| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > leloe | Structured version Visualization version GIF version | ||
| Description: 'Less than or equal to' expressed in terms of 'less than' or 'equals'. (Contributed by NM, 13-May-1999.) |
| Ref | Expression |
|---|---|
| leloe | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lenlt 11200 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
| 2 | axlttri 11193 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 ↔ ¬ (𝐵 = 𝐴 ∨ 𝐴 < 𝐵))) | |
| 3 | 2 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 ↔ ¬ (𝐵 = 𝐴 ∨ 𝐴 < 𝐵))) |
| 4 | 3 | con2bid 354 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 = 𝐴 ∨ 𝐴 < 𝐵) ↔ ¬ 𝐵 < 𝐴)) |
| 5 | eqcom 2740 | . . . . 5 ⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) | |
| 6 | 5 | orbi1i 913 | . . . 4 ⊢ ((𝐵 = 𝐴 ∨ 𝐴 < 𝐵) ↔ (𝐴 = 𝐵 ∨ 𝐴 < 𝐵)) |
| 7 | orcom 870 | . . . 4 ⊢ ((𝐴 = 𝐵 ∨ 𝐴 < 𝐵) ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵)) | |
| 8 | 6, 7 | bitri 275 | . . 3 ⊢ ((𝐵 = 𝐴 ∨ 𝐴 < 𝐵) ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵)) |
| 9 | 4, 8 | bitr3di 286 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐵 < 𝐴 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) |
| 10 | 1, 9 | bitrd 279 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 ℝcr 11014 < clt 11155 ≤ cle 11156 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-resscn 11072 ax-pre-lttri 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 |
| This theorem is referenced by: ltle 11210 leltne 11211 lelttr 11212 ltletr 11214 letr 11216 leid 11218 ltlen 11223 leloei 11239 leloed 11265 lemul1 11982 lemul1a 11984 squeeze0 12034 sup3 12088 nn0ge0 12415 nn0sub 12440 elnn0z 12490 xlemul1a 13191 modfzo0difsn 13854 om2uzlti 13861 om2uzlt2i 13862 sqlecan 14120 discr 14151 facdiv 14198 facwordi 14200 resqrex 15161 sqrt2irr 16162 lcmf 16548 ge2nprmge4 16616 efgsfo 19655 efgred 19664 itg2mulc 25678 itgabs 25766 dgrlt 26202 sinq12ge0 26447 sineq0 26463 cxpge0 26622 cxplea 26635 cxple2 26636 cxple2a 26638 cxpcn3lem 26687 cxpcn3 26688 cxpaddlelem 26691 cxpaddle 26692 ang180lem3 26751 atanlogaddlem 26853 rlimcnp2 26906 jensen 26929 amgm 26931 htthlem 30901 hiidge0 31082 staddi 32230 stadd3i 32232 2exple2exp 32835 poimirlem28 37711 itgaddnclem2 37742 itgabsnc 37752 sn-sup3d 42613 pellfund14gap 43007 sineq0ALT 45056 icccncfext 46012 ltnltne 47426 iccpartnel 47565 odz2prm2pw 47690 evenltle 47844 gbowge7 47890 bgoldbtbndlem1 47932 elfzolborelfzop1 48647 |
| Copyright terms: Public domain | W3C validator |