| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2736 |
. . . . 5
⊢
[〈𝐴, 𝐵〉]◡ Colinear = [〈𝐴, 𝐵〉]◡ Colinear |
| 2 | | fveq2 6881 |
. . . . . . . . 9
⊢ (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁)) |
| 3 | 2 | eleq2d 2821 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → (𝐴 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑁))) |
| 4 | 2 | eleq2d 2821 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → (𝐵 ∈ (𝔼‘𝑛) ↔ 𝐵 ∈ (𝔼‘𝑁))) |
| 5 | 3, 4 | 3anbi12d 1439 |
. . . . . . 7
⊢ (𝑛 = 𝑁 → ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴 ≠ 𝐵) ↔ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵))) |
| 6 | 5 | anbi1d 631 |
. . . . . 6
⊢ (𝑛 = 𝑁 → (((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴 ≠ 𝐵) ∧ [〈𝐴, 𝐵〉]◡ Colinear = [〈𝐴, 𝐵〉]◡ Colinear ) ↔ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ [〈𝐴, 𝐵〉]◡ Colinear = [〈𝐴, 𝐵〉]◡ Colinear ))) |
| 7 | 6 | rspcev 3606 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ [〈𝐴, 𝐵〉]◡ Colinear = [〈𝐴, 𝐵〉]◡ Colinear )) → ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴 ≠ 𝐵) ∧ [〈𝐴, 𝐵〉]◡ Colinear = [〈𝐴, 𝐵〉]◡ Colinear )) |
| 8 | 1, 7 | mpanr2 704 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵)) → ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴 ≠ 𝐵) ∧ [〈𝐴, 𝐵〉]◡ Colinear = [〈𝐴, 𝐵〉]◡ Colinear )) |
| 9 | | simpr1 1195 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵)) → 𝐴 ∈ (𝔼‘𝑁)) |
| 10 | | simpr2 1196 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵)) → 𝐵 ∈ (𝔼‘𝑁)) |
| 11 | | colinearex 36083 |
. . . . . . . 8
⊢ Colinear
∈ V |
| 12 | 11 | cnvex 7926 |
. . . . . . 7
⊢ ◡ Colinear ∈ V |
| 13 | | ecexg 8728 |
. . . . . . 7
⊢ (◡ Colinear ∈ V → [〈𝐴, 𝐵〉]◡ Colinear ∈ V) |
| 14 | 12, 13 | ax-mp 5 |
. . . . . 6
⊢
[〈𝐴, 𝐵〉]◡ Colinear ∈ V |
| 15 | | eleq1 2823 |
. . . . . . . . . 10
⊢ (𝑎 = 𝐴 → (𝑎 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑛))) |
| 16 | | neeq1 2995 |
. . . . . . . . . 10
⊢ (𝑎 = 𝐴 → (𝑎 ≠ 𝑏 ↔ 𝐴 ≠ 𝑏)) |
| 17 | 15, 16 | 3anbi13d 1440 |
. . . . . . . . 9
⊢ (𝑎 = 𝐴 → ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏) ↔ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝐴 ≠ 𝑏))) |
| 18 | | opeq1 4854 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝐴 → 〈𝑎, 𝑏〉 = 〈𝐴, 𝑏〉) |
| 19 | 18 | eceq1d 8764 |
. . . . . . . . . 10
⊢ (𝑎 = 𝐴 → [〈𝑎, 𝑏〉]◡ Colinear = [〈𝐴, 𝑏〉]◡ Colinear ) |
| 20 | 19 | eqeq2d 2747 |
. . . . . . . . 9
⊢ (𝑎 = 𝐴 → (𝑙 = [〈𝑎, 𝑏〉]◡ Colinear ↔ 𝑙 = [〈𝐴, 𝑏〉]◡ Colinear )) |
| 21 | 17, 20 | anbi12d 632 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏) ∧ 𝑙 = [〈𝑎, 𝑏〉]◡ Colinear ) ↔ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝐴 ≠ 𝑏) ∧ 𝑙 = [〈𝐴, 𝑏〉]◡ Colinear ))) |
