| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > leloe | Structured version Visualization version GIF version | ||
| Description: 'Less than or equal to' expressed in terms of 'less than' or 'equals'. (Contributed by NM, 13-May-1999.) |
| Ref | Expression |
|---|---|
| leloe | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lenlt 11313 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
| 2 | axlttri 11306 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 ↔ ¬ (𝐵 = 𝐴 ∨ 𝐴 < 𝐵))) | |
| 3 | 2 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 ↔ ¬ (𝐵 = 𝐴 ∨ 𝐴 < 𝐵))) |
| 4 | 3 | con2bid 354 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 = 𝐴 ∨ 𝐴 < 𝐵) ↔ ¬ 𝐵 < 𝐴)) |
| 5 | eqcom 2742 | . . . . 5 ⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) | |
| 6 | 5 | orbi1i 913 | . . . 4 ⊢ ((𝐵 = 𝐴 ∨ 𝐴 < 𝐵) ↔ (𝐴 = 𝐵 ∨ 𝐴 < 𝐵)) |
| 7 | orcom 870 | . . . 4 ⊢ ((𝐴 = 𝐵 ∨ 𝐴 < 𝐵) ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵)) | |
| 8 | 6, 7 | bitri 275 | . . 3 ⊢ ((𝐵 = 𝐴 ∨ 𝐴 < 𝐵) ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵)) |
| 9 | 4, 8 | bitr3di 286 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐵 < 𝐴 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) |
| 10 | 1, 9 | bitrd 279 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ℝcr 11128 < clt 11269 ≤ cle 11270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-pre-lttri 11203 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 |
| This theorem is referenced by: ltle 11323 leltne 11324 lelttr 11325 ltletr 11327 letr 11329 leid 11331 ltlen 11336 leloei 11352 leloed 11378 lemul1 12093 lemul1a 12095 squeeze0 12145 sup3 12199 nn0ge0 12526 nn0sub 12551 elnn0z 12601 xlemul1a 13304 modfzo0difsn 13961 om2uzlti 13968 om2uzlt2i 13969 sqlecan 14227 discr 14258 facdiv 14305 facwordi 14307 resqrex 15269 sqrt2irr 16267 lcmf 16652 ge2nprmge4 16720 efgsfo 19720 efgred 19729 itg2mulc 25700 itgabs 25788 dgrlt 26224 sinq12ge0 26469 sineq0 26485 cxpge0 26644 cxplea 26657 cxple2 26658 cxple2a 26660 cxpcn3lem 26709 cxpcn3 26710 cxpaddlelem 26713 cxpaddle 26714 ang180lem3 26773 atanlogaddlem 26875 rlimcnp2 26928 jensen 26951 amgm 26953 htthlem 30898 hiidge0 31079 staddi 32227 stadd3i 32229 2exple2exp 32824 poimirlem28 37672 itgaddnclem2 37703 itgabsnc 37713 sn-sup3d 42515 pellfund14gap 42910 sineq0ALT 44961 icccncfext 45916 ltnltne 47328 iccpartnel 47452 odz2prm2pw 47577 evenltle 47731 gbowge7 47777 bgoldbtbndlem1 47819 elfzolborelfzop1 48495 |
| Copyright terms: Public domain | W3C validator |