MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnfnre Structured version   Visualization version   GIF version

Theorem pnfnre 11331
Description: Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
pnfnre +∞ ∉ ℝ

Proof of Theorem pnfnre
StepHypRef Expression
1 df-pnf 11326 . . . 4 +∞ = 𝒫
2 pwuninel 8316 . . . 4 ¬ 𝒫 ℂ ∈ ℂ
31, 2eqneltri 2863 . . 3 ¬ +∞ ∈ ℂ
4 recn 11274 . . 3 (+∞ ∈ ℝ → +∞ ∈ ℂ)
53, 4mto 197 . 2 ¬ +∞ ∈ ℝ
65nelir 3055 1 +∞ ∉ ℝ
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  wnel 3052  𝒫 cpw 4622   cuni 4931  cc 11182  cr 11183  +∞cpnf 11321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-pr 5447  ax-un 7770  ax-resscn 11241
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nel 3053  df-rab 3444  df-v 3490  df-un 3981  df-in 3983  df-ss 3993  df-pw 4624  df-sn 4649  df-pr 4651  df-uni 4932  df-pnf 11326
This theorem is referenced by:  pnfnre2  11332  renepnf  11338  ltxrlt  11360  nn0nepnf  12633  xrltnr  13182  pnfnlt  13191  xnn0lenn0nn0  13307  hashclb  14407  hasheq0  14412  pcgcd1  16924  pc2dvds  16926  ramtcl2  17058  odhash3  19618  xrsdsreclblem  21453  pnfnei  23249  iccpnfcnv  24994  i1f0rn  25736
  Copyright terms: Public domain W3C validator