MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lerelxr Structured version   Visualization version   GIF version

Theorem lerelxr 11172
Description: "Less than or equal to" is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
lerelxr ≤ ⊆ (ℝ* × ℝ*)

Proof of Theorem lerelxr
StepHypRef Expression
1 df-le 11149 . 2 ≤ = ((ℝ* × ℝ*) ∖ < )
2 difss 4086 . 2 ((ℝ* × ℝ*) ∖ < ) ⊆ (ℝ* × ℝ*)
31, 2eqsstri 3981 1 ≤ ⊆ (ℝ* × ℝ*)
Colors of variables: wff setvar class
Syntax hints:  cdif 3899  wss 3902   × cxp 5614  ccnv 5615  *cxr 11142   < clt 11143  cle 11144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-dif 3905  df-ss 3919  df-le 11149
This theorem is referenced by:  lerel  11173  dfle2  13043  dflt2  13044  xrsle  17505  ledm  18493  lern  18494  letsr  18496  znle  21471  leex  42278  i0oii  48950  io1ii  48951
  Copyright terms: Public domain W3C validator