Step | Hyp | Ref
| Expression |
1 | | oveq2 7263 |
. . . 4
⊢ (𝑡 = 𝑇 → (𝑢 −op 𝑡) = (𝑢 −op 𝑇)) |
2 | 1 | eleq1d 2823 |
. . 3
⊢ (𝑡 = 𝑇 → ((𝑢 −op 𝑡) ∈ HrmOp ↔ (𝑢 −op 𝑇) ∈ HrmOp)) |
3 | 1 | fveq1d 6758 |
. . . . . 6
⊢ (𝑡 = 𝑇 → ((𝑢 −op 𝑡)‘𝑥) = ((𝑢 −op 𝑇)‘𝑥)) |
4 | 3 | oveq1d 7270 |
. . . . 5
⊢ (𝑡 = 𝑇 → (((𝑢 −op 𝑡)‘𝑥) ·ih 𝑥) = (((𝑢 −op 𝑇)‘𝑥) ·ih 𝑥)) |
5 | 4 | breq2d 5082 |
. . . 4
⊢ (𝑡 = 𝑇 → (0 ≤ (((𝑢 −op 𝑡)‘𝑥) ·ih 𝑥) ↔ 0 ≤ (((𝑢 −op 𝑇)‘𝑥) ·ih 𝑥))) |
6 | 5 | ralbidv 3120 |
. . 3
⊢ (𝑡 = 𝑇 → (∀𝑥 ∈ ℋ 0 ≤ (((𝑢 −op 𝑡)‘𝑥) ·ih 𝑥) ↔ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢 −op 𝑇)‘𝑥) ·ih 𝑥))) |
7 | 2, 6 | anbi12d 630 |
. 2
⊢ (𝑡 = 𝑇 → (((𝑢 −op 𝑡) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢 −op 𝑡)‘𝑥) ·ih 𝑥)) ↔ ((𝑢 −op 𝑇) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢 −op 𝑇)‘𝑥) ·ih 𝑥)))) |
8 | | oveq1 7262 |
. . . 4
⊢ (𝑢 = 𝑈 → (𝑢 −op 𝑇) = (𝑈 −op 𝑇)) |
9 | 8 | eleq1d 2823 |
. . 3
⊢ (𝑢 = 𝑈 → ((𝑢 −op 𝑇) ∈ HrmOp ↔ (𝑈 −op 𝑇) ∈ HrmOp)) |
10 | 8 | fveq1d 6758 |
. . . . . 6
⊢ (𝑢 = 𝑈 → ((𝑢 −op 𝑇)‘𝑥) = ((𝑈 −op 𝑇)‘𝑥)) |
11 | 10 | oveq1d 7270 |
. . . . 5
⊢ (𝑢 = 𝑈 → (((𝑢 −op 𝑇)‘𝑥) ·ih 𝑥) = (((𝑈 −op 𝑇)‘𝑥) ·ih 𝑥)) |
12 | 11 | breq2d 5082 |
. . . 4
⊢ (𝑢 = 𝑈 → (0 ≤ (((𝑢 −op 𝑇)‘𝑥) ·ih 𝑥) ↔ 0 ≤ (((𝑈 −op 𝑇)‘𝑥) ·ih 𝑥))) |
13 | 12 | ralbidv 3120 |
. . 3
⊢ (𝑢 = 𝑈 → (∀𝑥 ∈ ℋ 0 ≤ (((𝑢 −op 𝑇)‘𝑥) ·ih 𝑥) ↔ ∀𝑥 ∈ ℋ 0 ≤ (((𝑈 −op 𝑇)‘𝑥) ·ih 𝑥))) |
14 | 9, 13 | anbi12d 630 |
. 2
⊢ (𝑢 = 𝑈 → (((𝑢 −op 𝑇) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢 −op 𝑇)‘𝑥) ·ih 𝑥)) ↔ ((𝑈 −op 𝑇) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑈 −op 𝑇)‘𝑥) ·ih 𝑥)))) |
15 | | df-leop 30115 |
. 2
⊢
≤op = {〈𝑡, 𝑢〉 ∣ ((𝑢 −op 𝑡) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢 −op 𝑡)‘𝑥) ·ih 𝑥))} |
16 | 7, 14, 15 | brabg 5445 |
1
⊢ ((𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐵) → (𝑇 ≤op 𝑈 ↔ ((𝑈 −op 𝑇) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑈 −op 𝑇)‘𝑥) ·ih 𝑥)))) |