Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvline Structured version   Visualization version   GIF version

Theorem fvline 34805
Description: Calculate the value of the Line function. (Contributed by Scott Fenton, 25-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fvline ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵)) → (𝐴Line𝐵) = {𝑥𝑥 Colinear ⟨𝐴, 𝐵⟩})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑁(𝑥)

Proof of Theorem fvline
Dummy variables 𝑎 𝑏 𝑙 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . . 5 [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear
2 fveq2 6847 . . . . . . . . 9 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
32eleq2d 2818 . . . . . . . 8 (𝑛 = 𝑁 → (𝐴 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑁)))
42eleq2d 2818 . . . . . . . 8 (𝑛 = 𝑁 → (𝐵 ∈ (𝔼‘𝑛) ↔ 𝐵 ∈ (𝔼‘𝑁)))
53, 43anbi12d 1437 . . . . . . 7 (𝑛 = 𝑁 → ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ↔ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵)))
65anbi1d 630 . . . . . 6 (𝑛 = 𝑁 → (((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear ) ↔ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear )))
76rspcev 3582 . . . . 5 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear )) → ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear ))
81, 7mpanr2 702 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵)) → ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear ))
9 simpr1 1194 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵)) → 𝐴 ∈ (𝔼‘𝑁))
10 simpr2 1195 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵)) → 𝐵 ∈ (𝔼‘𝑁))
11 colinearex 34721 . . . . . . . 8 Colinear ∈ V
1211cnvex 7867 . . . . . . 7 Colinear ∈ V
13 ecexg 8659 . . . . . . 7 ( Colinear ∈ V → [⟨𝐴, 𝐵⟩] Colinear ∈ V)
1412, 13ax-mp 5 . . . . . 6 [⟨𝐴, 𝐵⟩] Colinear ∈ V
15 eleq1 2820 . . . . . . . . . 10 (𝑎 = 𝐴 → (𝑎 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑛)))
16 neeq1 3002 . . . . . . . . . 10 (𝑎 = 𝐴 → (𝑎𝑏𝐴𝑏))
1715, 163anbi13d 1438 . . . . . . . . 9 (𝑎 = 𝐴 → ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ↔ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝐴𝑏)))
18 opeq1 4835 . . . . . . . . . . 11 (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩)
1918eceq1d 8694 . . . . . . . . . 10 (𝑎 = 𝐴 → [⟨𝑎, 𝑏⟩] Colinear = [⟨𝐴, 𝑏⟩] Colinear )
2019eqeq2d 2742 . . . . . . . . 9 (𝑎 = 𝐴 → (𝑙 = [⟨𝑎, 𝑏⟩] Colinear ↔ 𝑙 = [⟨𝐴, 𝑏⟩] Colinear ))
2117, 20anbi12d 631 . . . . . . . 8 (𝑎 = 𝐴 → (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ↔ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝐴𝑏) ∧ 𝑙 = [⟨𝐴, 𝑏⟩] Colinear )))
2221rexbidv 3171 . . . . . . 7 (𝑎 = 𝐴 → (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝐴𝑏) ∧ 𝑙 = [⟨𝐴, 𝑏⟩] Colinear )))
23 eleq1 2820 . . . . . . . . . 10 (𝑏 = 𝐵 → (𝑏 ∈ (𝔼‘𝑛) ↔ 𝐵 ∈ (𝔼‘𝑛)))
24 neeq2 3003 . . . . . . . . . 10 (𝑏 = 𝐵 → (𝐴𝑏𝐴𝐵))
2523, 243anbi23d 1439 . . . . . . . . 9 (𝑏 = 𝐵 → ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝐴𝑏) ↔ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵)))
26 opeq2 4836 . . . . . . . . . . 11 (𝑏 = 𝐵 → ⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩)
2726eceq1d 8694 . . . . . . . . . 10 (𝑏 = 𝐵 → [⟨𝐴, 𝑏⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear )
2827eqeq2d 2742 . . . . . . . . 9 (𝑏 = 𝐵 → (𝑙 = [⟨𝐴, 𝑏⟩] Colinear ↔ 𝑙 = [⟨𝐴, 𝐵⟩] Colinear ))
2925, 28anbi12d 631 . . . . . . . 8 (𝑏 = 𝐵 → (((𝐴 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝐴𝑏) ∧ 𝑙 = [⟨𝐴, 𝑏⟩] Colinear ) ↔ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ 𝑙 = [⟨𝐴, 𝐵⟩] Colinear )))
3029rexbidv 3171 . . . . . . 7 (𝑏 = 𝐵 → (∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝐴𝑏) ∧ 𝑙 = [⟨𝐴, 𝑏⟩] Colinear ) ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ 𝑙 = [⟨𝐴, 𝐵⟩] Colinear )))
