| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pnfnre | Structured version Visualization version GIF version | ||
| Description: Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
| Ref | Expression |
|---|---|
| pnfnre | ⊢ +∞ ∉ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pnf 11271 | . . . 4 ⊢ +∞ = 𝒫 ∪ ℂ | |
| 2 | pwuninel 8274 | . . . 4 ⊢ ¬ 𝒫 ∪ ℂ ∈ ℂ | |
| 3 | 1, 2 | eqneltri 2853 | . . 3 ⊢ ¬ +∞ ∈ ℂ |
| 4 | recn 11219 | . . 3 ⊢ (+∞ ∈ ℝ → +∞ ∈ ℂ) | |
| 5 | 3, 4 | mto 197 | . 2 ⊢ ¬ +∞ ∈ ℝ |
| 6 | 5 | nelir 3039 | 1 ⊢ +∞ ∉ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 ∉ wnel 3036 𝒫 cpw 4575 ∪ cuni 4883 ℂcc 11127 ℝcr 11128 +∞cpnf 11266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-pr 5402 ax-un 7729 ax-resscn 11186 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nel 3037 df-rab 3416 df-v 3461 df-un 3931 df-in 3933 df-ss 3943 df-pw 4577 df-sn 4602 df-pr 4604 df-uni 4884 df-pnf 11271 |
| This theorem is referenced by: pnfnre2 11277 renepnf 11283 ltxrlt 11305 nn0nepnf 12582 xrltnr 13135 pnfnlt 13144 xnn0lenn0nn0 13261 hashclb 14376 hasheq0 14381 pcgcd1 16897 pc2dvds 16899 ramtcl2 17031 odhash3 19557 xrsdsreclblem 21380 pnfnei 23158 iccpnfcnv 24893 i1f0rn 25635 |
| Copyright terms: Public domain | W3C validator |