Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvline Structured version   Visualization version   GIF version

Theorem fvline 33593
Description: Calculate the value of the Line function. (Contributed by Scott Fenton, 25-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fvline ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵)) → (𝐴Line𝐵) = {𝑥𝑥 Colinear ⟨𝐴, 𝐵⟩})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑁(𝑥)

Proof of Theorem fvline
Dummy variables 𝑎 𝑏 𝑙 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2819 . . . . 5 [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear
2 fveq2 6663 . . . . . . . . 9 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
32eleq2d 2896 . . . . . . . 8 (𝑛 = 𝑁 → (𝐴 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑁)))
42eleq2d 2896 . . . . . . . 8 (𝑛 = 𝑁 → (𝐵 ∈ (𝔼‘𝑛) ↔ 𝐵 ∈ (𝔼‘𝑁)))
53, 43anbi12d 1430 . . . . . . 7 (𝑛 = 𝑁 → ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ↔ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵)))
65anbi1d 631 . . . . . 6 (𝑛 = 𝑁 → (((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear ) ↔ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear )))
76rspcev 3621 . . . . 5 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear )) → ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear ))
81, 7mpanr2 702 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵)) → ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear ))
9 simpr1 1188 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵)) → 𝐴 ∈ (𝔼‘𝑁))
10 simpr2 1189 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵)) → 𝐵 ∈ (𝔼‘𝑁))
11 colinearex 33509 . . . . . . . 8 Colinear ∈ V
1211cnvex 7622 . . . . . . 7 Colinear ∈ V
13 ecexg 8285 . . . . . . 7 ( Colinear ∈ V → [⟨𝐴, 𝐵⟩] Colinear ∈ V)
1412, 13ax-mp 5 . . . . . 6 [⟨𝐴, 𝐵⟩] Colinear ∈ V
15 eleq1 2898 . . . . . . . . . 10 (𝑎 = 𝐴 → (𝑎 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑛)))
16 neeq1 3076 . . . . . . . . . 10 (𝑎 = 𝐴 → (𝑎𝑏𝐴𝑏))
1715, 163anbi13d 1431 . . . . . . . . 9 (𝑎 = 𝐴 → ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ↔ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝐴𝑏)))
18 opeq1 4795 . . . . . . . . . . 11 (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩)
1918eceq1d 8320 . . . . . . . . . 10 (𝑎 = 𝐴 → [⟨𝑎, 𝑏⟩] Colinear = [⟨𝐴, 𝑏⟩] Colinear )
2019eqeq2d 2830 . . . . . . . . 9 (𝑎 = 𝐴 → (𝑙 = [⟨𝑎, 𝑏⟩] Colinear ↔ 𝑙 = [⟨𝐴, 𝑏⟩] Colinear ))
2117, 20anbi12d 632 . . . . . . . 8 (𝑎 = 𝐴 → (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ↔ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝐴𝑏) ∧ 𝑙 = [⟨𝐴, 𝑏⟩] Colinear )))
2221rexbidv 3295 . . . . . . 7 (𝑎 = 𝐴 → (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝐴𝑏) ∧ 𝑙 = [⟨𝐴, 𝑏⟩] Colinear )))
23 eleq1 2898 . . . . . . . . . 10 (𝑏 = 𝐵 → (𝑏 ∈ (𝔼‘𝑛) ↔ 𝐵 ∈ (𝔼‘𝑛)))
24 neeq2 3077 . . . . . . . . . 10 (𝑏 = 𝐵 → (𝐴𝑏𝐴𝐵))
2523, 243anbi23d 1432 . . . . . . . . 9 (𝑏 = 𝐵 → ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝐴𝑏) ↔ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵)))
26 opeq2 4796 . . . . . . . . . . 11 (𝑏 = 𝐵 → ⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩)
2726eceq1d 8320 . . . . . . . . . 10 (𝑏 = 𝐵 → [⟨𝐴, 𝑏⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear )
2827eqeq2d 2830 . . . . . . . . 9 (𝑏 = 𝐵 → (𝑙 = [⟨𝐴, 𝑏⟩] Colinear ↔ 𝑙 = [⟨𝐴, 𝐵⟩] Colinear ))
2925, 28anbi12d 632 . . . . . . . 8 (𝑏 = 𝐵 → (((𝐴 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝐴𝑏) ∧ 𝑙 = [⟨𝐴, 𝑏⟩] Colinear ) ↔ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ 𝑙 = [⟨𝐴, 𝐵⟩] Colinear )))
3029rexbidv 3295 . . . . . . 7 (𝑏 = 𝐵 → (∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝐴𝑏) ∧ 𝑙 = [⟨𝐴, 𝑏⟩] Colinear ) ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ 𝑙 = [⟨𝐴, 𝐵⟩] Colinear )))
