| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrlenlt | Structured version Visualization version GIF version | ||
| Description: "Less than or equal to" expressed in terms of "less than", for extended reals. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| xrlenlt | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5096 | . . 3 ⊢ (𝐴 ≤ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ≤ ) | |
| 2 | opelxpi 5660 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 〈𝐴, 𝐵〉 ∈ (ℝ* × ℝ*)) | |
| 3 | df-le 11174 | . . . . . . 7 ⊢ ≤ = ((ℝ* × ℝ*) ∖ ◡ < ) | |
| 4 | 3 | eleq2i 2820 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 ∈ ≤ ↔ 〈𝐴, 𝐵〉 ∈ ((ℝ* × ℝ*) ∖ ◡ < )) |
| 5 | eldif 3915 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 ∈ ((ℝ* × ℝ*) ∖ ◡ < ) ↔ (〈𝐴, 𝐵〉 ∈ (ℝ* × ℝ*) ∧ ¬ 〈𝐴, 𝐵〉 ∈ ◡ < )) | |
| 6 | 4, 5 | bitri 275 | . . . . 5 ⊢ (〈𝐴, 𝐵〉 ∈ ≤ ↔ (〈𝐴, 𝐵〉 ∈ (ℝ* × ℝ*) ∧ ¬ 〈𝐴, 𝐵〉 ∈ ◡ < )) |
| 7 | 6 | baib 535 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ (ℝ* × ℝ*) → (〈𝐴, 𝐵〉 ∈ ≤ ↔ ¬ 〈𝐴, 𝐵〉 ∈ ◡ < )) |
| 8 | 2, 7 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (〈𝐴, 𝐵〉 ∈ ≤ ↔ ¬ 〈𝐴, 𝐵〉 ∈ ◡ < )) |
| 9 | 1, 8 | bitrid 283 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 〈𝐴, 𝐵〉 ∈ ◡ < )) |
| 10 | df-br 5096 | . . . 4 ⊢ (𝐵 < 𝐴 ↔ 〈𝐵, 𝐴〉 ∈ < ) | |
| 11 | opelcnvg 5827 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (〈𝐴, 𝐵〉 ∈ ◡ < ↔ 〈𝐵, 𝐴〉 ∈ < )) | |
| 12 | 10, 11 | bitr4id 290 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 < 𝐴 ↔ 〈𝐴, 𝐵〉 ∈ ◡ < )) |
| 13 | 12 | notbid 318 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (¬ 𝐵 < 𝐴 ↔ ¬ 〈𝐴, 𝐵〉 ∈ ◡ < )) |
| 14 | 9, 13 | bitr4d 282 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∖ cdif 3902 〈cop 4585 class class class wbr 5095 × cxp 5621 ◡ccnv 5622 ℝ*cxr 11167 < clt 11168 ≤ cle 11169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-cnv 5631 df-le 11174 |
| This theorem is referenced by: xrlenltd 11200 xrltnle 11201 lenlt 11212 pnfge 13050 mnfle 13055 xrleloe 13064 xrltlen 13066 xrletri3 13074 xgepnf 13085 xlemnf 13087 xralrple 13125 xleneg 13138 supxr2 13234 supxrbnd1 13241 supxrbnd2 13242 supxrleub 13246 supxrbnd 13248 xrsupssd 13253 infxrgelb 13256 ioon0 13292 iccid 13311 icc0 13314 icoun 13396 ioounsn 13398 snunico 13400 ioodisj 13403 ioojoin 13404 hashgt0elex 14326 hashgt12el 14347 hashgt12el2 14348 0ringnnzr 20428 lecldbas 23122 xmetgt0 24262 icopnfcld 24671 ioombl 25482 vitalilem4 25528 itg2gt0 25677 nmlnogt0 30759 xrlelttric 32708 xrge0infss 32716 joiniooico 32730 xeqlelt 32732 iocinif 32737 esumsnf 34033 esum2d 34062 oms0 34267 omssubadd 34270 cusgracyclt3v 35131 relowlpssretop 37340 mblfinlem3 37641 mblfinlem4 37642 ismblfin 37643 asindmre 37685 dvrelog2b 42042 iocmbl 43189 supxrgere 45316 iccdifprioo 45501 iccpartnel 47426 iccdisj2 48885 |
| Copyright terms: Public domain | W3C validator |