| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 7398 |
. . . 4
⊢ (𝑡 = 𝑇 → (𝑢 −op 𝑡) = (𝑢 −op 𝑇)) |
| 2 | 1 | eleq1d 2814 |
. . 3
⊢ (𝑡 = 𝑇 → ((𝑢 −op 𝑡) ∈ HrmOp ↔ (𝑢 −op 𝑇) ∈ HrmOp)) |
| 3 | 1 | fveq1d 6863 |
. . . . . 6
⊢ (𝑡 = 𝑇 → ((𝑢 −op 𝑡)‘𝑥) = ((𝑢 −op 𝑇)‘𝑥)) |
| 4 | 3 | oveq1d 7405 |
. . . . 5
⊢ (𝑡 = 𝑇 → (((𝑢 −op 𝑡)‘𝑥) ·ih 𝑥) = (((𝑢 −op 𝑇)‘𝑥) ·ih 𝑥)) |
| 5 | 4 | breq2d 5122 |
. . . 4
⊢ (𝑡 = 𝑇 → (0 ≤ (((𝑢 −op 𝑡)‘𝑥) ·ih 𝑥) ↔ 0 ≤ (((𝑢 −op 𝑇)‘𝑥) ·ih 𝑥))) |
| 6 | 5 | ralbidv 3157 |
. . 3
⊢ (𝑡 = 𝑇 → (∀𝑥 ∈ ℋ 0 ≤ (((𝑢 −op 𝑡)‘𝑥) ·ih 𝑥) ↔ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢 −op 𝑇)‘𝑥) ·ih 𝑥))) |
| 7 | 2, 6 | anbi12d 632 |
. 2
⊢ (𝑡 = 𝑇 → (((𝑢 −op 𝑡) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢 −op 𝑡)‘𝑥) ·ih 𝑥)) ↔ ((𝑢 −op 𝑇) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢 −op 𝑇)‘𝑥) ·ih 𝑥)))) |
| 8 | | oveq1 7397 |
. . . 4
⊢ (𝑢 = 𝑈 → (𝑢 −op 𝑇) = (𝑈 −op 𝑇)) |
| 9 | 8 | eleq1d 2814 |
. . 3
⊢ (𝑢 = 𝑈 → ((𝑢 −op 𝑇) ∈ HrmOp ↔ (𝑈 −op 𝑇) ∈ HrmOp)) |
| 10 | 8 | fveq1d 6863 |
. . . . . 6
⊢ (𝑢 = 𝑈 → ((𝑢 −op 𝑇)‘𝑥) = ((𝑈 −op 𝑇)‘𝑥)) |
| 11 | 10 | oveq1d 7405 |
. . . . 5
⊢ (𝑢 = 𝑈 → (((𝑢 −op 𝑇)‘𝑥) ·ih 𝑥) = (((𝑈 −op 𝑇)‘𝑥) ·ih 𝑥)) |
| 12 | 11 | breq2d 5122 |
. . . 4
⊢ (𝑢 = 𝑈 → (0 ≤ (((𝑢 −op 𝑇)‘𝑥) ·ih 𝑥) ↔ 0 ≤ (((𝑈 −op 𝑇)‘𝑥) ·ih 𝑥))) |
| 13 | 12 | ralbidv 3157 |
. . 3
⊢ (𝑢 = 𝑈 → (∀𝑥 ∈ ℋ 0 ≤ (((𝑢 −op 𝑇)‘𝑥) ·ih 𝑥) ↔ ∀𝑥 ∈ ℋ 0 ≤ (((𝑈 −op 𝑇)‘𝑥) ·ih 𝑥))) |
| 14 | 9, 13 | anbi12d 632 |
. 2
⊢ (𝑢 = 𝑈 → (((𝑢 −op 𝑇) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢 −op 𝑇)‘𝑥) ·ih 𝑥)) ↔ ((𝑈 −op 𝑇) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑈 −op 𝑇)‘𝑥) ·ih 𝑥)))) |
| 15 | | df-leop 31788 |
. 2
⊢
≤op = {〈𝑡, 𝑢〉 ∣ ((𝑢 −op 𝑡) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢 −op 𝑡)‘𝑥) ·ih 𝑥))} |
| 16 | 7, 14, 15 | brabg 5502 |
1
⊢ ((𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐵) → (𝑇 ≤op 𝑈 ↔ ((𝑈 −op 𝑇) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑈 −op 𝑇)‘𝑥) ·ih 𝑥)))) |