31 eqeq1 2823 . . . . . . . . 9 (𝑙 = [⟨𝐴, 𝐵⟩] Colinear → (𝑙 = [⟨𝐴, 𝐵⟩] Colinear ↔ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear ))
3231anbi2d 630 . . . . . . . 8 (𝑙 = [⟨𝐴, 𝐵⟩] Colinear → (((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ 𝑙 = [⟨𝐴, 𝐵⟩] Colinear ) ↔ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear )))
3332rexbidv 3295 . . . . . . 7 (𝑙 = [⟨𝐴, 𝐵⟩] Colinear → (∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ 𝑙 = [⟨𝐴, 𝐵⟩] Colinear ) ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear )))
3422, 30, 33eloprabg 7254 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ [⟨𝐴, 𝐵⟩] Colinear ∈ V) → (⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )} ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear )))
3514, 34mp3an3 1443 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )} ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear )))
369, 10, 35syl2anc 586 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵)) → (⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )} ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear )))
378, 36mpbird 259 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵)) → ⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )})
38 df-ov 7151 . . . 4 (𝐴Line𝐵) = (Line‘⟨𝐴, 𝐵⟩)
39 df-br 5058 . . . . . 6 (⟨𝐴, 𝐵⟩Line[⟨𝐴, 𝐵⟩] Colinear ↔ ⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ Line)
40 df-line2 33586 . . . . . . 7 Line = {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )}
4140eleq2i 2902 . . . . . 6 (⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ Line ↔ ⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )})
4239, 41bitri 277 . . . . 5 (⟨𝐴, 𝐵⟩Line[⟨𝐴, 𝐵⟩] Colinear ↔ ⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )})
43 funline 33591 . . . . . 6 Fun Line
44 funbrfv 6709 . . . . . 6 (Fun Line → (⟨𝐴, 𝐵⟩Line[⟨𝐴, 𝐵⟩] Colinear → (Line‘⟨𝐴, 𝐵⟩) = [⟨𝐴, 𝐵⟩] Colinear ))
4543, 44ax-mp 5 . . . . 5 (⟨𝐴, 𝐵⟩Line[⟨𝐴, 𝐵⟩] Colinear → (Line‘⟨𝐴, 𝐵⟩) = [⟨𝐴, 𝐵⟩] Colinear )
4642, 45sylbir 237 . . . 4 (⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )} → (Line‘⟨𝐴, 𝐵⟩) = [⟨𝐴, 𝐵⟩] Colinear )
4738, 46syl5eq 2866 . . 3 (⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )} → (𝐴Line𝐵) = [⟨𝐴, 𝐵⟩] Colinear )
4837, 47syl 17 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵)) → (𝐴Line𝐵) = [⟨𝐴, 𝐵⟩] Colinear )
49 opex 5347 . . . 4 𝐴, 𝐵⟩ ∈ V
50 dfec2 8284 . . . 4 (⟨𝐴, 𝐵⟩ ∈ V → [⟨𝐴, 𝐵⟩] Colinear = {𝑥 ∣ ⟨𝐴, 𝐵 Colinear 𝑥})
5149, 50ax-mp 5 . . 3 [⟨𝐴, 𝐵⟩] Colinear = {𝑥 ∣ ⟨𝐴, 𝐵 Colinear 𝑥}
52 vex 3496 . . . . 5 𝑥 ∈ V
5349, 52brcnv 5746 . . . 4 (⟨𝐴, 𝐵 Colinear 𝑥𝑥 Colinear ⟨𝐴, 𝐵⟩)
5453abbii 2884 . . 3 {𝑥 ∣ ⟨𝐴, 𝐵 Colinear 𝑥} = {𝑥𝑥 Colinear ⟨𝐴, 𝐵⟩}
5551, 54eqtri 2842 . 2 [⟨𝐴, 𝐵⟩] Colinear = {𝑥𝑥 Colinear ⟨𝐴, 𝐵⟩}
5648, 55syl6eq 2870 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵)) → (𝐴Line𝐵) = {𝑥𝑥 Colinear ⟨𝐴, 𝐵⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1081   = wceq 1530  wcel 2107  {cab 2797  wne 3014  wrex 3137  Vcvv 3493  cop 4565   class class class wbr 5057  ccnv 5547  Fun wfun 6342  cfv 6348  (class class class)co 7148  {coprab 7149  [cec 8279  cn 11630  𝔼cee 26666   Colinear ccolin 33486  Linecline2 33583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-1cn 10587  ax-addcl 10589
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7151  df-oprab 7152  df-om 7573  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-ec 8283  df-nn 11631  df-colinear 33488  df-line2 33586
This theorem is referenced by:  liness  33594  fvline2  33595  ellines  33601
  Copyright terms: Public domain W3C validator