| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lerelxr | Structured version Visualization version GIF version | ||
| Description: "Less than or equal to" is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| lerelxr | ⊢ ≤ ⊆ (ℝ* × ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-le 11149 | . 2 ⊢ ≤ = ((ℝ* × ℝ*) ∖ ◡ < ) | |
| 2 | difss 4086 | . 2 ⊢ ((ℝ* × ℝ*) ∖ ◡ < ) ⊆ (ℝ* × ℝ*) | |
| 3 | 1, 2 | eqsstri 3981 | 1 ⊢ ≤ ⊆ (ℝ* × ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: ∖ cdif 3899 ⊆ wss 3902 × cxp 5614 ◡ccnv 5615 ℝ*cxr 11142 < clt 11143 ≤ cle 11144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3905 df-ss 3919 df-le 11149 |
| This theorem is referenced by: lerel 11173 dfle2 13043 dflt2 13044 xrsle 17505 ledm 18493 lern 18494 letsr 18496 znle 21471 leex 42278 i0oii 48950 io1ii 48951 |
| Copyright terms: Public domain | W3C validator |