![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lcmfval | Structured version Visualization version GIF version |
Description: Value of the lcm function. (lcm‘𝑍) is the least common multiple of the integers contained in the finite subset of integers 𝑍. If at least one of the elements of 𝑍 is 0, the result is defined conventionally as 0. (Contributed by AV, 21-Apr-2020.) (Revised by AV, 16-Sep-2020.) |
Ref | Expression |
---|---|
lcmfval | ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm‘𝑍) = if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛}, ℝ, < ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lcmf 16638 | . 2 ⊢ lcm = (𝑧 ∈ 𝒫 ℤ ↦ if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑧 𝑚 ∥ 𝑛}, ℝ, < ))) | |
2 | eleq2 2833 | . . 3 ⊢ (𝑧 = 𝑍 → (0 ∈ 𝑧 ↔ 0 ∈ 𝑍)) | |
3 | raleq 3331 | . . . . 5 ⊢ (𝑧 = 𝑍 → (∀𝑚 ∈ 𝑧 𝑚 ∥ 𝑛 ↔ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛)) | |
4 | 3 | rabbidv 3451 | . . . 4 ⊢ (𝑧 = 𝑍 → {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑧 𝑚 ∥ 𝑛} = {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛}) |
5 | 4 | infeq1d 9546 | . . 3 ⊢ (𝑧 = 𝑍 → inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑧 𝑚 ∥ 𝑛}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛}, ℝ, < )) |
6 | 2, 5 | ifbieq2d 4574 | . 2 ⊢ (𝑧 = 𝑍 → if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑧 𝑚 ∥ 𝑛}, ℝ, < )) = if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛}, ℝ, < ))) |
7 | zex 12648 | . . . . . 6 ⊢ ℤ ∈ V | |
8 | 7 | ssex 5339 | . . . . 5 ⊢ (𝑍 ⊆ ℤ → 𝑍 ∈ V) |
9 | elpwg 4625 | . . . . 5 ⊢ (𝑍 ∈ V → (𝑍 ∈ 𝒫 ℤ ↔ 𝑍 ⊆ ℤ)) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝑍 ⊆ ℤ → (𝑍 ∈ 𝒫 ℤ ↔ 𝑍 ⊆ ℤ)) |
11 | 10 | ibir 268 | . . 3 ⊢ (𝑍 ⊆ ℤ → 𝑍 ∈ 𝒫 ℤ) |
12 | 11 | adantr 480 | . 2 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → 𝑍 ∈ 𝒫 ℤ) |
13 | 0nn0 12568 | . . . 4 ⊢ 0 ∈ ℕ0 | |
14 | 13 | a1i 11 | . . 3 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) → 0 ∈ ℕ0) |
15 | df-nel 3053 | . . . 4 ⊢ (0 ∉ 𝑍 ↔ ¬ 0 ∈ 𝑍) | |
16 | ssrab2 4103 | . . . . . 6 ⊢ {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛} ⊆ ℕ | |
17 | nnssnn0 12556 | . . . . . 6 ⊢ ℕ ⊆ ℕ0 | |
18 | 16, 17 | sstri 4018 | . . . . 5 ⊢ {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛} ⊆ ℕ0 |
19 | nnuz 12946 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
20 | 16, 19 | sseqtri 4045 | . . . . . 6 ⊢ {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛} ⊆ (ℤ≥‘1) |
21 | fissn0dvdsn0 16667 | . . . . . . 7 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛} ≠ ∅) | |
22 | 21 | 3expa 1118 | . . . . . 6 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∉ 𝑍) → {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛} ≠ ∅) |
23 | infssuzcl 12997 | . . . . . 6 ⊢ (({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛} ⊆ (ℤ≥‘1) ∧ {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛}) | |
24 | 20, 22, 23 | sylancr 586 | . . . . 5 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∉ 𝑍) → inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛}) |
25 | 18, 24 | sselid 4006 | . . . 4 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∉ 𝑍) → inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛}, ℝ, < ) ∈ ℕ0) |
26 | 15, 25 | sylan2br 594 | . . 3 ⊢ (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ ¬ 0 ∈ 𝑍) → inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛}, ℝ, < ) ∈ ℕ0) |
27 | 14, 26 | ifclda 4583 | . 2 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛}, ℝ, < )) ∈ ℕ0) |
28 | 1, 6, 12, 27 | fvmptd3 7052 | 1 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm‘𝑍) = if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑛}, ℝ, < ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∉ wnel 3052 ∀wral 3067 {crab 3443 Vcvv 3488 ⊆ wss 3976 ∅c0 4352 ifcif 4548 𝒫 cpw 4622 class class class wbr 5166 ‘cfv 6573 Fincfn 9003 infcinf 9510 ℝcr 11183 0cc0 11184 1c1 11185 < clt 11324 ℕcn 12293 ℕ0cn0 12553 ℤcz 12639 ℤ≥cuz 12903 ∥ cdvds 16302 lcmclcmf 16636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-prod 15952 df-dvds 16303 df-lcmf 16638 |
This theorem is referenced by: lcmfn0val 16670 lcmfpr 16674 |
Copyright terms: Public domain | W3C validator |