| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lerelxr | Structured version Visualization version GIF version | ||
| Description: "Less than or equal to" is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| lerelxr | ⊢ ≤ ⊆ (ℝ* × ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-le 11280 | . 2 ⊢ ≤ = ((ℝ* × ℝ*) ∖ ◡ < ) | |
| 2 | difss 4116 | . 2 ⊢ ((ℝ* × ℝ*) ∖ ◡ < ) ⊆ (ℝ* × ℝ*) | |
| 3 | 1, 2 | eqsstri 4010 | 1 ⊢ ≤ ⊆ (ℝ* × ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: ∖ cdif 3928 ⊆ wss 3931 × cxp 5657 ◡ccnv 5658 ℝ*cxr 11273 < clt 11274 ≤ cle 11275 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-dif 3934 df-ss 3948 df-le 11280 |
| This theorem is referenced by: lerel 11304 dfle2 13168 dflt2 13169 ledm 18605 lern 18606 letsr 18608 xrsle 21355 znle 21502 leex 42264 i0oii 48861 io1ii 48862 |
| Copyright terms: Public domain | W3C validator |