MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmfval Structured version   Visualization version   GIF version

Theorem lcmfval 16545
Description: Value of the lcm function. (lcm𝑍) is the least common multiple of the integers contained in the finite subset of integers 𝑍. If at least one of the elements of 𝑍 is 0, the result is defined conventionally as 0. (Contributed by AV, 21-Apr-2020.) (Revised by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcmfval ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm𝑍) = if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < )))
Distinct variable group:   𝑚,𝑍,𝑛

Proof of Theorem lcmfval
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-lcmf 16515 . 2 lcm = (𝑧 ∈ 𝒫 ℤ ↦ if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛}, ℝ, < )))
2 eleq2 2823 . . 3 (𝑧 = 𝑍 → (0 ∈ 𝑧 ↔ 0 ∈ 𝑍))
3 raleq 3323 . . . . 5 (𝑧 = 𝑍 → (∀𝑚𝑧 𝑚𝑛 ↔ ∀𝑚𝑍 𝑚𝑛))
43rabbidv 3441 . . . 4 (𝑧 = 𝑍 → {𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛} = {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛})
54infeq1d 9459 . . 3 (𝑧 = 𝑍 → inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < ))
62, 5ifbieq2d 4550 . 2 (𝑧 = 𝑍 → if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛}, ℝ, < )) = if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < )))
7 zex 12554 . . . . . 6 ℤ ∈ V
87ssex 5317 . . . . 5 (𝑍 ⊆ ℤ → 𝑍 ∈ V)
9 elpwg 4601 . . . . 5 (𝑍 ∈ V → (𝑍 ∈ 𝒫 ℤ ↔ 𝑍 ⊆ ℤ))
108, 9syl 17 . . . 4 (𝑍 ⊆ ℤ → (𝑍 ∈ 𝒫 ℤ ↔ 𝑍 ⊆ ℤ))
1110ibir 268 . . 3 (𝑍 ⊆ ℤ → 𝑍 ∈ 𝒫 ℤ)
1211adantr 482 . 2 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → 𝑍 ∈ 𝒫 ℤ)
13 0nn0 12474 . . . 4 0 ∈ ℕ0
1413a1i 11 . . 3 (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∈ 𝑍) → 0 ∈ ℕ0)
15 df-nel 3048 . . . 4 (0 ∉ 𝑍 ↔ ¬ 0 ∈ 𝑍)
16 ssrab2 4075 . . . . . 6 {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛} ⊆ ℕ
17 nnssnn0 12462 . . . . . 6 ℕ ⊆ ℕ0
1816, 17sstri 3989 . . . . 5 {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛} ⊆ ℕ0
19 nnuz 12852 . . . . . . 7 ℕ = (ℤ‘1)
2016, 19sseqtri 4016 . . . . . 6 {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛} ⊆ (ℤ‘1)
21 fissn0dvdsn0 16544 . . . . . . 7 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛} ≠ ∅)
22213expa 1119 . . . . . 6 (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∉ 𝑍) → {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛} ≠ ∅)
23 infssuzcl 12903 . . . . . 6 (({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛} ⊆ (ℤ‘1) ∧ {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛})
2420, 22, 23sylancr 588 . . . . 5 (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∉ 𝑍) → inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛})
2518, 24sselid 3978 . . . 4 (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ 0 ∉ 𝑍) → inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < ) ∈ ℕ0)
2615, 25sylan2br 596 . . 3 (((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) ∧ ¬ 0 ∈ 𝑍) → inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < ) ∈ ℕ0)
2714, 26ifclda 4559 . 2 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < )) ∈ ℕ0)
281, 6, 12, 27fvmptd3 7010 1 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm𝑍) = if(0 ∈ 𝑍, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑍 𝑚𝑛}, ℝ, < )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2941  wnel 3047  wral 3062  {crab 3433  Vcvv 3475  wss 3946  c0 4320  ifcif 4524  𝒫 cpw 4598   class class class wbr 5144  cfv 6535  Fincfn 8927  infcinf 9423  cr 11096  0cc0 11097  1c1 11098   < clt 11235  cn 12199  0cn0 12459  cz 12545  cuz 12809  cdvds 16184  lcmclcmf 16513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-inf2 9623  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174  ax-pre-sup 11175
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-int 4947  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-isom 6544  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-om 7843  df-1st 7962  df-2nd 7963  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-1o 8453  df-er 8691  df-en 8928  df-dom 8929  df-sdom 8930  df-fin 8931  df-sup 9424  df-inf 9425  df-oi 9492  df-card 9921  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-div 11859  df-nn 12200  df-2 12262  df-3 12263  df-n0 12460  df-z 12546  df-uz 12810  df-rp 12962  df-fz 13472  df-fzo 13615  df-seq 13954  df-exp 14015  df-hash 14278  df-cj 15033  df-re 15034  df-im 15035  df-sqrt 15169  df-abs 15170  df-clim 15419  df-prod 15837  df-dvds 16185  df-lcmf 16515
This theorem is referenced by:  lcmfn0val  16547  lcmfpr  16551
  Copyright terms: Public domain W3C validator