Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gtiso Structured version   Visualization version   GIF version

Theorem gtiso 30015
Description: Two ways to write a strictly decreasing function on the reals. (Contributed by Thierry Arnoux, 6-Apr-2017.)
Assertion
Ref Expression
gtiso ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → (𝐹 Isom < , < (𝐴, 𝐵) ↔ 𝐹 Isom ≤ , ≤ (𝐴, 𝐵)))

Proof of Theorem gtiso
StepHypRef Expression
1 eqid 2825 . . . . 5 ((𝐴 × 𝐴) ∖ < ) = ((𝐴 × 𝐴) ∖ < )
2 eqid 2825 . . . . 5 ((𝐵 × 𝐵) ∖ < ) = ((𝐵 × 𝐵) ∖ < )
31, 2isocnv3 6837 . . . 4 (𝐹 Isom < , < (𝐴, 𝐵) ↔ 𝐹 Isom ((𝐴 × 𝐴) ∖ < ), ((𝐵 × 𝐵) ∖ < )(𝐴, 𝐵))
43a1i 11 . . 3 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → (𝐹 Isom < , < (𝐴, 𝐵) ↔ 𝐹 Isom ((𝐴 × 𝐴) ∖ < ), ((𝐵 × 𝐵) ∖ < )(𝐴, 𝐵)))
5 df-le 10397 . . . . . . . . . 10 ≤ = ((ℝ* × ℝ*) ∖ < )
65cnveqi 5529 . . . . . . . . 9 ≤ = ((ℝ* × ℝ*) ∖ < )
7 cnvdif 5780 . . . . . . . . 9 ((ℝ* × ℝ*) ∖ < ) = ((ℝ* × ℝ*) ∖ < )
8 cnvxp 5792 . . . . . . . . . 10 (ℝ* × ℝ*) = (ℝ* × ℝ*)
9 ltrel 10419 . . . . . . . . . . 11 Rel <
10 dfrel2 5824 . . . . . . . . . . 11 (Rel < ↔ < = < )
119, 10mpbi 222 . . . . . . . . . 10 < = <
128, 11difeq12i 3953 . . . . . . . . 9 ((ℝ* × ℝ*) ∖ < ) = ((ℝ* × ℝ*) ∖ < )
136, 7, 123eqtri 2853 . . . . . . . 8 ≤ = ((ℝ* × ℝ*) ∖ < )
1413ineq1i 4037 . . . . . . 7 ( ≤ ∩ (𝐴 × 𝐴)) = (((ℝ* × ℝ*) ∖ < ) ∩ (𝐴 × 𝐴))
15 indif1 4101 . . . . . . 7 (((ℝ* × ℝ*) ∖ < ) ∩ (𝐴 × 𝐴)) = (((ℝ* × ℝ*) ∩ (𝐴 × 𝐴)) ∖ < )
1614, 15eqtri 2849 . . . . . 6 ( ≤ ∩ (𝐴 × 𝐴)) = (((ℝ* × ℝ*) ∩ (𝐴 × 𝐴)) ∖ < )
17 xpss12 5357 . . . . . . . . 9 ((𝐴 ⊆ ℝ*𝐴 ⊆ ℝ*) → (𝐴 × 𝐴) ⊆ (ℝ* × ℝ*))
1817anidms 562 . . . . . . . 8 (𝐴 ⊆ ℝ* → (𝐴 × 𝐴) ⊆ (ℝ* × ℝ*))
19 sseqin2 4044 . . . . . . . 8 ((𝐴 × 𝐴) ⊆ (ℝ* × ℝ*) ↔ ((ℝ* × ℝ*) ∩ (𝐴 × 𝐴)) = (𝐴 × 𝐴))
2018, 19sylib 210 . . . . . . 7 (𝐴 ⊆ ℝ* → ((ℝ* × ℝ*) ∩ (𝐴 × 𝐴)) = (𝐴 × 𝐴))
2120difeq1d 3954 . . . . . 6 (𝐴 ⊆ ℝ* → (((ℝ* × ℝ*) ∩ (𝐴 × 𝐴)) ∖ < ) = ((𝐴 × 𝐴) ∖ < ))
2216, 21syl5req 2874 . . . . 5 (𝐴 ⊆ ℝ* → ((𝐴 × 𝐴) ∖ < ) = ( ≤ ∩ (𝐴 × 𝐴)))
2322adantr 474 . . . 4 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → ((𝐴 × 𝐴) ∖ < ) = ( ≤ ∩ (𝐴 × 𝐴)))
24 isoeq2 6823 . . . 4 (((𝐴 × 𝐴) ∖ < ) = ( ≤ ∩ (𝐴 × 𝐴)) → (𝐹 Isom ((𝐴 × 𝐴) ∖ < ), ((𝐵 × 𝐵) ∖ < )(𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ((𝐵 × 𝐵) ∖ < )(𝐴, 𝐵)))
2523, 24syl 17 . . 3 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → (𝐹 Isom ((𝐴 × 𝐴) ∖ < ), ((𝐵 × 𝐵) ∖ < )(𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ((𝐵 × 𝐵) ∖ < )(𝐴, 𝐵)))
265ineq1i 4037 . . . . . . 7 ( ≤ ∩ (𝐵 × 𝐵)) = (((ℝ* × ℝ*) ∖ < ) ∩ (𝐵 × 𝐵))
