| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pnfnre | Structured version Visualization version GIF version | ||
| Description: Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
| Ref | Expression |
|---|---|
| pnfnre | ⊢ +∞ ∉ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pnf 11148 | . . . 4 ⊢ +∞ = 𝒫 ∪ ℂ | |
| 2 | pwuninel 8205 | . . . 4 ⊢ ¬ 𝒫 ∪ ℂ ∈ ℂ | |
| 3 | 1, 2 | eqneltri 2850 | . . 3 ⊢ ¬ +∞ ∈ ℂ |
| 4 | recn 11096 | . . 3 ⊢ (+∞ ∈ ℝ → +∞ ∈ ℂ) | |
| 5 | 3, 4 | mto 197 | . 2 ⊢ ¬ +∞ ∈ ℝ |
| 6 | 5 | nelir 3035 | 1 ⊢ +∞ ∉ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ∉ wnel 3032 𝒫 cpw 4547 ∪ cuni 4856 ℂcc 11004 ℝcr 11005 +∞cpnf 11143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-pr 5368 ax-un 7668 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nel 3033 df-rab 3396 df-v 3438 df-un 3902 df-in 3904 df-ss 3914 df-pw 4549 df-sn 4574 df-pr 4576 df-uni 4857 df-pnf 11148 |
| This theorem is referenced by: pnfnre2 11154 renepnf 11160 ltxrlt 11183 nn0nepnf 12462 xrltnr 13018 pnfnlt 13027 xnn0lenn0nn0 13144 hashclb 14265 hasheq0 14270 pcgcd1 16789 pc2dvds 16791 ramtcl2 16923 odhash3 19488 xrsdsreclblem 21349 pnfnei 23135 iccpnfcnv 24869 i1f0rn 25610 |
| Copyright terms: Public domain | W3C validator |