MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leloe Structured version   Visualization version   GIF version

Theorem leloe 11267
Description: 'Less than or equal to' expressed in terms of 'less than' or 'equals'. (Contributed by NM, 13-May-1999.)
Assertion
Ref Expression
leloe ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))

Proof of Theorem leloe
StepHypRef Expression
1 lenlt 11259 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
2 axlttri 11252 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 ↔ ¬ (𝐵 = 𝐴𝐴 < 𝐵)))
32ancoms 458 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 ↔ ¬ (𝐵 = 𝐴𝐴 < 𝐵)))
43con2bid 354 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 = 𝐴𝐴 < 𝐵) ↔ ¬ 𝐵 < 𝐴))
5 eqcom 2737 . . . . 5 (𝐵 = 𝐴𝐴 = 𝐵)
65orbi1i 913 . . . 4 ((𝐵 = 𝐴𝐴 < 𝐵) ↔ (𝐴 = 𝐵𝐴 < 𝐵))
7 orcom 870 . . . 4 ((𝐴 = 𝐵𝐴 < 𝐵) ↔ (𝐴 < 𝐵𝐴 = 𝐵))
86, 7bitri 275 . . 3 ((𝐵 = 𝐴𝐴 < 𝐵) ↔ (𝐴 < 𝐵𝐴 = 𝐵))
94, 8bitr3di 286 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐵 < 𝐴 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
101, 9bitrd 279 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109   class class class wbr 5110  cr 11074   < clt 11215  cle 11216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-pre-lttri 11149
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221
This theorem is referenced by:  ltle  11269  leltne  11270  lelttr  11271  ltletr  11273  letr  11275  leid  11277  ltlen  11282  leloei  11298  leloed  11324  lemul1  12041  lemul1a  12043  squeeze0  12093  sup3  12147  nn0ge0  12474  nn0sub  12499  elnn0z  12549  xlemul1a  13255  modfzo0difsn  13915  om2uzlti  13922  om2uzlt2i  13923  sqlecan  14181  discr  14212  facdiv  14259  facwordi  14261  resqrex  15223  sqrt2irr  16224  lcmf  16610  ge2nprmge4  16678  efgsfo  19676  efgred  19685  itg2mulc  25655  itgabs  25743  dgrlt  26179  sinq12ge0  26424  sineq0  26440  cxpge0  26599  cxplea  26612  cxple2  26613  cxple2a  26615  cxpcn3lem  26664  cxpcn3  26665  cxpaddlelem  26668  cxpaddle  26669  ang180lem3  26728  atanlogaddlem  26830  rlimcnp2  26883  jensen  26906  amgm  26908  htthlem  30853  hiidge0  31034  staddi  32182  stadd3i  32184  2exple2exp  32777  poimirlem28  37649  itgaddnclem2  37680  itgabsnc  37690  sn-sup3d  42487  pellfund14gap  42882  sineq0ALT  44933  icccncfext  45892  ltnltne  47304  iccpartnel  47443  odz2prm2pw  47568  evenltle  47722  gbowge7  47768  bgoldbtbndlem1  47810  elfzolborelfzop1  48512
  Copyright terms: Public domain W3C validator