![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lerelxr | Structured version Visualization version GIF version |
Description: "Less than or equal to" is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
lerelxr | ⊢ ≤ ⊆ (ℝ* × ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-le 11299 | . 2 ⊢ ≤ = ((ℝ* × ℝ*) ∖ ◡ < ) | |
2 | difss 4146 | . 2 ⊢ ((ℝ* × ℝ*) ∖ ◡ < ) ⊆ (ℝ* × ℝ*) | |
3 | 1, 2 | eqsstri 4030 | 1 ⊢ ≤ ⊆ (ℝ* × ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: ∖ cdif 3960 ⊆ wss 3963 × cxp 5687 ◡ccnv 5688 ℝ*cxr 11292 < clt 11293 ≤ cle 11294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-dif 3966 df-ss 3980 df-le 11299 |
This theorem is referenced by: lerel 11323 dfle2 13186 dflt2 13187 ledm 18648 lern 18649 letsr 18651 xrsle 21418 znle 21569 leex 42266 i0oii 48716 io1ii 48717 |
Copyright terms: Public domain | W3C validator |