![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrlenlt | Structured version Visualization version GIF version |
Description: "Less than or equal to" expressed in terms of "less than", for extended reals. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
xrlenlt | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5142 | . . 3 ⊢ (𝐴 ≤ 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ≤ ) | |
2 | opelxpi 5706 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ⟨𝐴, 𝐵⟩ ∈ (ℝ* × ℝ*)) | |
3 | df-le 11255 | . . . . . . 7 ⊢ ≤ = ((ℝ* × ℝ*) ∖ ◡ < ) | |
4 | 3 | eleq2i 2819 | . . . . . 6 ⊢ (⟨𝐴, 𝐵⟩ ∈ ≤ ↔ ⟨𝐴, 𝐵⟩ ∈ ((ℝ* × ℝ*) ∖ ◡ < )) |
5 | eldif 3953 | . . . . . 6 ⊢ (⟨𝐴, 𝐵⟩ ∈ ((ℝ* × ℝ*) ∖ ◡ < ) ↔ (⟨𝐴, 𝐵⟩ ∈ (ℝ* × ℝ*) ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ ◡ < )) | |
6 | 4, 5 | bitri 275 | . . . . 5 ⊢ (⟨𝐴, 𝐵⟩ ∈ ≤ ↔ (⟨𝐴, 𝐵⟩ ∈ (ℝ* × ℝ*) ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ ◡ < )) |
7 | 6 | baib 535 | . . . 4 ⊢ (⟨𝐴, 𝐵⟩ ∈ (ℝ* × ℝ*) → (⟨𝐴, 𝐵⟩ ∈ ≤ ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ ◡ < )) |
8 | 2, 7 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (⟨𝐴, 𝐵⟩ ∈ ≤ ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ ◡ < )) |
9 | 1, 8 | bitrid 283 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ ◡ < )) |
10 | df-br 5142 | . . . 4 ⊢ (𝐵 < 𝐴 ↔ ⟨𝐵, 𝐴⟩ ∈ < ) | |
11 | opelcnvg 5873 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (⟨𝐴, 𝐵⟩ ∈ ◡ < ↔ ⟨𝐵, 𝐴⟩ ∈ < )) | |
12 | 10, 11 | bitr4id 290 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 < 𝐴 ↔ ⟨𝐴, 𝐵⟩ ∈ ◡ < )) |
13 | 12 | notbid 318 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (¬ 𝐵 < 𝐴 ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ ◡ < )) |
14 | 9, 13 | bitr4d 282 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2098 ∖ cdif 3940 ⟨cop 4629 class class class wbr 5141 × cxp 5667 ◡ccnv 5668 ℝ*cxr 11248 < clt 11249 ≤ cle 11250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-xp 5675 df-cnv 5677 df-le 11255 |
This theorem is referenced by: xrlenltd 11281 xrltnle 11282 lenlt 11293 pnfge 13113 mnfle 13117 xrleloe 13126 xrltlen 13128 xrletri3 13136 xgepnf 13147 xlemnf 13149 xralrple 13187 xleneg 13200 supxr2 13296 supxrbnd1 13303 supxrbnd2 13304 supxrleub 13308 supxrbnd 13310 infxrgelb 13317 ioon0 13353 iccid 13372 icc0 13375 icoun 13455 ioounsn 13457 snunico 13459 ioodisj 13462 ioojoin 13463 hashgt0elex 14363 hashgt12el 14384 hashgt12el2 14385 0ringnnzr 20422 lecldbas 23073 xmetgt0 24214 icopnfcld 24634 ioombl 25444 vitalilem4 25490 itg2gt0 25640 nmlnogt0 30554 xrlelttric 32469 xrsupssd 32476 xrge0infss 32477 joiniooico 32489 xeqlelt 32491 iocinif 32496 esumsnf 33591 esum2d 33620 oms0 33825 omssubadd 33828 cusgracyclt3v 34674 relowlpssretop 36751 mblfinlem3 37039 mblfinlem4 37040 ismblfin 37041 asindmre 37083 dvrelog2b 41446 iocmbl 42520 supxrgere 44597 iccdifprioo 44783 iccpartnel 46660 iccdisj2 47786 |
Copyright terms: Public domain | W3C validator |