MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnfnre Structured version   Visualization version   GIF version

Theorem pnfnre 11156
Description: Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
pnfnre +∞ ∉ ℝ

Proof of Theorem pnfnre
StepHypRef Expression
1 df-pnf 11151 . . . 4 +∞ = 𝒫
2 pwuninel 8208 . . . 4 ¬ 𝒫 ℂ ∈ ℂ
31, 2eqneltri 2847 . . 3 ¬ +∞ ∈ ℂ
4 recn 11099 . . 3 (+∞ ∈ ℝ → +∞ ∈ ℂ)
53, 4mto 197 . 2 ¬ +∞ ∈ ℝ
65nelir 3032 1 +∞ ∉ ℝ
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  wnel 3029  𝒫 cpw 4551   cuni 4858  cc 11007  cr 11008  +∞cpnf 11146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-pr 5371  ax-un 7671  ax-resscn 11066
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nel 3030  df-rab 3395  df-v 3438  df-un 3908  df-in 3910  df-ss 3920  df-pw 4553  df-sn 4578  df-pr 4580  df-uni 4859  df-pnf 11151
This theorem is referenced by:  pnfnre2  11157  renepnf  11163  ltxrlt  11186  nn0nepnf  12465  xrltnr  13021  pnfnlt  13030  xnn0lenn0nn0  13147  hashclb  14265  hasheq0  14270  pcgcd1  16789  pc2dvds  16791  ramtcl2  16923  odhash3  19455  xrsdsreclblem  21319  pnfnei  23105  iccpnfcnv  24840  i1f0rn  25581
  Copyright terms: Public domain W3C validator