31 eqeq1 2735 . . . . . . . . 9 (𝑙 = [⟨𝐴, 𝐵⟩] Colinear → (𝑙 = [⟨𝐴, 𝐵⟩] Colinear ↔ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear ))
3231anbi2d 629 . . . . . . . 8 (𝑙 = [⟨𝐴, 𝐵⟩] Colinear → (((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ 𝑙 = [⟨𝐴, 𝐵⟩] Colinear ) ↔ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear )))
3332rexbidv 3171 . . . . . . 7 (𝑙 = [⟨𝐴, 𝐵⟩] Colinear → (∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ 𝑙 = [⟨𝐴, 𝐵⟩] Colinear ) ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear )))
3422, 30, 33eloprabg 7471 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ [⟨𝐴, 𝐵⟩] Colinear ∈ V) → (⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )} ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear )))
3514, 34mp3an3 1450 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )} ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear )))
369, 10, 35syl2anc 584 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵)) → (⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )} ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear )))
378, 36mpbird 256 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵)) → ⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )})
38 df-ov 7365 . . . 4 (𝐴Line𝐵) = (Line‘⟨𝐴, 𝐵⟩)
39 df-br 5111 . . . . . 6 (⟨𝐴, 𝐵⟩Line[⟨𝐴, 𝐵⟩] Colinear ↔ ⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ Line)
40 df-line2 34798 . . . . . . 7 Line = {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )}
4140eleq2i 2824 . . . . . 6 (⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ Line ↔ ⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )})
4239, 41bitri 274 . . . . 5 (⟨𝐴, 𝐵⟩Line[⟨𝐴, 𝐵⟩] Colinear ↔ ⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )})
43 funline 34803 . . . . . 6 Fun Line
44 funbrfv 6898 . . . . . 6 (Fun Line → (⟨𝐴, 𝐵⟩Line[⟨𝐴, 𝐵⟩] Colinear → (Line‘⟨𝐴, 𝐵⟩) = [⟨𝐴, 𝐵⟩] Colinear ))
4543, 44ax-mp 5 . . . . 5 (⟨𝐴, 𝐵⟩Line[⟨𝐴, 𝐵⟩] Colinear → (Line‘⟨𝐴, 𝐵⟩) = [⟨𝐴, 𝐵⟩] Colinear )
4642, 45sylbir 234 . . . 4 (⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )} → (Line‘⟨𝐴, 𝐵⟩) = [⟨𝐴, 𝐵⟩] Colinear )
4738, 46eqtrid 2783 . . 3 (⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )} → (𝐴Line𝐵) = [⟨𝐴, 𝐵⟩] Colinear )
4837, 47syl 17 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵)) → (𝐴Line𝐵) = [⟨𝐴, 𝐵⟩] Colinear )
49 opex 5426 . . . 4 𝐴, 𝐵⟩ ∈ V
50 dfec2 8658 . . . 4 (⟨𝐴, 𝐵⟩ ∈ V → [⟨𝐴, 𝐵⟩] Colinear = {𝑥 ∣ ⟨𝐴, 𝐵 Colinear 𝑥})
5149, 50ax-mp 5 . . 3 [⟨𝐴, 𝐵⟩] Colinear = {𝑥 ∣ ⟨𝐴, 𝐵 Colinear 𝑥}
52 vex 3450 . . . . 5 𝑥 ∈ V
5349, 52brcnv 5843 . . . 4 (⟨𝐴, 𝐵 Colinear 𝑥𝑥 Colinear ⟨𝐴, 𝐵⟩)
5453abbii 2801 . . 3 {𝑥 ∣ ⟨𝐴, 𝐵 Colinear 𝑥} = {𝑥𝑥 Colinear ⟨𝐴, 𝐵⟩}
5551, 54eqtri 2759 . 2 [⟨𝐴, 𝐵⟩] Colinear = {𝑥𝑥 Colinear ⟨𝐴, 𝐵⟩}
5648, 55eqtrdi 2787 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵)) → (𝐴Line𝐵) = {𝑥𝑥 Colinear ⟨𝐴, 𝐵⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  {cab 2708  wne 2939  wrex 3069  Vcvv 3446  cop 4597   class class class wbr 5110  ccnv 5637  Fun wfun 6495  cfv 6501  (class class class)co 7362  {coprab 7363  [cec 8653  cn 12162  𝔼cee 27900   Colinear ccolin 34698  Linecline2 34795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-1cn 11118  ax-addcl 11120
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-ov 7365  df-oprab 7366  df-om 7808  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-ec 8657  df-nn 12163  df-colinear 34700  df-line2 34798
This theorem is referenced by:  liness  34806  fvline2  34807  ellines  34813
  Copyright terms: Public domain W3C validator