| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pnfnre | Structured version Visualization version GIF version | ||
| Description: Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
| Ref | Expression |
|---|---|
| pnfnre | ⊢ +∞ ∉ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pnf 11151 | . . . 4 ⊢ +∞ = 𝒫 ∪ ℂ | |
| 2 | pwuninel 8208 | . . . 4 ⊢ ¬ 𝒫 ∪ ℂ ∈ ℂ | |
| 3 | 1, 2 | eqneltri 2847 | . . 3 ⊢ ¬ +∞ ∈ ℂ |
| 4 | recn 11099 | . . 3 ⊢ (+∞ ∈ ℝ → +∞ ∈ ℂ) | |
| 5 | 3, 4 | mto 197 | . 2 ⊢ ¬ +∞ ∈ ℝ |
| 6 | 5 | nelir 3032 | 1 ⊢ +∞ ∉ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∉ wnel 3029 𝒫 cpw 4551 ∪ cuni 4858 ℂcc 11007 ℝcr 11008 +∞cpnf 11146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-pr 5371 ax-un 7671 ax-resscn 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nel 3030 df-rab 3395 df-v 3438 df-un 3908 df-in 3910 df-ss 3920 df-pw 4553 df-sn 4578 df-pr 4580 df-uni 4859 df-pnf 11151 |
| This theorem is referenced by: pnfnre2 11157 renepnf 11163 ltxrlt 11186 nn0nepnf 12465 xrltnr 13021 pnfnlt 13030 xnn0lenn0nn0 13147 hashclb 14265 hasheq0 14270 pcgcd1 16789 pc2dvds 16791 ramtcl2 16923 odhash3 19455 xrsdsreclblem 21319 pnfnei 23105 iccpnfcnv 24840 i1f0rn 25581 |
| Copyright terms: Public domain | W3C validator |