MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lerelxr Structured version   Visualization version   GIF version

Theorem lerelxr 10969
Description: "Less than or equal to" is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
lerelxr ≤ ⊆ (ℝ* × ℝ*)

Proof of Theorem lerelxr
StepHypRef Expression
1 df-le 10946 . 2 ≤ = ((ℝ* × ℝ*) ∖ < )
2 difss 4062 . 2 ((ℝ* × ℝ*) ∖ < ) ⊆ (ℝ* × ℝ*)
31, 2eqsstri 3951 1 ≤ ⊆ (ℝ* × ℝ*)
Colors of variables: wff setvar class
Syntax hints:  cdif 3880  wss 3883   × cxp 5578  ccnv 5579  *cxr 10939   < clt 10940  cle 10941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900  df-le 10946
This theorem is referenced by:  lerel  10970  dfle2  12810  dflt2  12811  ledm  18223  lern  18224  letsr  18226  xrsle  20530  znle  20652  i0oii  46101  io1ii  46102
  Copyright terms: Public domain W3C validator