![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pnfnre | Structured version Visualization version GIF version |
Description: Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
Ref | Expression |
---|---|
pnfnre | ⊢ +∞ ∉ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pnf 11326 | . . . 4 ⊢ +∞ = 𝒫 ∪ ℂ | |
2 | pwuninel 8316 | . . . 4 ⊢ ¬ 𝒫 ∪ ℂ ∈ ℂ | |
3 | 1, 2 | eqneltri 2863 | . . 3 ⊢ ¬ +∞ ∈ ℂ |
4 | recn 11274 | . . 3 ⊢ (+∞ ∈ ℝ → +∞ ∈ ℂ) | |
5 | 3, 4 | mto 197 | . 2 ⊢ ¬ +∞ ∈ ℝ |
6 | 5 | nelir 3055 | 1 ⊢ +∞ ∉ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ∉ wnel 3052 𝒫 cpw 4622 ∪ cuni 4931 ℂcc 11182 ℝcr 11183 +∞cpnf 11321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-pr 5447 ax-un 7770 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nel 3053 df-rab 3444 df-v 3490 df-un 3981 df-in 3983 df-ss 3993 df-pw 4624 df-sn 4649 df-pr 4651 df-uni 4932 df-pnf 11326 |
This theorem is referenced by: pnfnre2 11332 renepnf 11338 ltxrlt 11360 nn0nepnf 12633 xrltnr 13182 pnfnlt 13191 xnn0lenn0nn0 13307 hashclb 14407 hasheq0 14412 pcgcd1 16924 pc2dvds 16926 ramtcl2 17058 odhash3 19618 xrsdsreclblem 21453 pnfnei 23249 iccpnfcnv 24994 i1f0rn 25736 |
Copyright terms: Public domain | W3C validator |