Proof of Theorem leiso
| Step | Hyp | Ref
| Expression |
| 1 | | df-le 11301 |
. . . . . . 7
⊢ ≤ =
((ℝ* × ℝ*) ∖ ◡ < ) |
| 2 | 1 | ineq1i 4216 |
. . . . . 6
⊢ ( ≤
∩ (𝐴 × 𝐴)) = (((ℝ*
× ℝ*) ∖ ◡
< ) ∩ (𝐴 ×
𝐴)) |
| 3 | | indif1 4282 |
. . . . . 6
⊢
(((ℝ* × ℝ*) ∖ ◡ < ) ∩ (𝐴 × 𝐴)) = (((ℝ* ×
ℝ*) ∩ (𝐴 × 𝐴)) ∖ ◡ < ) |
| 4 | 2, 3 | eqtri 2765 |
. . . . 5
⊢ ( ≤
∩ (𝐴 × 𝐴)) = (((ℝ*
× ℝ*) ∩ (𝐴 × 𝐴)) ∖ ◡ < ) |
| 5 | | xpss12 5700 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℝ*
∧ 𝐴 ⊆
ℝ*) → (𝐴 × 𝐴) ⊆ (ℝ* ×
ℝ*)) |
| 6 | 5 | anidms 566 |
. . . . . . 7
⊢ (𝐴 ⊆ ℝ*
→ (𝐴 × 𝐴) ⊆ (ℝ*
× ℝ*)) |
| 7 | | sseqin2 4223 |
. . . . . . 7
⊢ ((𝐴 × 𝐴) ⊆ (ℝ* ×
ℝ*) ↔ ((ℝ* × ℝ*)
∩ (𝐴 × 𝐴)) = (𝐴 × 𝐴)) |
| 8 | 6, 7 | sylib 218 |
. . . . . 6
⊢ (𝐴 ⊆ ℝ*
→ ((ℝ* × ℝ*) ∩ (𝐴 × 𝐴)) = (𝐴 × 𝐴)) |
| 9 | 8 | difeq1d 4125 |
. . . . 5
⊢ (𝐴 ⊆ ℝ*
→ (((ℝ* × ℝ*) ∩ (𝐴 × 𝐴)) ∖ ◡ < ) = ((𝐴 × 𝐴) ∖ ◡ < )) |
| 10 | 4, 9 | eqtr2id 2790 |
. . . 4
⊢ (𝐴 ⊆ ℝ*
→ ((𝐴 × 𝐴) ∖ ◡ < ) = ( ≤ ∩ (𝐴 × 𝐴))) |
| 11 | | isoeq2 7338 |
. . . 4
⊢ (((𝐴 × 𝐴) ∖ ◡ < ) = ( ≤ ∩ (𝐴 × 𝐴)) → (𝐹 Isom ((𝐴 × 𝐴) ∖ ◡ < ), ((𝐵 × 𝐵) ∖ ◡ < )(𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ((𝐵 × 𝐵) ∖ ◡ < )(𝐴, 𝐵))) |
| 12 | 10, 11 | syl 17 |
. . 3
⊢ (𝐴 ⊆ ℝ*
→ (𝐹 Isom ((𝐴 × 𝐴) ∖ ◡ < ), ((𝐵 × 𝐵) ∖ ◡ < )(𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ((𝐵 × 𝐵) ∖ ◡ < )(𝐴, 𝐵))) |
| 13 | 1 | ineq1i 4216 |
. . . . . 6
⊢ ( ≤
∩ (𝐵 × 𝐵)) = (((ℝ*
× ℝ*) ∖ ◡
< ) ∩ (𝐵 ×
𝐵)) |
| 14 | | indif1 4282 |
. . . . . 6
⊢
(((ℝ* × ℝ*) ∖ ◡ < ) ∩ (𝐵 × 𝐵)) = (((ℝ* ×
ℝ*) ∩ (𝐵 × 𝐵)) ∖ ◡ < ) |
| 15 | 13, 14 | eqtri 2765 |
. . . . 5
⊢ ( ≤
∩ (𝐵 × 𝐵)) = (((ℝ*
× ℝ*) ∩ (𝐵 × 𝐵)) ∖ ◡ < ) |
| 16 | | xpss12 5700 |
. . . . . . . 8
⊢ ((𝐵 ⊆ ℝ*
∧ 𝐵 ⊆
ℝ*) → (𝐵 × 𝐵) ⊆ (ℝ* ×
ℝ*)) |
| 17 | 16 | anidms 566 |
. . . . . . 7
⊢ (𝐵 ⊆ ℝ*
→ (𝐵 × 𝐵) ⊆ (ℝ*
× ℝ*)) |
| 18 | | sseqin2 4223 |
. . . . . . 7
⊢ ((𝐵 × 𝐵) ⊆ (ℝ* ×
ℝ*) ↔ ((ℝ* × ℝ*)
