MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnfnre Structured version   Visualization version   GIF version

Theorem pnfnre 11153
Description: Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
pnfnre +∞ ∉ ℝ

Proof of Theorem pnfnre
StepHypRef Expression
1 df-pnf 11148 . . . 4 +∞ = 𝒫
2 pwuninel 8205 . . . 4 ¬ 𝒫 ℂ ∈ ℂ
31, 2eqneltri 2850 . . 3 ¬ +∞ ∈ ℂ
4 recn 11096 . . 3 (+∞ ∈ ℝ → +∞ ∈ ℂ)
53, 4mto 197 . 2 ¬ +∞ ∈ ℝ
65nelir 3035 1 +∞ ∉ ℝ
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  wnel 3032  𝒫 cpw 4547   cuni 4856  cc 11004  cr 11005  +∞cpnf 11143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-pr 5368  ax-un 7668  ax-resscn 11063
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nel 3033  df-rab 3396  df-v 3438  df-un 3902  df-in 3904  df-ss 3914  df-pw 4549  df-sn 4574  df-pr 4576  df-uni 4857  df-pnf 11148
This theorem is referenced by:  pnfnre2  11154  renepnf  11160  ltxrlt  11183  nn0nepnf  12462  xrltnr  13018  pnfnlt  13027  xnn0lenn0nn0  13144  hashclb  14265  hasheq0  14270  pcgcd1  16789  pc2dvds  16791  ramtcl2  16923  odhash3  19488  xrsdsreclblem  21349  pnfnei  23135  iccpnfcnv  24869  i1f0rn  25610
  Copyright terms: Public domain W3C validator