![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrlenlt | Structured version Visualization version GIF version |
Description: "Less than or equal to" expressed in terms of "less than", for extended reals. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
xrlenlt | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 4874 | . . 3 ⊢ (𝐴 ≤ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≤ ) | |
2 | opelxpi 5379 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 〈𝐴, 𝐵〉 ∈ (ℝ* × ℝ*)) | |
3 | df-le 10397 | . . . . . . 7 ⊢ ≤ = ((ℝ* × ℝ*) ∖ ◡ < ) | |
4 | 3 | eleq2i 2898 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 ∈ ≤ ↔ 〈𝐴, 𝐵〉 ∈ ((ℝ* × ℝ*) ∖ ◡ < )) |
5 | eldif 3808 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 ∈ ((ℝ* × ℝ*) ∖ ◡ < ) ↔ (〈𝐴, 𝐵〉 ∈ (ℝ* × ℝ*) ∧ ¬ 〈𝐴, 𝐵〉 ∈ ◡ < )) | |
6 | 4, 5 | bitri 267 | . . . . 5 ⊢ (〈𝐴, 𝐵〉 ∈ ≤ ↔ (〈𝐴, 𝐵〉 ∈ (ℝ* × ℝ*) ∧ ¬ 〈𝐴, 𝐵〉 ∈ ◡ < )) |
7 | 6 | baib 531 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ (ℝ* × ℝ*) → (〈𝐴, 𝐵〉 ∈ ≤ ↔ ¬ 〈𝐴, 𝐵〉 ∈ ◡ < )) |
8 | 2, 7 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (〈𝐴, 𝐵〉 ∈ ≤ ↔ ¬ 〈𝐴, 𝐵〉 ∈ ◡ < )) |
9 | 1, 8 | syl5bb 275 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 〈𝐴, 𝐵〉 ∈ ◡ < )) |
10 | opelcnvg 5535 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (〈𝐴, 𝐵〉 ∈ ◡ < ↔ 〈𝐵, 𝐴〉 ∈ < )) | |
11 | df-br 4874 | . . . 4 ⊢ (𝐵 < 𝐴 ↔ 〈𝐵, 𝐴〉 ∈ < ) | |
12 | 10, 11 | syl6rbbr 282 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 < 𝐴 ↔ 〈𝐴, 𝐵〉 ∈ ◡ < )) |
13 | 12 | notbid 310 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (¬ 𝐵 < 𝐴 ↔ ¬ 〈𝐴, 𝐵〉 ∈ ◡ < )) |
14 | 9, 13 | bitr4d 274 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 ∈ wcel 2164 ∖ cdif 3795 〈cop 4403 class class class wbr 4873 × cxp 5340 ◡ccnv 5341 ℝ*cxr 10390 < clt 10391 ≤ cle 10392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pr 5127 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-br 4874 df-opab 4936 df-xp 5348 df-cnv 5350 df-le 10397 |
This theorem is referenced by: xrlenltd 10423 xrltnle 10424 xrnltled 10425 lenlt 10435 pnfge 12250 mnfle 12255 xrleloe 12263 xrltlen 12265 xrletri3 12273 xgepnf 12284 xlemnf 12286 xralrple 12324 xleneg 12337 supxr2 12432 supxrbnd1 12439 supxrbnd2 12440 supxrub 12442 supxrleub 12444 supxrbnd 12446 infxrgelb 12453 ixxub 12484 ioon0 12489 iccid 12508 icc0 12511 icoun 12587 icodisj 12588 ioounsn 12589 ioounsnOLD 12590 snunico 12592 ioodisj 12595 ioojoin 12596 supicclub2 12616 hashgt0elex 13478 hashgt12el 13499 hashgt12el2 13500 0ringnnzr 19630 lecldbas 21394 xmetgt0 22533 bldisj 22573 icopnfcld 22941 icombl 23730 ioombl 23731 ioorcl2 23738 vitalilem4 23777 itg2gt0 23926 ply1divmo 24294 ig1peu 24330 radcnvle 24573 psercnlem1 24578 nmlnogt0 28196 xrlelttric 30053 xrsupssd 30060 xrge0infss 30061 joiniooico 30072 xeqlelt 30074 iocinif 30079 esumsnf 30660 esum2d 30689 oms0 30893 omssubadd 30896 relowlpssretop 33750 mblfinlem3 33985 mblfinlem4 33986 ismblfin 33987 asindmre 34031 iocmbl 38633 supxrgere 40339 iccdifprioo 40531 iccpartnel 42255 |
Copyright terms: Public domain | W3C validator |