MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrlenlt Structured version   Visualization version   GIF version

Theorem xrlenlt 11275
Description: "Less than or equal to" expressed in terms of "less than", for extended reals. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
xrlenlt ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))

Proof of Theorem xrlenlt
StepHypRef Expression
1 df-br 5148 . . 3 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≤ )
2 opelxpi 5712 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ⟨𝐴, 𝐵⟩ ∈ (ℝ* × ℝ*))
3 df-le 11250 . . . . . . 7 ≤ = ((ℝ* × ℝ*) ∖ < )
43eleq2i 2826 . . . . . 6 (⟨𝐴, 𝐵⟩ ∈ ≤ ↔ ⟨𝐴, 𝐵⟩ ∈ ((ℝ* × ℝ*) ∖ < ))
5 eldif 3957 . . . . . 6 (⟨𝐴, 𝐵⟩ ∈ ((ℝ* × ℝ*) ∖ < ) ↔ (⟨𝐴, 𝐵⟩ ∈ (ℝ* × ℝ*) ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ < ))
64, 5bitri 275 . . . . 5 (⟨𝐴, 𝐵⟩ ∈ ≤ ↔ (⟨𝐴, 𝐵⟩ ∈ (ℝ* × ℝ*) ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ < ))
76baib 537 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (ℝ* × ℝ*) → (⟨𝐴, 𝐵⟩ ∈ ≤ ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ < ))
82, 7syl 17 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (⟨𝐴, 𝐵⟩ ∈ ≤ ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ < ))
91, 8bitrid 283 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ < ))
10 df-br 5148 . . . 4 (𝐵 < 𝐴 ↔ ⟨𝐵, 𝐴⟩ ∈ < )
11 opelcnvg 5878 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (⟨𝐴, 𝐵⟩ ∈ < ↔ ⟨𝐵, 𝐴⟩ ∈ < ))
1210, 11bitr4id 290 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 < 𝐴 ↔ ⟨𝐴, 𝐵⟩ ∈ < ))
1312notbid 318 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ 𝐵 < 𝐴 ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ < ))
149, 13bitr4d 282 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wcel 2107  cdif 3944  cop 4633   class class class wbr 5147   × cxp 5673  ccnv 5674  *cxr 11243   < clt 11244  cle 11245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-xp 5681  df-cnv 5683  df-le 11250
This theorem is referenced by:  xrlenltd  11276  xrltnle  11277  lenlt  11288  pnfge  13106  mnfle  13110  xrleloe  13119  xrltlen  13121  xrletri3  13129  xgepnf  13140  xlemnf  13142  xralrple  13180  xleneg  13193  supxr2  13289  supxrbnd1  13296  supxrbnd2  13297  supxrleub  13301  supxrbnd  13303  infxrgelb  13310  ioon0  13346  iccid  13365  icc0  13368  icoun  13448  ioounsn  13450  snunico  13452  ioodisj  13455  ioojoin  13456  hashgt0elex  14357  hashgt12el  14378  hashgt12el2  14379  0ringnnzr  20291  lecldbas  22705  xmetgt0  23846  icopnfcld  24266  ioombl  25064  vitalilem4  25110  itg2gt0  25260  nmlnogt0  30028  xrlelttric  31943  xrsupssd  31950  xrge0infss  31951  joiniooico  31963  xeqlelt  31965  iocinif  31970  esumsnf  33000  esum2d  33029  oms0  33234  omssubadd  33237  cusgracyclt3v  34085  relowlpssretop  36183  mblfinlem3  36465  mblfinlem4  36466  ismblfin  36467  asindmre  36509  dvrelog2b  40869  iocmbl  41895  supxrgere  43978  iccdifprioo  44164  iccpartnel  46041  iccdisj2  47432
  Copyright terms: Public domain W3C validator