27 indif1 4101 . . . . . . 7 (((ℝ* × ℝ*) ∖ < ) ∩ (𝐵 × 𝐵)) = (((ℝ* × ℝ*) ∩ (𝐵 × 𝐵)) ∖ < )
2826, 27eqtri 2849 . . . . . 6 ( ≤ ∩ (𝐵 × 𝐵)) = (((ℝ* × ℝ*) ∩ (𝐵 × 𝐵)) ∖ < )
29 xpss12 5357 . . . . . . . . 9 ((𝐵 ⊆ ℝ*𝐵 ⊆ ℝ*) → (𝐵 × 𝐵) ⊆ (ℝ* × ℝ*))
3029anidms 562 . . . . . . . 8 (𝐵 ⊆ ℝ* → (𝐵 × 𝐵) ⊆ (ℝ* × ℝ*))
31 sseqin2 4044 . . . . . . . 8 ((𝐵 × 𝐵) ⊆ (ℝ* × ℝ*) ↔ ((ℝ* × ℝ*) ∩ (𝐵 × 𝐵)) = (𝐵 × 𝐵))
3230, 31sylib 210 . . . . . . 7 (𝐵 ⊆ ℝ* → ((ℝ* × ℝ*) ∩ (𝐵 × 𝐵)) = (𝐵 × 𝐵))
3332difeq1d 3954 . . . . . 6 (𝐵 ⊆ ℝ* → (((ℝ* × ℝ*) ∩ (𝐵 × 𝐵)) ∖ < ) = ((𝐵 × 𝐵) ∖ < ))
3428, 33syl5req 2874 . . . . 5 (𝐵 ⊆ ℝ* → ((𝐵 × 𝐵) ∖ < ) = ( ≤ ∩ (𝐵 × 𝐵)))
3534adantl 475 . . . 4 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → ((𝐵 × 𝐵) ∖ < ) = ( ≤ ∩ (𝐵 × 𝐵)))
36 isoeq3 6824 . . . 4 (((𝐵 × 𝐵) ∖ < ) = ( ≤ ∩ (𝐵 × 𝐵)) → (𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ((𝐵 × 𝐵) ∖ < )(𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ( ≤ ∩ (𝐵 × 𝐵))(𝐴, 𝐵)))
3735, 36syl 17 . . 3 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → (𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ((𝐵 × 𝐵) ∖ < )(𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ( ≤ ∩ (𝐵 × 𝐵))(𝐴, 𝐵)))
384, 25, 373bitrd 297 . 2 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → (𝐹 Isom < , < (𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ( ≤ ∩ (𝐵 × 𝐵))(𝐴, 𝐵)))
39 isocnv2 6836 . . 3 (𝐹 Isom ≤ , ≤ (𝐴, 𝐵) ↔ 𝐹 Isom ≤ , ≤ (𝐴, 𝐵))
40 isores2 6838 . . . 4 (𝐹 Isom ≤ , ≤ (𝐴, 𝐵) ↔ 𝐹 Isom ≤ , ( ≤ ∩ (𝐵 × 𝐵))(𝐴, 𝐵))
41 isores1 6839 . . . 4 (𝐹 Isom ≤ , ( ≤ ∩ (𝐵 × 𝐵))(𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ( ≤ ∩ (𝐵 × 𝐵))(𝐴, 𝐵))
4240, 41bitri 267 . . 3 (𝐹 Isom ≤ , ≤ (𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ( ≤ ∩ (𝐵 × 𝐵))(𝐴, 𝐵))
43 lerel 10421 . . . . 5 Rel ≤
44 dfrel2 5824 . . . . 5 (Rel ≤ ↔ ≤ = ≤ )
4543, 44mpbi 222 . . . 4 ≤ = ≤
46 isoeq2 6823 . . . 4 ( ≤ = ≤ → (𝐹 Isom ≤ , ≤ (𝐴, 𝐵) ↔ 𝐹 Isom ≤ , ≤ (𝐴, 𝐵)))
4745, 46ax-mp 5 . . 3 (𝐹 Isom ≤ , ≤ (𝐴, 𝐵) ↔ 𝐹 Isom ≤ , ≤ (𝐴, 𝐵))
4839, 42, 473bitr3ri 294 . 2 (𝐹 Isom ≤ , ≤ (𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ( ≤ ∩ (𝐵 × 𝐵))(𝐴, 𝐵))
4938, 48syl6bbr 281 1 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → (𝐹 Isom < , < (𝐴, 𝐵) ↔ 𝐹 Isom ≤ , ≤ (𝐴, 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1656  cdif 3795  cin 3797  wss 3798   × cxp 5340  ccnv 5341  Rel wrel 5347   Isom wiso 6124  *cxr 10390   < clt 10391  cle 10392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-xr 10395  df-ltxr 10396  df-le 10397
This theorem is referenced by:  xrge0iifhmeo  30516
  Copyright terms: Public domain W3C validator