Proof of Theorem leiso
Step | Hyp | Ref
| Expression |
1 | | df-le 10761 |
. . . . . . 7
⊢ ≤ =
((ℝ* × ℝ*) ∖ ◡ < ) |
2 | 1 | ineq1i 4099 |
. . . . . 6
⊢ ( ≤
∩ (𝐴 × 𝐴)) = (((ℝ*
× ℝ*) ∖ ◡
< ) ∩ (𝐴 ×
𝐴)) |
3 | | indif1 4162 |
. . . . . 6
⊢
(((ℝ* × ℝ*) ∖ ◡ < ) ∩ (𝐴 × 𝐴)) = (((ℝ* ×
ℝ*) ∩ (𝐴 × 𝐴)) ∖ ◡ < ) |
4 | 2, 3 | eqtri 2761 |
. . . . 5
⊢ ( ≤
∩ (𝐴 × 𝐴)) = (((ℝ*
× ℝ*) ∩ (𝐴 × 𝐴)) ∖ ◡ < ) |
5 | | xpss12 5540 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℝ*
∧ 𝐴 ⊆
ℝ*) → (𝐴 × 𝐴) ⊆ (ℝ* ×
ℝ*)) |
6 | 5 | anidms 570 |
. . . . . . 7
⊢ (𝐴 ⊆ ℝ*
→ (𝐴 × 𝐴) ⊆ (ℝ*
× ℝ*)) |
7 | | sseqin2 4106 |
. . . . . . 7
⊢ ((𝐴 × 𝐴) ⊆ (ℝ* ×
ℝ*) ↔ ((ℝ* × ℝ*)
∩ (𝐴 × 𝐴)) = (𝐴 × 𝐴)) |
8 | 6, 7 | sylib 221 |
. . . . . 6
⊢ (𝐴 ⊆ ℝ*
→ ((ℝ* × ℝ*) ∩ (𝐴 × 𝐴)) = (𝐴 × 𝐴)) |
9 | 8 | difeq1d 4012 |
. . . . 5
⊢ (𝐴 ⊆ ℝ*
→ (((ℝ* × ℝ*) ∩ (𝐴 × 𝐴)) ∖ ◡ < ) = ((𝐴 × 𝐴) ∖ ◡ < )) |
10 | 4, 9 | eqtr2id 2786 |
. . . 4
⊢ (𝐴 ⊆ ℝ*
→ ((𝐴 × 𝐴) ∖ ◡ < ) = ( ≤ ∩ (𝐴 × 𝐴))) |
11 | | isoeq2 7086 |
. . . 4
⊢ (((𝐴 × 𝐴) ∖ ◡ < ) = ( ≤ ∩ (𝐴 × 𝐴)) → (𝐹 Isom ((𝐴 × 𝐴) ∖ ◡ < ), ((𝐵 × 𝐵) ∖ ◡ < )(𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ((𝐵 × 𝐵) ∖ ◡ < )(𝐴, 𝐵))) |
12 | 10, 11 | syl 17 |
. . 3
⊢ (𝐴 ⊆ ℝ*
→ (𝐹 Isom ((𝐴 × 𝐴) ∖ ◡ < ), ((𝐵 × 𝐵) ∖ ◡ < )(𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ((𝐵 × 𝐵) ∖ ◡ < )(𝐴, 𝐵))) |
13 | 1 | ineq1i 4099 |
. . . . . 6
⊢ ( ≤
∩ (𝐵 × 𝐵)) = (((ℝ*
× ℝ*) ∖ ◡
< ) ∩ (𝐵 ×
𝐵)) |
14 | | indif1 4162 |
. . . . . 6
⊢
(((ℝ* × ℝ*) ∖ ◡ < ) ∩ (𝐵 × 𝐵)) = (((ℝ* ×
ℝ*) ∩ (𝐵 × 𝐵)) ∖ ◡ < ) |
15 | 13, 14 | eqtri 2761 |
. . . . 5
⊢ ( ≤
∩ (𝐵 × 𝐵)) = (((ℝ*
× ℝ*) ∩ (𝐵 × 𝐵)) ∖ ◡ < ) |
16 | | xpss12 5540 |
. . . . . . . 8
⊢ ((𝐵 ⊆ ℝ*
∧ 𝐵 ⊆
ℝ*) → (𝐵 × 𝐵) ⊆ (ℝ* ×
ℝ*)) |
17 | 16 | anidms 570 |
. . . . . . 7
⊢ (𝐵 ⊆ ℝ*
→ (𝐵 × 𝐵) ⊆ (ℝ*
× ℝ*)) |
18 | | sseqin2 4106 |
. . . . . . 7
⊢ ((𝐵 × 𝐵) ⊆ (ℝ* ×
ℝ*) ↔ ((ℝ* × ℝ*)
