![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrlenlt | Structured version Visualization version GIF version |
Description: "Less than or equal to" expressed in terms of "less than", for extended reals. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
xrlenlt | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5148 | . . 3 ⊢ (𝐴 ≤ 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≤ ) | |
2 | opelxpi 5712 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ⟨𝐴, 𝐵⟩ ∈ (ℝ* × ℝ*)) | |
3 | df-le 11250 | . . . . . . 7 ⊢ ≤ = ((ℝ* × ℝ*) ∖ ◡ < ) | |
4 | 3 | eleq2i 2825 | . . . . . 6 ⊢ (⟨𝐴, 𝐵⟩ ∈ ≤ ↔ ⟨𝐴, 𝐵⟩ ∈ ((ℝ* × ℝ*) ∖ ◡ < )) |
5 | eldif 3957 | . . . . . 6 ⊢ (⟨𝐴, 𝐵⟩ ∈ ((ℝ* × ℝ*) ∖ ◡ < ) ↔ (⟨𝐴, 𝐵⟩ ∈ (ℝ* × ℝ*) ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ ◡ < )) | |
6 | 4, 5 | bitri 274 | . . . . 5 ⊢ (⟨𝐴, 𝐵⟩ ∈ ≤ ↔ (⟨𝐴, 𝐵⟩ ∈ (ℝ* × ℝ*) ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ ◡ < )) |
7 | 6 | baib 536 | . . . 4 ⊢ (⟨𝐴, 𝐵⟩ ∈ (ℝ* × ℝ*) → (⟨𝐴, 𝐵⟩ ∈ ≤ ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ ◡ < )) |
8 | 2, 7 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (⟨𝐴, 𝐵⟩ ∈ ≤ ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ ◡ < )) |
9 | 1, 8 | bitrid 282 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ ◡ < )) |
10 | df-br 5148 | . . . 4 ⊢ (𝐵 < 𝐴 ↔ ⟨𝐵, 𝐴⟩ ∈ < ) | |
11 | opelcnvg 5878 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (⟨𝐴, 𝐵⟩ ∈ ◡ < ↔ ⟨𝐵, 𝐴⟩ ∈ < )) | |
12 | 10, 11 | bitr4id 289 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 < 𝐴 ↔ ⟨𝐴, 𝐵⟩ ∈ ◡ < )) |
13 | 12 | notbid 317 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (¬ 𝐵 < 𝐴 ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ ◡ < )) |
14 | 9, 13 | bitr4d 281 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∖ cdif 3944 ⟨cop 4633 class class class wbr 5147 × cxp 5673 ◡ccnv 5674 ℝ*cxr 11243 < clt 11244 ≤ cle 11245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-cnv 5683 df-le 11250 |
This theorem is referenced by: xrlenltd 11276 xrltnle 11277 lenlt 11288 pnfge 13106 mnfle 13110 xrleloe 13119 xrltlen 13121 xrletri3 13129 xgepnf 13140 xlemnf 13142 xralrple 13180 xleneg 13193 supxr2 13289 supxrbnd1 13296 supxrbnd2 13297 supxrleub 13301 supxrbnd 13303 infxrgelb 13310 ioon0 13346 iccid 13365 icc0 13368 icoun 13448 ioounsn 13450 snunico 13452 ioodisj 13455 ioojoin 13456 hashgt0elex 14357 hashgt12el 14378 hashgt12el2 14379 0ringnnzr 20294 lecldbas 22714 xmetgt0 23855 icopnfcld 24275 ioombl 25073 vitalilem4 25119 itg2gt0 25269 nmlnogt0 30037 xrlelttric 31952 xrsupssd 31959 xrge0infss 31960 joiniooico 31972 xeqlelt 31974 iocinif 31979 esumsnf 33050 esum2d 33079 oms0 33284 omssubadd 33287 cusgracyclt3v 34135 relowlpssretop 36233 mblfinlem3 36515 mblfinlem4 36516 ismblfin 36517 asindmre 36559 dvrelog2b 40919 iocmbl 41947 supxrgere 44029 iccdifprioo 44215 iccpartnel 46092 iccdisj2 47483 |
Copyright terms: Public domain | W3C validator |