MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrlenlt Structured version   Visualization version   GIF version

Theorem xrlenlt 11300
Description: "Less than or equal to" expressed in terms of "less than", for extended reals. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
xrlenlt ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))

Proof of Theorem xrlenlt
StepHypRef Expression
1 df-br 5120 . . 3 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≤ )
2 opelxpi 5691 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ⟨𝐴, 𝐵⟩ ∈ (ℝ* × ℝ*))
3 df-le 11275 . . . . . . 7 ≤ = ((ℝ* × ℝ*) ∖ < )
43eleq2i 2826 . . . . . 6 (⟨𝐴, 𝐵⟩ ∈ ≤ ↔ ⟨𝐴, 𝐵⟩ ∈ ((ℝ* × ℝ*) ∖ < ))
5 eldif 3936 . . . . . 6 (⟨𝐴, 𝐵⟩ ∈ ((ℝ* × ℝ*) ∖ < ) ↔ (⟨𝐴, 𝐵⟩ ∈ (ℝ* × ℝ*) ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ < ))
64, 5bitri 275 . . . . 5 (⟨𝐴, 𝐵⟩ ∈ ≤ ↔ (⟨𝐴, 𝐵⟩ ∈ (ℝ* × ℝ*) ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ < ))
76baib 535 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (ℝ* × ℝ*) → (⟨𝐴, 𝐵⟩ ∈ ≤ ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ < ))
82, 7syl 17 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (⟨𝐴, 𝐵⟩ ∈ ≤ ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ < ))
91, 8bitrid 283 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ < ))
10 df-br 5120 . . . 4 (𝐵 < 𝐴 ↔ ⟨𝐵, 𝐴⟩ ∈ < )
11 opelcnvg 5860 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (⟨𝐴, 𝐵⟩ ∈ < ↔ ⟨𝐵, 𝐴⟩ ∈ < ))
1210, 11bitr4id 290 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 < 𝐴 ↔ ⟨𝐴, 𝐵⟩ ∈ < ))
1312notbid 318 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ 𝐵 < 𝐴 ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ < ))
149, 13bitr4d 282 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2108  cdif 3923  cop 4607   class class class wbr 5119   × cxp 5652  ccnv 5653  *cxr 11268   < clt 11269  cle 11270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-cnv 5662  df-le 11275
This theorem is referenced by:  xrlenltd  11301  xrltnle  11302  lenlt  11313  pnfge  13146  mnfle  13151  xrleloe  13160  xrltlen  13162  xrletri3  13170  xgepnf  13181  xlemnf  13183  xralrple  13221  xleneg  13234  supxr2  13330  supxrbnd1  13337  supxrbnd2  13338  supxrleub  13342  supxrbnd  13344  xrsupssd  13349  infxrgelb  13352  ioon0  13388  iccid  13407  icc0  13410  icoun  13492  ioounsn  13494  snunico  13496  ioodisj  13499  ioojoin  13500  hashgt0elex  14419  hashgt12el  14440  hashgt12el2  14441  0ringnnzr  20485  lecldbas  23157  xmetgt0  24297  icopnfcld  24706  ioombl  25518  vitalilem4  25564  itg2gt0  25713  nmlnogt0  30778  xrlelttric  32729  xrge0infss  32737  joiniooico  32751  xeqlelt  32753  iocinif  32758  esumsnf  34095  esum2d  34124  oms0  34329  omssubadd  34332  cusgracyclt3v  35178  relowlpssretop  37382  mblfinlem3  37683  mblfinlem4  37684  ismblfin  37685  asindmre  37727  dvrelog2b  42079  iocmbl  43237  supxrgere  45360  iccdifprioo  45545  iccpartnel  47452  iccdisj2  48871
  Copyright terms: Public domain W3C validator