![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pnfnre | Structured version Visualization version GIF version |
Description: Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
Ref | Expression |
---|---|
pnfnre | ⊢ +∞ ∉ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pnf 11295 | . . . 4 ⊢ +∞ = 𝒫 ∪ ℂ | |
2 | pwuninel 8299 | . . . 4 ⊢ ¬ 𝒫 ∪ ℂ ∈ ℂ | |
3 | 1, 2 | eqneltri 2858 | . . 3 ⊢ ¬ +∞ ∈ ℂ |
4 | recn 11243 | . . 3 ⊢ (+∞ ∈ ℝ → +∞ ∈ ℂ) | |
5 | 3, 4 | mto 197 | . 2 ⊢ ¬ +∞ ∈ ℝ |
6 | 5 | nelir 3047 | 1 ⊢ +∞ ∉ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ∉ wnel 3044 𝒫 cpw 4605 ∪ cuni 4912 ℂcc 11151 ℝcr 11152 +∞cpnf 11290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-pr 5438 ax-un 7754 ax-resscn 11210 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nel 3045 df-rab 3434 df-v 3480 df-un 3968 df-in 3970 df-ss 3980 df-pw 4607 df-sn 4632 df-pr 4634 df-uni 4913 df-pnf 11295 |
This theorem is referenced by: pnfnre2 11301 renepnf 11307 ltxrlt 11329 nn0nepnf 12605 xrltnr 13159 pnfnlt 13168 xnn0lenn0nn0 13284 hashclb 14394 hasheq0 14399 pcgcd1 16911 pc2dvds 16913 ramtcl2 17045 odhash3 19609 xrsdsreclblem 21448 pnfnei 23244 iccpnfcnv 24989 i1f0rn 25731 |
Copyright terms: Public domain | W3C validator |