MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnfnre Structured version   Visualization version   GIF version

Theorem pnfnre 11122
Description: Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
pnfnre +∞ ∉ ℝ

Proof of Theorem pnfnre
StepHypRef Expression
1 df-pnf 11117 . . . 4 +∞ = 𝒫
2 pwuninel 8166 . . . 4 ¬ 𝒫 ℂ ∈ ℂ
31, 2eqneltri 2831 . . 3 ¬ +∞ ∈ ℂ
4 recn 11067 . . 3 (+∞ ∈ ℝ → +∞ ∈ ℂ)
53, 4mto 196 . 2 ¬ +∞ ∈ ℝ
65nelir 3050 1 +∞ ∉ ℝ
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  wnel 3047  𝒫 cpw 4552   cuni 4857  cc 10975  cr 10976  +∞cpnf 11112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2708  ax-sep 5248  ax-pr 5377  ax-un 7655  ax-resscn 11034
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-nel 3048  df-rab 3405  df-v 3444  df-un 3907  df-in 3909  df-ss 3919  df-pw 4554  df-sn 4579  df-pr 4581  df-uni 4858  df-pnf 11117
This theorem is referenced by:  pnfnre2  11123  renepnf  11129  ltxrlt  11151  nn0nepnf  12419  xrltnr  12961  pnfnlt  12970  xnn0lenn0nn0  13085  hashclb  14178  hasheq0  14183  pcgcd1  16676  pc2dvds  16678  ramtcl2  16810  odhash3  19278  xrsdsreclblem  20750  pnfnei  22477  iccpnfcnv  24213  i1f0rn  24952
  Copyright terms: Public domain W3C validator