MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmfval Structured version   Visualization version   GIF version

Theorem lcmfval 16550
Description: Value of the lcm function. (lcm𝑍) is the least common multiple of the integers contained in the finite subset of integers 𝑍. If at least one of the elements of 𝑍 is 0, the result is defined conventionally as 0. (Contributed by AV, 21-Apr-2020.) (Revised by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcmfval ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm𝑍) = if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < )))
Distinct variable group:   𝑚,𝑍,𝑛

Proof of Theorem lcmfval
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-lcmf 16520 . 2 lcm = (𝑧 ∈ 𝒫 ℤ ↦ if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛}, ℝ, < )))
2 eleq2 2817 . . 3 (𝑧 = 𝑍 → (0 ∈ 𝑧 ↔ 0 ∈ 𝑍))
3 raleq 3287 . . . . 5 (𝑧 = 𝑍 → (∀𝑚𝑧 𝑚𝑛 ↔ ∀𝑚𝑍 𝑚𝑛))
43rabbidv 3404 . . . 4 (𝑧 = 𝑍 → {𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛} = {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛})
54infeq1d 9387 . . 3 (𝑧 = 𝑍 → inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < ))
62, 5ifbieq2d 4505 . 2 (𝑧 = 𝑍 → if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛}, ℝ, < )) = if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < )))
7 zex 12498 . . . . . 6 ℤ ∈ V
87ssex 5263 . . . . 5 (𝑍 ⊆ ℤ → 𝑍 ∈ V)
9 elpwg 4556 . . . . 5 (𝑍 ∈ V → (𝑍 ∈ 𝒫 ℤ ↔ 𝑍 ⊆ ℤ))
108, 9syl 17 . . . 4 (𝑍 ⊆ ℤ → (𝑍 ∈ 𝒫 ℤ ↔ 𝑍 ⊆ ℤ))
1110ibir 268 . . 3 (𝑍 ⊆ ℤ → 𝑍 ∈ 𝒫 ℤ)
1211adantr 480 . 2 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → 𝑍 ∈ 𝒫 ℤ)
13 0nn0 12417 . . . 4 0 ∈ ℕ0
1413a1i 11 . . 3 (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) → 0 ∈ ℕ0)
15 df-nel 3030 . . . 4 (0 ∉ 𝑍 ↔ ¬ 0 ∈ 𝑍)
16 ssrab2 4033 . . . . . 6 {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛} ⊆ ℕ
17 nnssnn0 12405 . . . . . 6 ℕ ⊆ ℕ0
1816, 17sstri 3947 . . . . 5 {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛} ⊆ ℕ0
19 nnuz 12796 . . . . . . 7 ℕ = (ℤ‘1)
2016, 19sseqtri 3986 . . . . . 6 {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛} ⊆ (ℤ‘1)
21 fissn0dvdsn0 16549 . . . . . . 7 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛} ≠ ∅)
22213expa 1118 . . . . . 6 (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∉ 𝑍) → {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛} ≠ ∅)
23 infssuzcl 12851 . . . . . 6 (({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛} ⊆ (ℤ‘1) ∧ {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛})
2420, 22, 23sylancr 587 . . . . 5 (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∉ 𝑍) → inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛})
2518, 24sselid 3935 . . . 4 (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∉ 𝑍) → inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < ) ∈ ℕ0)
2615, 25sylan2br 595 . . 3 (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ ¬ 0 ∈ 𝑍) → inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < ) ∈ ℕ0)
2714, 26ifclda 4514 . 2 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < )) ∈ ℕ0)
281, 6, 12, 27fvmptd3 6957 1 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm𝑍) = if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wnel 3029  wral 3044  {crab 3396  Vcvv 3438  wss 3905  c0 4286  ifcif 4478  𝒫 cpw 4553   class class class wbr 5095  cfv 6486  Fincfn 8879  infcinf 9350  cr 11027  0cc0 11028  1c1 11029   < clt 11168  cn 12146  0cn0 12402  cz 12489  cuz 12753  cdvds 16181  lcmclcmf 16518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-prod 15829  df-dvds 16182  df-lcmf 16520
This theorem is referenced by:  lcmfn0val  16552  lcmfpr  16556
  Copyright terms: Public domain W3C validator