MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lerelxr Structured version   Visualization version   GIF version

Theorem lerelxr 11237
Description: "Less than or equal to" is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
lerelxr ≤ ⊆ (ℝ* × ℝ*)

Proof of Theorem lerelxr
StepHypRef Expression
1 df-le 11214 . 2 ≤ = ((ℝ* × ℝ*) ∖ < )
2 difss 4099 . 2 ((ℝ* × ℝ*) ∖ < ) ⊆ (ℝ* × ℝ*)
31, 2eqsstri 3993 1 ≤ ⊆ (ℝ* × ℝ*)
Colors of variables: wff setvar class
Syntax hints:  cdif 3911  wss 3914   × cxp 5636  ccnv 5637  *cxr 11207   < clt 11208  cle 11209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-dif 3917  df-ss 3931  df-le 11214
This theorem is referenced by:  lerel  11238  dfle2  13107  dflt2  13108  ledm  18549  lern  18550  letsr  18552  xrsle  21299  znle  21446  leex  42234  i0oii  48908  io1ii  48909
  Copyright terms: Public domain W3C validator