Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lerelxr | Structured version Visualization version GIF version |
Description: "Less than or equal to" is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
lerelxr | ⊢ ≤ ⊆ (ℝ* × ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-le 11015 | . 2 ⊢ ≤ = ((ℝ* × ℝ*) ∖ ◡ < ) | |
2 | difss 4066 | . 2 ⊢ ((ℝ* × ℝ*) ∖ ◡ < ) ⊆ (ℝ* × ℝ*) | |
3 | 1, 2 | eqsstri 3955 | 1 ⊢ ≤ ⊆ (ℝ* × ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: ∖ cdif 3884 ⊆ wss 3887 × cxp 5587 ◡ccnv 5588 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-le 11015 |
This theorem is referenced by: lerel 11039 dfle2 12881 dflt2 12882 ledm 18308 lern 18309 letsr 18311 xrsle 20618 znle 20740 i0oii 46213 io1ii 46214 |
Copyright terms: Public domain | W3C validator |