HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  leopg Structured version   Visualization version   GIF version

Theorem leopg 29557
Description: Ordering relation for positive operators. Definition of positive operator ordering in [Kreyszig] p. 470. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.)
Assertion
Ref Expression
leopg ((𝑇𝐴𝑈𝐵) → (𝑇op 𝑈 ↔ ((𝑈op 𝑇) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑈op 𝑇)‘𝑥) ·ih 𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑇   𝑥,𝑈

Proof of Theorem leopg
Dummy variables 𝑢 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6932 . . . 4 (𝑡 = 𝑇 → (𝑢op 𝑡) = (𝑢op 𝑇))
21eleq1d 2844 . . 3 (𝑡 = 𝑇 → ((𝑢op 𝑡) ∈ HrmOp ↔ (𝑢op 𝑇) ∈ HrmOp))
31fveq1d 6450 . . . . . 6 (𝑡 = 𝑇 → ((𝑢op 𝑡)‘𝑥) = ((𝑢op 𝑇)‘𝑥))
43oveq1d 6939 . . . . 5 (𝑡 = 𝑇 → (((𝑢op 𝑡)‘𝑥) ·ih 𝑥) = (((𝑢op 𝑇)‘𝑥) ·ih 𝑥))
54breq2d 4900 . . . 4 (𝑡 = 𝑇 → (0 ≤ (((𝑢op 𝑡)‘𝑥) ·ih 𝑥) ↔ 0 ≤ (((𝑢op 𝑇)‘𝑥) ·ih 𝑥)))
65ralbidv 3168 . . 3 (𝑡 = 𝑇 → (∀𝑥 ∈ ℋ 0 ≤ (((𝑢op 𝑡)‘𝑥) ·ih 𝑥) ↔ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢op 𝑇)‘𝑥) ·ih 𝑥)))
72, 6anbi12d 624 . 2 (𝑡 = 𝑇 → (((𝑢op 𝑡) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢op 𝑡)‘𝑥) ·ih 𝑥)) ↔ ((𝑢op 𝑇) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢op 𝑇)‘𝑥) ·ih 𝑥))))
8 oveq1 6931 . . . 4 (𝑢 = 𝑈 → (𝑢op 𝑇) = (𝑈op 𝑇))
98eleq1d 2844 . . 3 (𝑢 = 𝑈 → ((𝑢op 𝑇) ∈ HrmOp ↔ (𝑈op 𝑇) ∈ HrmOp))
108fveq1d 6450 . . . . . 6 (𝑢 = 𝑈 → ((𝑢op 𝑇)‘𝑥) = ((𝑈op 𝑇)‘𝑥))
1110oveq1d 6939 . . . . 5 (𝑢 = 𝑈 → (((𝑢op 𝑇)‘𝑥) ·ih 𝑥) = (((𝑈op 𝑇)‘𝑥) ·ih 𝑥))
1211breq2d 4900 . . . 4 (𝑢 = 𝑈 → (0 ≤ (((𝑢op 𝑇)‘𝑥) ·ih 𝑥) ↔ 0 ≤ (((𝑈op 𝑇)‘𝑥) ·ih 𝑥)))
1312ralbidv 3168 . . 3 (𝑢 = 𝑈 → (∀𝑥 ∈ ℋ 0 ≤ (((𝑢op 𝑇)‘𝑥) ·ih 𝑥) ↔ ∀𝑥 ∈ ℋ 0 ≤ (((𝑈op 𝑇)‘𝑥) ·ih 𝑥)))
149, 13anbi12d 624 . 2 (𝑢 = 𝑈 → (((𝑢op 𝑇) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢op 𝑇)‘𝑥) ·ih 𝑥)) ↔ ((𝑈op 𝑇) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑈op 𝑇)‘𝑥) ·ih 𝑥))))
15 df-leop 29287 . 2 op = {⟨𝑡, 𝑢⟩ ∣ ((𝑢op 𝑡) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢op 𝑡)‘𝑥) ·ih 𝑥))}
167, 14, 15brabg 5233 1 ((𝑇𝐴𝑈𝐵) → (𝑇op 𝑈 ↔ ((𝑈op 𝑇) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑈op 𝑇)‘𝑥) ·ih 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  wral 3090   class class class wbr 4888  cfv 6137  (class class class)co 6924  0cc0 10274  cle 10414  chba 28352   ·ih csp 28355  op chod 28373  HrmOpcho 28383  op cleo 28391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pr 5140
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-br 4889  df-opab 4951  df-iota 6101  df-fv 6145  df-ov 6927  df-leop 29287
This theorem is referenced by:  leop  29558  leoprf2  29562
  Copyright terms: Public domain W3C validator