![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > leopg | Structured version Visualization version GIF version |
Description: Ordering relation for positive operators. Definition of positive operator ordering in [Kreyszig] p. 470. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
leopg | ⊢ ((𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐵) → (𝑇 ≤op 𝑈 ↔ ((𝑈 −op 𝑇) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑈 −op 𝑇)‘𝑥) ·ih 𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 6932 | . . . 4 ⊢ (𝑡 = 𝑇 → (𝑢 −op 𝑡) = (𝑢 −op 𝑇)) | |
2 | 1 | eleq1d 2844 | . . 3 ⊢ (𝑡 = 𝑇 → ((𝑢 −op 𝑡) ∈ HrmOp ↔ (𝑢 −op 𝑇) ∈ HrmOp)) |
3 | 1 | fveq1d 6450 | . . . . . 6 ⊢ (𝑡 = 𝑇 → ((𝑢 −op 𝑡)‘𝑥) = ((𝑢 −op 𝑇)‘𝑥)) |
4 | 3 | oveq1d 6939 | . . . . 5 ⊢ (𝑡 = 𝑇 → (((𝑢 −op 𝑡)‘𝑥) ·ih 𝑥) = (((𝑢 −op 𝑇)‘𝑥) ·ih 𝑥)) |
5 | 4 | breq2d 4900 | . . . 4 ⊢ (𝑡 = 𝑇 → (0 ≤ (((𝑢 −op 𝑡)‘𝑥) ·ih 𝑥) ↔ 0 ≤ (((𝑢 −op 𝑇)‘𝑥) ·ih 𝑥))) |
6 | 5 | ralbidv 3168 | . . 3 ⊢ (𝑡 = 𝑇 → (∀𝑥 ∈ ℋ 0 ≤ (((𝑢 −op 𝑡)‘𝑥) ·ih 𝑥) ↔ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢 −op 𝑇)‘𝑥) ·ih 𝑥))) |
7 | 2, 6 | anbi12d 624 | . 2 ⊢ (𝑡 = 𝑇 → (((𝑢 −op 𝑡) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢 −op 𝑡)‘𝑥) ·ih 𝑥)) ↔ ((𝑢 −op 𝑇) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢 −op 𝑇)‘𝑥) ·ih 𝑥)))) |
8 | oveq1 6931 | . . . 4 ⊢ (𝑢 = 𝑈 → (𝑢 −op 𝑇) = (𝑈 −op 𝑇)) | |
9 | 8 | eleq1d 2844 | . . 3 ⊢ (𝑢 = 𝑈 → ((𝑢 −op 𝑇) ∈ HrmOp ↔ (𝑈 −op 𝑇) ∈ HrmOp)) |
10 | 8 | fveq1d 6450 | . . . . . 6 ⊢ (𝑢 = 𝑈 → ((𝑢 −op 𝑇)‘𝑥) = ((𝑈 −op 𝑇)‘𝑥)) |
11 | 10 | oveq1d 6939 | . . . . 5 ⊢ (𝑢 = 𝑈 → (((𝑢 −op 𝑇)‘𝑥) ·ih 𝑥) = (((𝑈 −op 𝑇)‘𝑥) ·ih 𝑥)) |
12 | 11 | breq2d 4900 | . . . 4 ⊢ (𝑢 = 𝑈 → (0 ≤ (((𝑢 −op 𝑇)‘𝑥) ·ih 𝑥) ↔ 0 ≤ (((𝑈 −op 𝑇)‘𝑥) ·ih 𝑥))) |
13 | 12 | ralbidv 3168 | . . 3 ⊢ (𝑢 = 𝑈 → (∀𝑥 ∈ ℋ 0 ≤ (((𝑢 −op 𝑇)‘𝑥) ·ih 𝑥) ↔ ∀𝑥 ∈ ℋ 0 ≤ (((𝑈 −op 𝑇)‘𝑥) ·ih 𝑥))) |
14 | 9, 13 | anbi12d 624 | . 2 ⊢ (𝑢 = 𝑈 → (((𝑢 −op 𝑇) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢 −op 𝑇)‘𝑥) ·ih 𝑥)) ↔ ((𝑈 −op 𝑇) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑈 −op 𝑇)‘𝑥) ·ih 𝑥)))) |
15 | df-leop 29287 | . 2 ⊢ ≤op = {〈𝑡, 𝑢〉 ∣ ((𝑢 −op 𝑡) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢 −op 𝑡)‘𝑥) ·ih 𝑥))} | |
16 | 7, 14, 15 | brabg 5233 | 1 ⊢ ((𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐵) → (𝑇 ≤op 𝑈 ↔ ((𝑈 −op 𝑇) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑈 −op 𝑇)‘𝑥) ·ih 𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∀wral 3090 class class class wbr 4888 ‘cfv 6137 (class class class)co 6924 0cc0 10274 ≤ cle 10414 ℋchba 28352 ·ih csp 28355 −op chod 28373 HrmOpcho 28383 ≤op cleo 28391 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pr 5140 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-br 4889 df-opab 4951 df-iota 6101 df-fv 6145 df-ov 6927 df-leop 29287 |
This theorem is referenced by: leop 29558 leoprf2 29562 |
Copyright terms: Public domain | W3C validator |