Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pnfnre | Structured version Visualization version GIF version |
Description: Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
Ref | Expression |
---|---|
pnfnre | ⊢ +∞ ∉ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pnf 11117 | . . . 4 ⊢ +∞ = 𝒫 ∪ ℂ | |
2 | pwuninel 8166 | . . . 4 ⊢ ¬ 𝒫 ∪ ℂ ∈ ℂ | |
3 | 1, 2 | eqneltri 2831 | . . 3 ⊢ ¬ +∞ ∈ ℂ |
4 | recn 11067 | . . 3 ⊢ (+∞ ∈ ℝ → +∞ ∈ ℂ) | |
5 | 3, 4 | mto 196 | . 2 ⊢ ¬ +∞ ∈ ℝ |
6 | 5 | nelir 3050 | 1 ⊢ +∞ ∉ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ∉ wnel 3047 𝒫 cpw 4552 ∪ cuni 4857 ℂcc 10975 ℝcr 10976 +∞cpnf 11112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 ax-sep 5248 ax-pr 5377 ax-un 7655 ax-resscn 11034 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-nel 3048 df-rab 3405 df-v 3444 df-un 3907 df-in 3909 df-ss 3919 df-pw 4554 df-sn 4579 df-pr 4581 df-uni 4858 df-pnf 11117 |
This theorem is referenced by: pnfnre2 11123 renepnf 11129 ltxrlt 11151 nn0nepnf 12419 xrltnr 12961 pnfnlt 12970 xnn0lenn0nn0 13085 hashclb 14178 hasheq0 14183 pcgcd1 16676 pc2dvds 16678 ramtcl2 16810 odhash3 19278 xrsdsreclblem 20750 pnfnei 22477 iccpnfcnv 24213 i1f0rn 24952 |
Copyright terms: Public domain | W3C validator |