4313 . . . 4 (0 ∈ 𝑍 → if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < )) = 0)
87adantl 475 . . 3 ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < )) = 0)
96, 8sylan9eqr 2836 . 2 (((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) ∧ 𝑧 = 𝑍) → if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛}, ℝ, < )) = 0)
10 zex 11737 . . . . . 6 ℤ ∈ V
1110ssex 5039 . . . . 5 (𝑍 ⊆ ℤ → 𝑍 ∈ V)
12 elpwg 4387 . . . . 5 (𝑍 ∈ V → (𝑍 ∈ 𝒫 ℤ ↔ 𝑍 ⊆ ℤ))
1311, 12syl 17 . . . 4 (𝑍 ⊆ ℤ → (𝑍 ∈ 𝒫 ℤ ↔ 𝑍 ⊆ ℤ))
1413ibir 260 . . 3 (𝑍 ⊆ ℤ → 𝑍 ∈ 𝒫 ℤ)
1514adantr 474 . 2 ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → 𝑍 ∈ 𝒫 ℤ)
16 simpr 479 . 2 ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → 0 ∈ 𝑍)
171, 9, 15, 16fvmptd2 6549 1 ((𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍) → (lcm𝑍) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  wral 3090  {crab 3094  Vcvv 3398  wss 3792  ifcif 4307  𝒫 cpw 4379   class class class wbr 4886  cfv 6135  infcinf 8635  cr 10271  0cc0 10272   < clt 10411  cn 11374  cz 11728  cdvds 15387  lcmclcmf 15708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pr 5138  ax-cnex 10328  ax-resscn 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-iota 6099  df-fun 6137  df-fv 6143  df-ov 6925  df-sup 8636  df-inf 8637  df-neg 10609  df-z 11729  df-lcmf 15710
This theorem is referenced by:  lcmfcl  15747  lcmfeq0b  15749  dvdslcmf  15750  lcmftp  15755  lcmfunsnlem2  15759
  Copyright terms: Public domain W3C validator