| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lerelxr | Structured version Visualization version GIF version | ||
| Description: "Less than or equal to" is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| lerelxr | ⊢ ≤ ⊆ (ℝ* × ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-le 11221 | . 2 ⊢ ≤ = ((ℝ* × ℝ*) ∖ ◡ < ) | |
| 2 | difss 4102 | . 2 ⊢ ((ℝ* × ℝ*) ∖ ◡ < ) ⊆ (ℝ* × ℝ*) | |
| 3 | 1, 2 | eqsstri 3996 | 1 ⊢ ≤ ⊆ (ℝ* × ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: ∖ cdif 3914 ⊆ wss 3917 × cxp 5639 ◡ccnv 5640 ℝ*cxr 11214 < clt 11215 ≤ cle 11216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3920 df-ss 3934 df-le 11221 |
| This theorem is referenced by: lerel 11245 dfle2 13114 dflt2 13115 ledm 18556 lern 18557 letsr 18559 xrsle 21306 znle 21453 leex 42241 i0oii 48912 io1ii 48913 |
| Copyright terms: Public domain | W3C validator |