Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gtiso Structured version   Visualization version   GIF version

Theorem gtiso 32678
Description: Two ways to write a strictly decreasing function on the reals. (Contributed by Thierry Arnoux, 6-Apr-2017.)
Assertion
Ref Expression
gtiso ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → (𝐹 Isom < , < (𝐴, 𝐵) ↔ 𝐹 Isom ≤ , ≤ (𝐴, 𝐵)))

Proof of Theorem gtiso
StepHypRef Expression
1 eqid 2735 . . . . 5 ((𝐴 × 𝐴) ∖ < ) = ((𝐴 × 𝐴) ∖ < )
2 eqid 2735 . . . . 5 ((𝐵 × 𝐵) ∖ < ) = ((𝐵 × 𝐵) ∖ < )
31, 2isocnv3 7325 . . . 4 (𝐹 Isom < , < (𝐴, 𝐵) ↔ 𝐹 Isom ((𝐴 × 𝐴) ∖ < ), ((𝐵 × 𝐵) ∖ < )(𝐴, 𝐵))
43a1i 11 . . 3 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → (𝐹 Isom < , < (𝐴, 𝐵) ↔ 𝐹 Isom ((𝐴 × 𝐴) ∖ < ), ((𝐵 × 𝐵) ∖ < )(𝐴, 𝐵)))
5 df-le 11275 . . . . . . . . . 10 ≤ = ((ℝ* × ℝ*) ∖ < )
65cnveqi 5854 . . . . . . . . 9 ≤ = ((ℝ* × ℝ*) ∖ < )
7 cnvdif 6132 . . . . . . . . 9 ((ℝ* × ℝ*) ∖ < ) = ((ℝ* × ℝ*) ∖ < )
8 cnvxp 6146 . . . . . . . . . 10 (ℝ* × ℝ*) = (ℝ* × ℝ*)
9 ltrel 11297 . . . . . . . . . . 11 Rel <
10 dfrel2 6178 . . . . . . . . . . 11 (Rel < ↔ < = < )
119, 10mpbi 230 . . . . . . . . . 10 < = <
128, 11difeq12i 4099 . . . . . . . . 9 ((ℝ* × ℝ*) ∖ < ) = ((ℝ* × ℝ*) ∖ < )
136, 7, 123eqtri 2762 . . . . . . . 8 ≤ = ((ℝ* × ℝ*) ∖ < )
1413ineq1i 4191 . . . . . . 7 ( ≤ ∩ (𝐴 × 𝐴)) = (((ℝ* × ℝ*) ∖ < ) ∩ (𝐴 × 𝐴))
15 indif1 4257 . . . . . . 7 (((ℝ* × ℝ*) ∖ < ) ∩ (𝐴 × 𝐴)) = (((ℝ* × ℝ*) ∩ (𝐴 × 𝐴)) ∖ < )
1614, 15eqtri 2758 . . . . . 6 ( ≤ ∩ (𝐴 × 𝐴)) = (((ℝ* × ℝ*) ∩ (𝐴 × 𝐴)) ∖ < )
17 xpss12 5669 . . . . . . . . 9 ((𝐴 ⊆ ℝ*𝐴 ⊆ ℝ*) → (𝐴 × 𝐴) ⊆ (ℝ* × ℝ*))
1817anidms 566 . . . . . . . 8 (𝐴 ⊆ ℝ* → (𝐴 × 𝐴) ⊆ (ℝ* × ℝ*))
19 sseqin2 4198 . . . . . . . 8 ((𝐴 × 𝐴) ⊆ (ℝ* × ℝ*) ↔ ((ℝ* × ℝ*) ∩ (𝐴 × 𝐴)) = (𝐴 × 𝐴))
2018, 19sylib 218 . . . . . . 7 (𝐴 ⊆ ℝ* → ((ℝ* × ℝ*) ∩ (𝐴 × 𝐴)) = (𝐴 × 𝐴))
2120difeq1d 4100 . . . . . 6 (𝐴 ⊆ ℝ* → (((ℝ* × ℝ*) ∩ (𝐴 × 𝐴)) ∖ < ) = ((𝐴 × 𝐴) ∖ < ))
2216, 21eqtr2id 2783 . . . . 5 (𝐴 ⊆ ℝ* → ((𝐴 × 𝐴) ∖ < ) = ( ≤ ∩ (𝐴 × 𝐴)))
2322adantr 480 . . . 4 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → ((𝐴 × 𝐴) ∖ < ) = ( ≤ ∩ (𝐴 × 𝐴)))
24 isoeq2 7311 . . . 4 (((𝐴 × 𝐴) ∖ < ) = ( ≤ ∩ (𝐴 × 𝐴)) → (𝐹 Isom ((𝐴 × 𝐴) ∖ < ), ((𝐵 × 𝐵) ∖ < )(𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ((𝐵 × 𝐵) ∖ < )(𝐴, 𝐵)))
2523, 24syl 17 . . 3 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → (𝐹 Isom ((𝐴 × 𝐴) ∖ < ), ((𝐵 × 𝐵) ∖ < )(𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ((𝐵 × 𝐵) ∖ < )(𝐴, 𝐵)))
265ineq1i 4191 . . . . . . 7 ( ≤ ∩ (𝐵 × 𝐵)) = (((ℝ* × ℝ*) ∖ < ) ∩ (𝐵 × 𝐵))
