![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lerelxr | Structured version Visualization version GIF version |
Description: "Less than or equal to" is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
lerelxr | ⊢ ≤ ⊆ (ℝ* × ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-le 11292 | . 2 ⊢ ≤ = ((ℝ* × ℝ*) ∖ ◡ < ) | |
2 | difss 4132 | . 2 ⊢ ((ℝ* × ℝ*) ∖ ◡ < ) ⊆ (ℝ* × ℝ*) | |
3 | 1, 2 | eqsstri 4016 | 1 ⊢ ≤ ⊆ (ℝ* × ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: ∖ cdif 3946 ⊆ wss 3949 × cxp 5680 ◡ccnv 5681 ℝ*cxr 11285 < clt 11286 ≤ cle 11287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3475 df-dif 3952 df-in 3956 df-ss 3966 df-le 11292 |
This theorem is referenced by: lerel 11316 dfle2 13166 dflt2 13167 ledm 18589 lern 18590 letsr 18592 xrsle 21322 znle 21473 i0oii 48016 io1ii 48017 |
Copyright terms: Public domain | W3C validator |