HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  leopg Structured version   Visualization version   GIF version

Theorem leopg 32066
Description: Ordering relation for positive operators. Definition of positive operator ordering in [Kreyszig] p. 470. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.)
Assertion
Ref Expression
leopg ((𝑇𝐴𝑈𝐵) → (𝑇op 𝑈 ↔ ((𝑈op 𝑇) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑈op 𝑇)‘𝑥) ·ih 𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑇   𝑥,𝑈

Proof of Theorem leopg
Dummy variables 𝑢 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7357 . . . 4 (𝑡 = 𝑇 → (𝑢op 𝑡) = (𝑢op 𝑇))
21eleq1d 2813 . . 3 (𝑡 = 𝑇 → ((𝑢op 𝑡) ∈ HrmOp ↔ (𝑢op 𝑇) ∈ HrmOp))
31fveq1d 6824 . . . . . 6 (𝑡 = 𝑇 → ((𝑢op 𝑡)‘𝑥) = ((𝑢op 𝑇)‘𝑥))
43oveq1d 7364 . . . . 5 (𝑡 = 𝑇 → (((𝑢op 𝑡)‘𝑥) ·ih 𝑥) = (((𝑢op 𝑇)‘𝑥) ·ih 𝑥))
54breq2d 5104 . . . 4 (𝑡 = 𝑇 → (0 ≤ (((𝑢op 𝑡)‘𝑥) ·ih 𝑥) ↔ 0 ≤ (((𝑢op 𝑇)‘𝑥) ·ih 𝑥)))
65ralbidv 3152 . . 3 (𝑡 = 𝑇 → (∀𝑥 ∈ ℋ 0 ≤ (((𝑢op 𝑡)‘𝑥) ·ih 𝑥) ↔ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢op 𝑇)‘𝑥) ·ih 𝑥)))
72, 6anbi12d 632 . 2 (𝑡 = 𝑇 → (((𝑢op 𝑡) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢op 𝑡)‘𝑥) ·ih 𝑥)) ↔ ((𝑢op 𝑇) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢op 𝑇)‘𝑥) ·ih 𝑥))))
8 oveq1 7356 . . . 4 (𝑢 = 𝑈 → (𝑢op 𝑇) = (𝑈op 𝑇))
98eleq1d 2813 . . 3 (𝑢 = 𝑈 → ((𝑢op 𝑇) ∈ HrmOp ↔ (𝑈op 𝑇) ∈ HrmOp))
108fveq1d 6824 . . . . . 6 (𝑢 = 𝑈 → ((𝑢op 𝑇)‘𝑥) = ((𝑈op 𝑇)‘𝑥))
1110oveq1d 7364 . . . . 5 (𝑢 = 𝑈 → (((𝑢op 𝑇)‘𝑥) ·ih 𝑥) = (((𝑈op 𝑇)‘𝑥) ·ih 𝑥))
1211breq2d 5104 . . . 4 (𝑢 = 𝑈 → (0 ≤ (((𝑢op 𝑇)‘𝑥) ·ih 𝑥) ↔ 0 ≤ (((𝑈op 𝑇)‘𝑥) ·ih 𝑥)))
1312ralbidv 3152 . . 3 (𝑢 = 𝑈 → (∀𝑥 ∈ ℋ 0 ≤ (((𝑢op 𝑇)‘𝑥) ·ih 𝑥) ↔ ∀𝑥 ∈ ℋ 0 ≤ (((𝑈op 𝑇)‘𝑥) ·ih 𝑥)))
149, 13anbi12d 632 . 2 (𝑢 = 𝑈 → (((𝑢op 𝑇) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢op 𝑇)‘𝑥) ·ih 𝑥)) ↔ ((𝑈op 𝑇) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑈op 𝑇)‘𝑥) ·ih 𝑥))))
15 df-leop 31796 . 2 op = {⟨𝑡, 𝑢⟩ ∣ ((𝑢op 𝑡) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢op 𝑡)‘𝑥) ·ih 𝑥))}
167, 14, 15brabg 5482 1 ((𝑇𝐴𝑈𝐵) → (𝑇op 𝑈 ↔ ((𝑈op 𝑇) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑈op 𝑇)‘𝑥) ·ih 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5092  cfv 6482  (class class class)co 7349  0cc0 11009  cle 11150  chba 30863   ·ih csp 30866  op chod 30884  HrmOpcho 30894  op cleo 30902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-iota 6438  df-fv 6490  df-ov 7352  df-leop 31796
This theorem is referenced by:  leop  32067  leoprf2  32071
  Copyright terms: Public domain W3C validator