MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnfnre Structured version   Visualization version   GIF version

Theorem pnfnre 11016
Description: Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
pnfnre +∞ ∉ ℝ

Proof of Theorem pnfnre
StepHypRef Expression
1 df-pnf 11011 . . . 4 +∞ = 𝒫
2 pwuninel 8091 . . . 4 ¬ 𝒫 ℂ ∈ ℂ
31, 2eqneltri 2832 . . 3 ¬ +∞ ∈ ℂ
4 recn 10961 . . 3 (+∞ ∈ ℝ → +∞ ∈ ℂ)
53, 4mto 196 . 2 ¬ +∞ ∈ ℝ
65nelir 3052 1 +∞ ∉ ℝ
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  wnel 3049  𝒫 cpw 4533   cuni 4839  cc 10869  cr 10870  +∞cpnf 11006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588  ax-resscn 10928
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nel 3050  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-pw 4535  df-sn 4562  df-pr 4564  df-uni 4840  df-pnf 11011
This theorem is referenced by:  pnfnre2  11017  renepnf  11023  ltxrlt  11045  nn0nepnf  12313  xrltnr  12855  pnfnlt  12864  xnn0lenn0nn0  12979  hashclb  14073  hasheq0  14078  pcgcd1  16578  pc2dvds  16580  ramtcl2  16712  odhash3  19181  xrsdsreclblem  20644  pnfnei  22371  iccpnfcnv  24107  i1f0rn  24846
  Copyright terms: Public domain W3C validator