MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leloe Structured version   Visualization version   GIF version

Theorem leloe 11296
Description: 'Less than or equal to' expressed in terms of 'less than' or 'equals'. (Contributed by NM, 13-May-1999.)
Assertion
Ref Expression
leloe ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))

Proof of Theorem leloe
StepHypRef Expression
1 lenlt 11288 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
2 axlttri 11281 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 ↔ ¬ (𝐵 = 𝐴𝐴 < 𝐵)))
32ancoms 459 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 ↔ ¬ (𝐵 = 𝐴𝐴 < 𝐵)))
43con2bid 354 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 = 𝐴𝐴 < 𝐵) ↔ ¬ 𝐵 < 𝐴))
5 eqcom 2739 . . . . 5 (𝐵 = 𝐴𝐴 = 𝐵)
65orbi1i 912 . . . 4 ((𝐵 = 𝐴𝐴 < 𝐵) ↔ (𝐴 = 𝐵𝐴 < 𝐵))
7 orcom 868 . . . 4 ((𝐴 = 𝐵𝐴 < 𝐵) ↔ (𝐴 < 𝐵𝐴 = 𝐵))
86, 7bitri 274 . . 3 ((𝐵 = 𝐴𝐴 < 𝐵) ↔ (𝐴 < 𝐵𝐴 = 𝐵))
94, 8bitr3di 285 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐵 < 𝐴 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
101, 9bitrd 278 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106   class class class wbr 5147  cr 11105   < clt 11244  cle 11245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-resscn 11163  ax-pre-lttri 11180
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250
This theorem is referenced by:  ltle  11298  leltne  11299  lelttr  11300  ltletr  11302  letr  11304  leid  11306  ltlen  11311  leloei  11327  leloed  11353  lemul1  12062  lemul1a  12064  squeeze0  12113  sup3  12167  nn0ge0  12493  nn0sub  12518  elnn0z  12567  xlemul1a  13263  modfzo0difsn  13904  om2uzlti  13911  om2uzlt2i  13912  sqlecan  14169  discr  14199  facdiv  14243  facwordi  14245  resqrex  15193  sqrt2irr  16188  lcmf  16566  ge2nprmge4  16634  efgsfo  19601  efgred  19610  itg2mulc  25256  itgabs  25343  dgrlt  25771  sinq12ge0  26009  sineq0  26024  cxpge0  26182  cxplea  26195  cxple2  26196  cxple2a  26198  cxpcn3lem  26244  cxpcn3  26245  cxpaddlelem  26248  cxpaddle  26249  ang180lem3  26305  atanlogaddlem  26407  rlimcnp2  26460  jensen  26482  amgm  26484  htthlem  30157  hiidge0  30338  staddi  31486  stadd3i  31488  poimirlem28  36504  itgaddnclem2  36535  itgabsnc  36545  pellfund14gap  41610  sineq0ALT  43683  icccncfext  44589  ltnltne  45993  iccpartnel  46092  odz2prm2pw  46217  evenltle  46371  gbowge7  46417  bgoldbtbndlem1  46459  elfzolborelfzop1  47153
  Copyright terms: Public domain W3C validator