| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lerelxr | Structured version Visualization version GIF version | ||
| Description: "Less than or equal to" is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| lerelxr | ⊢ ≤ ⊆ (ℝ* × ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-le 11159 | . 2 ⊢ ≤ = ((ℝ* × ℝ*) ∖ ◡ < ) | |
| 2 | difss 4085 | . 2 ⊢ ((ℝ* × ℝ*) ∖ ◡ < ) ⊆ (ℝ* × ℝ*) | |
| 3 | 1, 2 | eqsstri 3977 | 1 ⊢ ≤ ⊆ (ℝ* × ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: ∖ cdif 3895 ⊆ wss 3898 × cxp 5617 ◡ccnv 5618 ℝ*cxr 11152 < clt 11153 ≤ cle 11154 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-dif 3901 df-ss 3915 df-le 11159 |
| This theorem is referenced by: lerel 11183 dfle2 13048 dflt2 13049 xrsle 17510 ledm 18498 lern 18499 letsr 18501 znle 21475 leex 42364 i0oii 49044 io1ii 49045 |
| Copyright terms: Public domain | W3C validator |