MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnfnre Structured version   Visualization version   GIF version

Theorem pnfnre 11191
Description: Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
pnfnre +∞ ∉ ℝ

Proof of Theorem pnfnre
StepHypRef Expression
1 df-pnf 11186 . . . 4 +∞ = 𝒫
2 pwuninel 8231 . . . 4 ¬ 𝒫 ℂ ∈ ℂ
31, 2eqneltri 2847 . . 3 ¬ +∞ ∈ ℂ
4 recn 11134 . . 3 (+∞ ∈ ℝ → +∞ ∈ ℂ)
53, 4mto 197 . 2 ¬ +∞ ∈ ℝ
65nelir 3032 1 +∞ ∉ ℝ
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  wnel 3029  𝒫 cpw 4559   cuni 4867  cc 11042  cr 11043  +∞cpnf 11181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-pr 5382  ax-un 7691  ax-resscn 11101
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nel 3030  df-rab 3403  df-v 3446  df-un 3916  df-in 3918  df-ss 3928  df-pw 4561  df-sn 4586  df-pr 4588  df-uni 4868  df-pnf 11186
This theorem is referenced by:  pnfnre2  11192  renepnf  11198  ltxrlt  11220  nn0nepnf  12499  xrltnr  13055  pnfnlt  13064  xnn0lenn0nn0  13181  hashclb  14299  hasheq0  14304  pcgcd1  16824  pc2dvds  16826  ramtcl2  16958  odhash3  19490  xrsdsreclblem  21354  pnfnei  23140  iccpnfcnv  24875  i1f0rn  25616
  Copyright terms: Public domain W3C validator