| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pnfnre | Structured version Visualization version GIF version | ||
| Description: Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
| Ref | Expression |
|---|---|
| pnfnre | ⊢ +∞ ∉ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pnf 11217 | . . . 4 ⊢ +∞ = 𝒫 ∪ ℂ | |
| 2 | pwuninel 8257 | . . . 4 ⊢ ¬ 𝒫 ∪ ℂ ∈ ℂ | |
| 3 | 1, 2 | eqneltri 2848 | . . 3 ⊢ ¬ +∞ ∈ ℂ |
| 4 | recn 11165 | . . 3 ⊢ (+∞ ∈ ℝ → +∞ ∈ ℂ) | |
| 5 | 3, 4 | mto 197 | . 2 ⊢ ¬ +∞ ∈ ℝ |
| 6 | 5 | nelir 3033 | 1 ⊢ +∞ ∉ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∉ wnel 3030 𝒫 cpw 4566 ∪ cuni 4874 ℂcc 11073 ℝcr 11074 +∞cpnf 11212 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-pr 5390 ax-un 7714 ax-resscn 11132 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nel 3031 df-rab 3409 df-v 3452 df-un 3922 df-in 3924 df-ss 3934 df-pw 4568 df-sn 4593 df-pr 4595 df-uni 4875 df-pnf 11217 |
| This theorem is referenced by: pnfnre2 11223 renepnf 11229 ltxrlt 11251 nn0nepnf 12530 xrltnr 13086 pnfnlt 13095 xnn0lenn0nn0 13212 hashclb 14330 hasheq0 14335 pcgcd1 16855 pc2dvds 16857 ramtcl2 16989 odhash3 19513 xrsdsreclblem 21336 pnfnei 23114 iccpnfcnv 24849 i1f0rn 25590 |
| Copyright terms: Public domain | W3C validator |