MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lerelxr Structured version   Visualization version   GIF version

Theorem lerelxr 11353
Description: "Less than or equal to" is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
lerelxr ≤ ⊆ (ℝ* × ℝ*)

Proof of Theorem lerelxr
StepHypRef Expression
1 df-le 11330 . 2 ≤ = ((ℝ* × ℝ*) ∖ < )
2 difss 4159 . 2 ((ℝ* × ℝ*) ∖ < ) ⊆ (ℝ* × ℝ*)
31, 2eqsstri 4043 1 ≤ ⊆ (ℝ* × ℝ*)
Colors of variables: wff setvar class
Syntax hints:  cdif 3973  wss 3976   × cxp 5698  ccnv 5699  *cxr 11323   < clt 11324  cle 11325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-dif 3979  df-ss 3993  df-le 11330
This theorem is referenced by:  lerel  11354  dfle2  13209  dflt2  13210  ledm  18660  lern  18661  letsr  18663  xrsle  21423  znle  21574  leex  42241  i0oii  48599  io1ii  48600
  Copyright terms: Public domain W3C validator