Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pnfnre | Structured version Visualization version GIF version |
Description: Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
Ref | Expression |
---|---|
pnfnre | ⊢ +∞ ∉ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pnf 11011 | . . . 4 ⊢ +∞ = 𝒫 ∪ ℂ | |
2 | pwuninel 8091 | . . . 4 ⊢ ¬ 𝒫 ∪ ℂ ∈ ℂ | |
3 | 1, 2 | eqneltri 2832 | . . 3 ⊢ ¬ +∞ ∈ ℂ |
4 | recn 10961 | . . 3 ⊢ (+∞ ∈ ℝ → +∞ ∈ ℂ) | |
5 | 3, 4 | mto 196 | . 2 ⊢ ¬ +∞ ∈ ℝ |
6 | 5 | nelir 3052 | 1 ⊢ +∞ ∉ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ∉ wnel 3049 𝒫 cpw 4533 ∪ cuni 4839 ℂcc 10869 ℝcr 10870 +∞cpnf 11006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 ax-resscn 10928 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nel 3050 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-pw 4535 df-sn 4562 df-pr 4564 df-uni 4840 df-pnf 11011 |
This theorem is referenced by: pnfnre2 11017 renepnf 11023 ltxrlt 11045 nn0nepnf 12313 xrltnr 12855 pnfnlt 12864 xnn0lenn0nn0 12979 hashclb 14073 hasheq0 14078 pcgcd1 16578 pc2dvds 16580 ramtcl2 16712 odhash3 19181 xrsdsreclblem 20644 pnfnei 22371 iccpnfcnv 24107 i1f0rn 24846 |
Copyright terms: Public domain | W3C validator |