MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnfnre Structured version   Visualization version   GIF version

Theorem pnfnre 10947
Description: Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
pnfnre +∞ ∉ ℝ

Proof of Theorem pnfnre
StepHypRef Expression
1 df-pnf 10942 . . . 4 +∞ = 𝒫
2 pwuninel 8062 . . . 4 ¬ 𝒫 ℂ ∈ ℂ
31, 2eqneltri 2832 . . 3 ¬ +∞ ∈ ℂ
4 recn 10892 . . 3 (+∞ ∈ ℝ → +∞ ∈ ℂ)
53, 4mto 196 . 2 ¬ +∞ ∈ ℝ
65nelir 3051 1 +∞ ∉ ℝ
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  wnel 3048  𝒫 cpw 4530   cuni 4836  cc 10800  cr 10801  +∞cpnf 10937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566  ax-resscn 10859
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nel 3049  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-pw 4532  df-sn 4559  df-pr 4561  df-uni 4837  df-pnf 10942
This theorem is referenced by:  pnfnre2  10948  renepnf  10954  ltxrlt  10976  nn0nepnf  12243  xrltnr  12784  pnfnlt  12793  xnn0lenn0nn0  12908  hashclb  14001  hasheq0  14006  pcgcd1  16506  pc2dvds  16508  ramtcl2  16640  odhash3  19096  xrsdsreclblem  20556  pnfnei  22279  iccpnfcnv  24013  i1f0rn  24751
  Copyright terms: Public domain W3C validator