MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lerelxr Structured version   Visualization version   GIF version

Theorem lerelxr 11281
Description: "Less than or equal to" is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
lerelxr ≤ ⊆ (ℝ* × ℝ*)

Proof of Theorem lerelxr
StepHypRef Expression
1 df-le 11258 . 2 ≤ = ((ℝ* × ℝ*) ∖ < )
2 difss 4130 . 2 ((ℝ* × ℝ*) ∖ < ) ⊆ (ℝ* × ℝ*)
31, 2eqsstri 4015 1 ≤ ⊆ (ℝ* × ℝ*)
Colors of variables: wff setvar class
Syntax hints:  cdif 3944  wss 3947   × cxp 5673  ccnv 5674  *cxr 11251   < clt 11252  cle 11253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-v 3474  df-dif 3950  df-in 3954  df-ss 3964  df-le 11258
This theorem is referenced by:  lerel  11282  dfle2  13130  dflt2  13131  ledm  18547  lern  18548  letsr  18550  xrsle  21165  znle  21307  i0oii  47639  io1ii  47640
  Copyright terms: Public domain W3C validator