HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  leopg Structured version   Visualization version   GIF version

Theorem leopg 32058
Description: Ordering relation for positive operators. Definition of positive operator ordering in [Kreyszig] p. 470. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.)
Assertion
Ref Expression
leopg ((𝑇𝐴𝑈𝐵) → (𝑇op 𝑈 ↔ ((𝑈op 𝑇) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑈op 𝑇)‘𝑥) ·ih 𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑇   𝑥,𝑈

Proof of Theorem leopg
Dummy variables 𝑢 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7398 . . . 4 (𝑡 = 𝑇 → (𝑢op 𝑡) = (𝑢op 𝑇))
21eleq1d 2814 . . 3 (𝑡 = 𝑇 → ((𝑢op 𝑡) ∈ HrmOp ↔ (𝑢op 𝑇) ∈ HrmOp))
31fveq1d 6863 . . . . . 6 (𝑡 = 𝑇 → ((𝑢op 𝑡)‘𝑥) = ((𝑢op 𝑇)‘𝑥))
43oveq1d 7405 . . . . 5 (𝑡 = 𝑇 → (((𝑢op 𝑡)‘𝑥) ·ih 𝑥) = (((𝑢op 𝑇)‘𝑥) ·ih 𝑥))
54breq2d 5122 . . . 4 (𝑡 = 𝑇 → (0 ≤ (((𝑢op 𝑡)‘𝑥) ·ih 𝑥) ↔ 0 ≤ (((𝑢op 𝑇)‘𝑥) ·ih 𝑥)))
65ralbidv 3157 . . 3 (𝑡 = 𝑇 → (∀𝑥 ∈ ℋ 0 ≤ (((𝑢op 𝑡)‘𝑥) ·ih 𝑥) ↔ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢op 𝑇)‘𝑥) ·ih 𝑥)))
72, 6anbi12d 632 . 2 (𝑡 = 𝑇 → (((𝑢op 𝑡) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢op 𝑡)‘𝑥) ·ih 𝑥)) ↔ ((𝑢op 𝑇) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢op 𝑇)‘𝑥) ·ih 𝑥))))
8 oveq1 7397 . . . 4 (𝑢 = 𝑈 → (𝑢op 𝑇) = (𝑈op 𝑇))
98eleq1d 2814 . . 3 (𝑢 = 𝑈 → ((𝑢op 𝑇) ∈ HrmOp ↔ (𝑈op 𝑇) ∈ HrmOp))
108fveq1d 6863 . . . . . 6 (𝑢 = 𝑈 → ((𝑢op 𝑇)‘𝑥) = ((𝑈op 𝑇)‘𝑥))
1110oveq1d 7405 . . . . 5 (𝑢 = 𝑈 → (((𝑢op 𝑇)‘𝑥) ·ih 𝑥) = (((𝑈op 𝑇)‘𝑥) ·ih 𝑥))
1211breq2d 5122 . . . 4 (𝑢 = 𝑈 → (0 ≤ (((𝑢op 𝑇)‘𝑥) ·ih 𝑥) ↔ 0 ≤ (((𝑈op 𝑇)‘𝑥) ·ih 𝑥)))
1312ralbidv 3157 . . 3 (𝑢 = 𝑈 → (∀𝑥 ∈ ℋ 0 ≤ (((𝑢op 𝑇)‘𝑥) ·ih 𝑥) ↔ ∀𝑥 ∈ ℋ 0 ≤ (((𝑈op 𝑇)‘𝑥) ·ih 𝑥)))
149, 13anbi12d 632 . 2 (𝑢 = 𝑈 → (((𝑢op 𝑇) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢op 𝑇)‘𝑥) ·ih 𝑥)) ↔ ((𝑈op 𝑇) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑈op 𝑇)‘𝑥) ·ih 𝑥))))
15 df-leop 31788 . 2 op = {⟨𝑡, 𝑢⟩ ∣ ((𝑢op 𝑡) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢op 𝑡)‘𝑥) ·ih 𝑥))}
167, 14, 15brabg 5502 1 ((𝑇𝐴𝑈𝐵) → (𝑇op 𝑈 ↔ ((𝑈op 𝑇) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑈op 𝑇)‘𝑥) ·ih 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045   class class class wbr 5110  cfv 6514  (class class class)co 7390  0cc0 11075  cle 11216  chba 30855   ·ih csp 30858  op chod 30876  HrmOpcho 30886  op cleo 30894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-iota 6467  df-fv 6522  df-ov 7393  df-leop 31788
This theorem is referenced by:  leop  32059  leoprf2  32063
  Copyright terms: Public domain W3C validator