∩ (𝐵 × 𝐵)) = (𝐵 × 𝐵)) |
19 | 17, 18 | sylib 221 |
. . . . . 6
⊢ (𝐵 ⊆ ℝ*
→ ((ℝ* × ℝ*) ∩ (𝐵 × 𝐵)) = (𝐵 × 𝐵)) |
20 | 19 | difeq1d 4012 |
. . . . 5
⊢ (𝐵 ⊆ ℝ*
→ (((ℝ* × ℝ*) ∩ (𝐵 × 𝐵)) ∖ ◡ < ) = ((𝐵 × 𝐵) ∖ ◡ < )) |
21 | 15, 20 | eqtr2id 2786 |
. . . 4
⊢ (𝐵 ⊆ ℝ*
→ ((𝐵 × 𝐵) ∖ ◡ < ) = ( ≤ ∩ (𝐵 × 𝐵))) |
22 | | isoeq3 7087 |
. . . 4
⊢ (((𝐵 × 𝐵) ∖ ◡ < ) = ( ≤ ∩ (𝐵 × 𝐵)) → (𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ((𝐵 × 𝐵) ∖ ◡ < )(𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ( ≤ ∩ (𝐵 × 𝐵))(𝐴, 𝐵))) |
23 | 21, 22 | syl 17 |
. . 3
⊢ (𝐵 ⊆ ℝ*
→ (𝐹 Isom ( ≤ ∩
(𝐴 × 𝐴)), ((𝐵 × 𝐵) ∖ ◡ < )(𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ( ≤ ∩ (𝐵 × 𝐵))(𝐴, 𝐵))) |
24 | 12, 23 | sylan9bb 513 |
. 2
⊢ ((𝐴 ⊆ ℝ*
∧ 𝐵 ⊆
ℝ*) → (𝐹 Isom ((𝐴 × 𝐴) ∖ ◡ < ), ((𝐵 × 𝐵) ∖ ◡ < )(𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ( ≤ ∩ (𝐵 × 𝐵))(𝐴, 𝐵))) |
25 | | isocnv2 7099 |
. . 3
⊢ (𝐹 Isom < , < (𝐴, 𝐵) ↔ 𝐹 Isom ◡ < , ◡ < (𝐴, 𝐵)) |
26 | | eqid 2738 |
. . . 4
⊢ ((𝐴 × 𝐴) ∖ ◡ < ) = ((𝐴 × 𝐴) ∖ ◡ < ) |
27 | | eqid 2738 |
. . . 4
⊢ ((𝐵 × 𝐵) ∖ ◡ < ) = ((𝐵 × 𝐵) ∖ ◡ < ) |
28 | 26, 27 | isocnv3 7100 |
. . 3
⊢ (𝐹 Isom ◡ < , ◡ < (𝐴, 𝐵) ↔ 𝐹 Isom ((𝐴 × 𝐴) ∖ ◡ < ), ((𝐵 × 𝐵) ∖ ◡ < )(𝐴, 𝐵)) |
29 | 25, 28 | bitri 278 |
. 2
⊢ (𝐹 Isom < , < (𝐴, 𝐵) ↔ 𝐹 Isom ((𝐴 × 𝐴) ∖ ◡ < ), ((𝐵 × 𝐵) ∖ ◡ < )(𝐴, 𝐵)) |
30 | | isores1 7102 |
. . 3
⊢ (𝐹 Isom ≤ , ≤ (𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ≤ (𝐴, 𝐵)) |
31 | | isores2 7101 |
. . 3
⊢ (𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ≤ (𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ( ≤ ∩ (𝐵 × 𝐵))(𝐴, 𝐵)) |
32 | 30, 31 | bitri 278 |
. 2
⊢ (𝐹 Isom ≤ , ≤ (𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ( ≤ ∩ (𝐵 × 𝐵))(𝐴, 𝐵)) |
33 | 24, 29, 32 | 3bitr4g 317 |
1
⊢ ((𝐴 ⊆ ℝ*
∧ 𝐵 ⊆
ℝ*) → (𝐹 Isom < , < (𝐴, 𝐵) ↔ 𝐹 Isom ≤ , ≤ (𝐴, 𝐵))) |