MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leloe Structured version   Visualization version   GIF version

Theorem leloe 10992
Description: 'Less than or equal to' expressed in terms of 'less than' or 'equals'. (Contributed by NM, 13-May-1999.)
Assertion
Ref Expression
leloe ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))

Proof of Theorem leloe
StepHypRef Expression
1 lenlt 10984 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
2 axlttri 10977 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 ↔ ¬ (𝐵 = 𝐴𝐴 < 𝐵)))
32ancoms 458 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 ↔ ¬ (𝐵 = 𝐴𝐴 < 𝐵)))
43con2bid 354 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 = 𝐴𝐴 < 𝐵) ↔ ¬ 𝐵 < 𝐴))
5 eqcom 2745 . . . . 5 (𝐵 = 𝐴𝐴 = 𝐵)
65orbi1i 910 . . . 4 ((𝐵 = 𝐴𝐴 < 𝐵) ↔ (𝐴 = 𝐵𝐴 < 𝐵))
7 orcom 866 . . . 4 ((𝐴 = 𝐵𝐴 < 𝐵) ↔ (𝐴 < 𝐵𝐴 = 𝐵))
86, 7bitri 274 . . 3 ((𝐵 = 𝐴𝐴 < 𝐵) ↔ (𝐴 < 𝐵𝐴 = 𝐵))
94, 8bitr3di 285 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐵 < 𝐴 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
101, 9bitrd 278 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108   class class class wbr 5070  cr 10801   < clt 10940  cle 10941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-pre-lttri 10876
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946
This theorem is referenced by:  ltle  10994  leltne  10995  lelttr  10996  ltletr  10997  letr  10999  leid  11001  ltlen  11006  leloei  11022  leloed  11048  lemul1  11757  lemul1a  11759  squeeze0  11808  sup3  11862  nn0ge0  12188  nn0sub  12213  elnn0z  12262  xlemul1a  12951  modfzo0difsn  13591  om2uzlti  13598  om2uzlt2i  13599  sqlecan  13853  discr  13883  facdiv  13929  facwordi  13931  resqrex  14890  sqrt2irr  15886  lcmf  16266  ge2nprmge4  16334  efgsfo  19260  efgred  19269  itg2mulc  24817  itgabs  24904  dgrlt  25332  sinq12ge0  25570  sineq0  25585  cxpge0  25743  cxplea  25756  cxple2  25757  cxple2a  25759  cxpcn3lem  25805  cxpcn3  25806  cxpaddlelem  25809  cxpaddle  25810  ang180lem3  25866  atanlogaddlem  25968  rlimcnp2  26021  jensen  26043  amgm  26045  htthlem  29180  hiidge0  29361  staddi  30509  stadd3i  30511  poimirlem28  35732  itgaddnclem2  35763  itgabsnc  35773  pellfund14gap  40625  sineq0ALT  42446  icccncfext  43318  ltnltne  44679  iccpartnel  44778  odz2prm2pw  44903  evenltle  45057  gbowge7  45103  bgoldbtbndlem1  45145  elfzolborelfzop1  45748
  Copyright terms: Public domain W3C validator