![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > leloe | Structured version Visualization version GIF version |
Description: 'Less than or equal to' expressed in terms of 'less than' or 'equals'. (Contributed by NM, 13-May-1999.) |
Ref | Expression |
---|---|
leloe | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lenlt 11291 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
2 | axlttri 11284 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 ↔ ¬ (𝐵 = 𝐴 ∨ 𝐴 < 𝐵))) | |
3 | 2 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 ↔ ¬ (𝐵 = 𝐴 ∨ 𝐴 < 𝐵))) |
4 | 3 | con2bid 354 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 = 𝐴 ∨ 𝐴 < 𝐵) ↔ ¬ 𝐵 < 𝐴)) |
5 | eqcom 2731 | . . . . 5 ⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) | |
6 | 5 | orbi1i 910 | . . . 4 ⊢ ((𝐵 = 𝐴 ∨ 𝐴 < 𝐵) ↔ (𝐴 = 𝐵 ∨ 𝐴 < 𝐵)) |
7 | orcom 867 | . . . 4 ⊢ ((𝐴 = 𝐵 ∨ 𝐴 < 𝐵) ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵)) | |
8 | 6, 7 | bitri 275 | . . 3 ⊢ ((𝐵 = 𝐴 ∨ 𝐴 < 𝐵) ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵)) |
9 | 4, 8 | bitr3di 286 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐵 < 𝐴 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) |
10 | 1, 9 | bitrd 279 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 = wceq 1533 ∈ wcel 2098 class class class wbr 5139 ℝcr 11106 < clt 11247 ≤ cle 11248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-resscn 11164 ax-pre-lttri 11181 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 |
This theorem is referenced by: ltle 11301 leltne 11302 lelttr 11303 ltletr 11305 letr 11307 leid 11309 ltlen 11314 leloei 11330 leloed 11356 lemul1 12065 lemul1a 12067 squeeze0 12116 sup3 12170 nn0ge0 12496 nn0sub 12521 elnn0z 12570 xlemul1a 13268 modfzo0difsn 13909 om2uzlti 13916 om2uzlt2i 13917 sqlecan 14174 discr 14204 facdiv 14248 facwordi 14250 resqrex 15199 sqrt2irr 16195 lcmf 16573 ge2nprmge4 16641 efgsfo 19655 efgred 19664 itg2mulc 25621 itgabs 25708 dgrlt 26144 sinq12ge0 26383 sineq0 26398 cxpge0 26557 cxplea 26570 cxple2 26571 cxple2a 26573 cxpcn3lem 26622 cxpcn3 26623 cxpaddlelem 26626 cxpaddle 26627 ang180lem3 26683 atanlogaddlem 26785 rlimcnp2 26838 jensen 26861 amgm 26863 htthlem 30664 hiidge0 30845 staddi 31993 stadd3i 31995 poimirlem28 37019 itgaddnclem2 37050 itgabsnc 37060 pellfund14gap 42175 sineq0ALT 44247 icccncfext 45148 ltnltne 46552 iccpartnel 46651 odz2prm2pw 46776 evenltle 46930 gbowge7 46976 bgoldbtbndlem1 47018 elfzolborelfzop1 47448 |
Copyright terms: Public domain | W3C validator |