27 indif1 4257 . . . . . . 7 (((ℝ* × ℝ*) ∖ < ) ∩ (𝐵 × 𝐵)) = (((ℝ* × ℝ*) ∩ (𝐵 × 𝐵)) ∖ < )
2826, 27eqtri 2758 . . . . . 6 ( ≤ ∩ (𝐵 × 𝐵)) = (((ℝ* × ℝ*) ∩ (𝐵 × 𝐵)) ∖ < )
29 xpss12 5669 . . . . . . . . 9 ((𝐵 ⊆ ℝ*𝐵 ⊆ ℝ*) → (𝐵 × 𝐵) ⊆ (ℝ* × ℝ*))
3029anidms 566 . . . . . . . 8 (𝐵 ⊆ ℝ* → (𝐵 × 𝐵) ⊆ (ℝ* × ℝ*))
31 sseqin2 4198 . . . . . . . 8 ((𝐵 × 𝐵) ⊆ (ℝ* × ℝ*) ↔ ((ℝ* × ℝ*) ∩ (𝐵 × 𝐵)) = (𝐵 × 𝐵))
3230, 31sylib 218 . . . . . . 7 (𝐵 ⊆ ℝ* → ((ℝ* × ℝ*) ∩ (𝐵 × 𝐵)) = (𝐵 × 𝐵))
3332difeq1d 4100 . . . . . 6 (𝐵 ⊆ ℝ* → (((ℝ* × ℝ*) ∩ (𝐵 × 𝐵)) ∖ < ) = ((𝐵 × 𝐵) ∖ < ))
3428, 33eqtr2id 2783 . . . . 5 (𝐵 ⊆ ℝ* → ((𝐵 × 𝐵) ∖ < ) = ( ≤ ∩ (𝐵 × 𝐵)))
3534adantl 481 . . . 4 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → ((𝐵 × 𝐵) ∖ < ) = ( ≤ ∩ (𝐵 × 𝐵)))
36 isoeq3 7312 . . . 4 (((𝐵 × 𝐵) ∖ < ) = ( ≤ ∩ (𝐵 × 𝐵)) → (𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ((𝐵 × 𝐵) ∖ < )(𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ( ≤ ∩ (𝐵 × 𝐵))(𝐴, 𝐵)))
3735, 36syl 17 . . 3 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → (𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ((𝐵 × 𝐵) ∖ < )(𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ( ≤ ∩ (𝐵 × 𝐵))(𝐴, 𝐵)))
384, 25, 373bitrd 305 . 2 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → (𝐹 Isom < , < (𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ( ≤ ∩ (𝐵 × 𝐵))(𝐴, 𝐵)))
39 isocnv2 7324 . . 3 (𝐹 Isom ≤ , ≤ (𝐴, 𝐵) ↔ 𝐹 Isom ≤ , ≤ (𝐴, 𝐵))
40 isores2 7326 . . . 4 (𝐹 Isom ≤ , ≤ (𝐴, 𝐵) ↔ 𝐹 Isom ≤ , ( ≤ ∩ (𝐵 × 𝐵))(𝐴, 𝐵))
41 isores1 7327 . . . 4 (𝐹 Isom ≤ , ( ≤ ∩ (𝐵 × 𝐵))(𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ( ≤ ∩ (𝐵 × 𝐵))(𝐴, 𝐵))
4240, 41bitri 275 . . 3 (𝐹 Isom ≤ , ≤ (𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ( ≤ ∩ (𝐵 × 𝐵))(𝐴, 𝐵))
43 lerel 11299 . . . . 5 Rel ≤
44 dfrel2 6178 . . . . 5 (Rel ≤ ↔ ≤ = ≤ )
4543, 44mpbi 230 . . . 4 ≤ = ≤
46 isoeq2 7311 . . . 4 ( ≤ = ≤ → (𝐹 Isom ≤ , ≤ (𝐴, 𝐵) ↔ 𝐹 Isom ≤ , ≤ (𝐴, 𝐵)))
4745, 46ax-mp 5 . . 3 (𝐹 Isom ≤ , ≤ (𝐴, 𝐵) ↔ 𝐹 Isom ≤ , ≤ (𝐴, 𝐵))
4839, 42, 473bitr3ri 302 . 2 (𝐹 Isom ≤ , ≤ (𝐴, 𝐵) ↔ 𝐹 Isom ( ≤ ∩ (𝐴 × 𝐴)), ( ≤ ∩ (𝐵 × 𝐵))(𝐴, 𝐵))
4938, 48bitr4di 289 1 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → (𝐹 Isom < , < (𝐴, 𝐵) ↔ 𝐹 Isom ≤ , ≤ (𝐴, 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  cdif 3923  cin 3925  wss 3926   × cxp 5652  ccnv 5653  Rel wrel 5659   Isom wiso 6532  *cxr 11268   < clt 11269  cle 11270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-xr 11273  df-ltxr 11274  df-le 11275
This theorem is referenced by:  xrge0iifhmeo  33967
  Copyright terms: Public domain W3C validator