MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrlenlt Structured version   Visualization version   GIF version

Theorem xrlenlt 10705
Description: "Less than or equal to" expressed in terms of "less than", for extended reals. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
xrlenlt ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))

Proof of Theorem xrlenlt
StepHypRef Expression
1 df-br 5066 . . 3 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≤ )
2 opelxpi 5591 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ⟨𝐴, 𝐵⟩ ∈ (ℝ* × ℝ*))
3 df-le 10680 . . . . . . 7 ≤ = ((ℝ* × ℝ*) ∖ < )
43eleq2i 2904 . . . . . 6 (⟨𝐴, 𝐵⟩ ∈ ≤ ↔ ⟨𝐴, 𝐵⟩ ∈ ((ℝ* × ℝ*) ∖ < ))
5 eldif 3945 . . . . . 6 (⟨𝐴, 𝐵⟩ ∈ ((ℝ* × ℝ*) ∖ < ) ↔ (⟨𝐴, 𝐵⟩ ∈ (ℝ* × ℝ*) ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ < ))
64, 5bitri 277 . . . . 5 (⟨𝐴, 𝐵⟩ ∈ ≤ ↔ (⟨𝐴, 𝐵⟩ ∈ (ℝ* × ℝ*) ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ < ))
76baib 538 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (ℝ* × ℝ*) → (⟨𝐴, 𝐵⟩ ∈ ≤ ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ < ))
82, 7syl 17 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (⟨𝐴, 𝐵⟩ ∈ ≤ ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ < ))
91, 8syl5bb 285 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ < ))
10 opelcnvg 5750 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (⟨𝐴, 𝐵⟩ ∈ < ↔ ⟨𝐵, 𝐴⟩ ∈ < ))
11 df-br 5066 . . . 4 (𝐵 < 𝐴 ↔ ⟨𝐵, 𝐴⟩ ∈ < )
1210, 11syl6rbbr 292 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 < 𝐴 ↔ ⟨𝐴, 𝐵⟩ ∈ < ))
1312notbid 320 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ 𝐵 < 𝐴 ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ < ))
149, 13bitr4d 284 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wcel 2110  cdif 3932  cop 4572   class class class wbr 5065   × cxp 5552  ccnv 5553  *cxr 10673   < clt 10674  cle 10675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pr 5329
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4567  df-pr 4569  df-op 4573  df-br 5066  df-opab 5128  df-xp 5560  df-cnv 5562  df-le 10680
This theorem is referenced by:  xrlenltd  10706  xrltnle  10707  lenlt  10718  pnfge  12524  mnfle  12528  xrleloe  12536  xrltlen  12538  xrletri3  12546  xgepnf  12557  xlemnf  12559  xralrple  12597  xleneg  12610  supxr2  12706  supxrbnd1  12713  supxrbnd2  12714  supxrleub  12718  supxrbnd  12720  infxrgelb  12727  ioon0  12763  iccid  12782  icc0  12785  icoun  12860  ioounsn  12862  snunico  12864  ioodisj  12867  ioojoin  12868  hashgt0elex  13761  hashgt12el  13782  hashgt12el2  13783  0ringnnzr  20041  lecldbas  21826  xmetgt0  22967  icopnfcld  23375  ioombl  24165  vitalilem4  24211  itg2gt0  24360  nmlnogt0  28573  xrlelttric  30475  xrsupssd  30482  xrge0infss  30483  joiniooico  30496  xeqlelt  30498  iocinif  30503  esumsnf  31323  esum2d  31352  oms0  31555  omssubadd  31558  cusgracyclt3v  32403  relowlpssretop  34644  mblfinlem3  34930  mblfinlem4  34931  ismblfin  34932  asindmre  34976  iocmbl  39817  supxrgere  41599  iccdifprioo  41790  iccpartnel  43597
  Copyright terms: Public domain W3C validator