∩ (𝐵 × 𝐵)) = (𝐵 × 𝐵)) |
| 19 | 17, 18 | sylib 218 |
. . . . . 6
⊢ (𝐵 ⊆ ℝ*
→ ((ℝ* × ℝ*) ∩ (𝐵 × 𝐵)) = (𝐵 × 𝐵)) |
| 20 | 19 | difeq1d 4125 |
. . . . 5
⊢ (𝐵 ⊆ ℝ*
→ (((ℝ* × ℝ*) ∩ (𝐵 × 𝐵)) ∖ ◡ < ) = ((𝐵 × 𝐵) ∖ ◡ < )) |
| 21 | 15, 20 | eqtr2id 2790 |
. . . 4
⊢ (𝐵 ⊆ ℝ*
→ ((𝐵 × 𝐵) ∖ ◡ < ) = ( ≤ ∩ (𝐵 × 𝐵))) |
| 22 | | isoeq3 7339 |
. . . 4
⊢ (((𝐵 × 𝐵) ∖ ◡ < ) = ( ≤ ∩ (𝐵 × 𝐵)) → (𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ((𝐵 × 𝐵) ∖ ◡ < )(𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ( ≤ ∩ (𝐵 × 𝐵))(𝐴, 𝐵))) |
| 23 | 21, 22 | syl 17 |
. . 3
⊢ (𝐵 ⊆ ℝ*
→ (𝐹 Isom ( ≤ ∩
(𝐴 × 𝐴)), ((𝐵 × 𝐵) ∖ ◡ < )(𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ( ≤ ∩ (𝐵 × 𝐵))(𝐴, 𝐵))) |
| 24 | 12, 23 | sylan9bb 509 |
. 2
⊢ ((𝐴 ⊆ ℝ*
∧ 𝐵 ⊆
ℝ*) → (𝐹 Isom ((𝐴 × 𝐴) ∖ ◡ < ), ((𝐵 × 𝐵) ∖ ◡ < )(𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ( ≤ ∩ (𝐵 × 𝐵))(𝐴, 𝐵))) |
| 25 | | isocnv2 7351 |
. . 3
⊢ (𝐹 Isom < , < (𝐴, 𝐵) ↔ 𝐹 Isom ◡ < , ◡ < (𝐴, 𝐵)) |
| 26 | | eqid 2737 |
. . . 4
⊢ ((𝐴 × 𝐴) ∖ ◡ < ) = ((𝐴 × 𝐴) ∖ ◡ < ) |
| 27 | | eqid 2737 |
. . . 4
⊢ ((𝐵 × 𝐵) ∖ ◡ < ) = ((𝐵 × 𝐵) ∖ ◡ < ) |
| 28 | 26, 27 | isocnv3 7352 |
. . 3
⊢ (𝐹 Isom ◡ < , ◡ < (𝐴, 𝐵) ↔ 𝐹 Isom ((𝐴 × 𝐴) ∖ ◡ < ), ((𝐵 × 𝐵) ∖ ◡ < )(𝐴, 𝐵)) |
| 29 | 25, 28 | bitri 275 |
. 2
⊢ (𝐹 Isom < , < (𝐴, 𝐵) ↔ 𝐹 Isom ((𝐴 × 𝐴) ∖ ◡ < ), ((𝐵 × 𝐵) ∖ ◡ < )(𝐴, 𝐵)) |
| 30 | | isores1 7354 |
. . 3
⊢ (𝐹 Isom ≤ , ≤ (𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ≤ (𝐴, 𝐵)) |
| 31 | | isores2 7353 |
. . 3
⊢ (𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ≤ (𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ( ≤ ∩ (𝐵 × 𝐵))(𝐴, 𝐵)) |
| 32 | 30, 31 | bitri 275 |
. 2
⊢ (𝐹 Isom ≤ , ≤ (𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ( ≤ ∩ (𝐵 × 𝐵))(𝐴, 𝐵)) |
| 33 | 24, 29, 32 | 3bitr4g 314 |
1
⊢ ((𝐴 ⊆ ℝ*
∧ 𝐵 ⊆
ℝ*) → (𝐹 Isom < , < (𝐴, 𝐵) ↔ 𝐹 Isom ≤ , ≤ (𝐴, 𝐵))) |