| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pnfnre | Structured version Visualization version GIF version | ||
| Description: Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
| Ref | Expression |
|---|---|
| pnfnre | ⊢ +∞ ∉ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pnf 11210 | . . . 4 ⊢ +∞ = 𝒫 ∪ ℂ | |
| 2 | pwuninel 8254 | . . . 4 ⊢ ¬ 𝒫 ∪ ℂ ∈ ℂ | |
| 3 | 1, 2 | eqneltri 2847 | . . 3 ⊢ ¬ +∞ ∈ ℂ |
| 4 | recn 11158 | . . 3 ⊢ (+∞ ∈ ℝ → +∞ ∈ ℂ) | |
| 5 | 3, 4 | mto 197 | . 2 ⊢ ¬ +∞ ∈ ℝ |
| 6 | 5 | nelir 3032 | 1 ⊢ +∞ ∉ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∉ wnel 3029 𝒫 cpw 4563 ∪ cuni 4871 ℂcc 11066 ℝcr 11067 +∞cpnf 11205 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-pr 5387 ax-un 7711 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nel 3030 df-rab 3406 df-v 3449 df-un 3919 df-in 3921 df-ss 3931 df-pw 4565 df-sn 4590 df-pr 4592 df-uni 4872 df-pnf 11210 |
| This theorem is referenced by: pnfnre2 11216 renepnf 11222 ltxrlt 11244 nn0nepnf 12523 xrltnr 13079 pnfnlt 13088 xnn0lenn0nn0 13205 hashclb 14323 hasheq0 14328 pcgcd1 16848 pc2dvds 16850 ramtcl2 16982 odhash3 19506 xrsdsreclblem 21329 pnfnei 23107 iccpnfcnv 24842 i1f0rn 25583 |
| Copyright terms: Public domain | W3C validator |