Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pnfnre | Structured version Visualization version GIF version |
Description: Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
Ref | Expression |
---|---|
pnfnre | ⊢ +∞ ∉ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pnf 10942 | . . . 4 ⊢ +∞ = 𝒫 ∪ ℂ | |
2 | pwuninel 8062 | . . . 4 ⊢ ¬ 𝒫 ∪ ℂ ∈ ℂ | |
3 | 1, 2 | eqneltri 2832 | . . 3 ⊢ ¬ +∞ ∈ ℂ |
4 | recn 10892 | . . 3 ⊢ (+∞ ∈ ℝ → +∞ ∈ ℂ) | |
5 | 3, 4 | mto 196 | . 2 ⊢ ¬ +∞ ∈ ℝ |
6 | 5 | nelir 3051 | 1 ⊢ +∞ ∉ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ∉ wnel 3048 𝒫 cpw 4530 ∪ cuni 4836 ℂcc 10800 ℝcr 10801 +∞cpnf 10937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nel 3049 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-pw 4532 df-sn 4559 df-pr 4561 df-uni 4837 df-pnf 10942 |
This theorem is referenced by: pnfnre2 10948 renepnf 10954 ltxrlt 10976 nn0nepnf 12243 xrltnr 12784 pnfnlt 12793 xnn0lenn0nn0 12908 hashclb 14001 hasheq0 14006 pcgcd1 16506 pc2dvds 16508 ramtcl2 16640 odhash3 19096 xrsdsreclblem 20556 pnfnei 22279 iccpnfcnv 24013 i1f0rn 24751 |
Copyright terms: Public domain | W3C validator |