| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pnfnre | Structured version Visualization version GIF version | ||
| Description: Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
| Ref | Expression |
|---|---|
| pnfnre | ⊢ +∞ ∉ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pnf 11186 | . . . 4 ⊢ +∞ = 𝒫 ∪ ℂ | |
| 2 | pwuninel 8231 | . . . 4 ⊢ ¬ 𝒫 ∪ ℂ ∈ ℂ | |
| 3 | 1, 2 | eqneltri 2847 | . . 3 ⊢ ¬ +∞ ∈ ℂ |
| 4 | recn 11134 | . . 3 ⊢ (+∞ ∈ ℝ → +∞ ∈ ℂ) | |
| 5 | 3, 4 | mto 197 | . 2 ⊢ ¬ +∞ ∈ ℝ |
| 6 | 5 | nelir 3032 | 1 ⊢ +∞ ∉ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∉ wnel 3029 𝒫 cpw 4559 ∪ cuni 4867 ℂcc 11042 ℝcr 11043 +∞cpnf 11181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-pr 5382 ax-un 7691 ax-resscn 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nel 3030 df-rab 3403 df-v 3446 df-un 3916 df-in 3918 df-ss 3928 df-pw 4561 df-sn 4586 df-pr 4588 df-uni 4868 df-pnf 11186 |
| This theorem is referenced by: pnfnre2 11192 renepnf 11198 ltxrlt 11220 nn0nepnf 12499 xrltnr 13055 pnfnlt 13064 xnn0lenn0nn0 13181 hashclb 14299 hasheq0 14304 pcgcd1 16824 pc2dvds 16826 ramtcl2 16958 odhash3 19490 xrsdsreclblem 21354 pnfnei 23140 iccpnfcnv 24875 i1f0rn 25616 |
| Copyright terms: Public domain | W3C validator |