| 22 | 21 | rexbidv 3165 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏) ∧ 𝑙 = [〈𝑎, 𝑏〉]◡ Colinear ) ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝐴 ≠ 𝑏) ∧ 𝑙 = [〈𝐴, 𝑏〉]◡ Colinear ))) |
| 23 | | eleq1 2823 |
. . . . . . . . . 10
⊢ (𝑏 = 𝐵 → (𝑏 ∈ (𝔼‘𝑛) ↔ 𝐵 ∈ (𝔼‘𝑛))) |
| 24 | | neeq2 2996 |
. . . . . . . . . 10
⊢ (𝑏 = 𝐵 → (𝐴 ≠ 𝑏 ↔ 𝐴 ≠ 𝐵)) |
| 25 | 23, 24 | 3anbi23d 1441 |
. . . . . . . . 9
⊢ (𝑏 = 𝐵 → ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝐴 ≠ 𝑏) ↔ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴 ≠ 𝐵))) |
| 26 | | opeq2 4855 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝐵 → 〈𝐴, 𝑏〉 = 〈𝐴, 𝐵〉) |
| 27 | 26 | eceq1d 8764 |
. . . . . . . . . 10
⊢ (𝑏 = 𝐵 → [〈𝐴, 𝑏〉]◡ Colinear = [〈𝐴, 𝐵〉]◡ Colinear ) |
| 28 | 27 | eqeq2d 2747 |
. . . . . . . . 9
⊢ (𝑏 = 𝐵 → (𝑙 = [〈𝐴, 𝑏〉]◡ Colinear ↔ 𝑙 = [〈𝐴, 𝐵〉]◡ Colinear )) |
| 29 | 25, 28 | anbi12d 632 |
. . . . . . . 8
⊢ (𝑏 = 𝐵 → (((𝐴 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝐴 ≠ 𝑏) ∧ 𝑙 = [〈𝐴, 𝑏〉]◡ Colinear ) ↔ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴 ≠ 𝐵) ∧ 𝑙 = [〈𝐴, 𝐵〉]◡ Colinear ))) |
| 30 | 29 | rexbidv 3165 |
. . . . . . 7
⊢ (𝑏 = 𝐵 → (∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝐴 ≠ 𝑏) ∧ 𝑙 = [〈𝐴, 𝑏〉]◡ Colinear ) ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴 ≠ 𝐵) ∧ 𝑙 = [〈𝐴, 𝐵〉]◡ Colinear ))) |
| 31 | | eqeq1 2740 |
. . . . . . . . 9
⊢ (𝑙 = [〈𝐴, 𝐵〉]◡ Colinear → (𝑙 = [〈𝐴, 𝐵〉]◡ Colinear ↔ [〈𝐴, 𝐵〉]◡ Colinear = [〈𝐴, 𝐵〉]◡ Colinear )) |
| 32 | 31 | anbi2d 630 |
. . . . . . . 8
⊢ (𝑙 = [〈𝐴, 𝐵〉]◡ Colinear → (((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴 ≠ 𝐵) ∧ 𝑙 = [〈𝐴, 𝐵〉]◡ Colinear ) ↔ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴 ≠ 𝐵) ∧ [〈𝐴, 𝐵〉]◡ Colinear = [〈𝐴, 𝐵〉]◡ Colinear ))) |
| 33 | 32 | rexbidv 3165 |
. . . . . . 7
⊢ (𝑙 = [〈𝐴, 𝐵〉]◡ Colinear → (∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴 ≠ 𝐵) ∧ 𝑙 = [〈𝐴, 𝐵〉]◡ Colinear ) ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴 ≠ 𝐵) ∧ [〈𝐴, 𝐵〉]◡ Colinear = [〈𝐴, 𝐵〉]◡ Colinear ))) |
| 34 | 22, 30, 33 | eloprabg 7522 |
. . . . . 6
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ [〈𝐴, 𝐵〉]◡ Colinear ∈ V) →
(〈〈𝐴, 𝐵〉, [〈𝐴, 𝐵〉]◡ Colinear 〉 ∈ {〈〈𝑎, 𝑏〉, 𝑙〉 ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏) ∧ 𝑙 = [〈𝑎, 𝑏〉]◡ Colinear )} ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴 ≠ 𝐵) ∧ [〈𝐴, 𝐵〉]◡ Colinear = [〈𝐴, 𝐵〉]◡ Colinear ))) |
| 35 | 14, 34 | mp3an3 1452 |
. . . . 5
⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (〈〈𝐴, 𝐵〉, [〈𝐴, 𝐵〉]◡ Colinear 〉 ∈ {〈〈𝑎, 𝑏〉, 𝑙〉 ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏) ∧ 𝑙 = [〈𝑎, 𝑏〉]◡ Colinear )} ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴 ≠ 𝐵) ∧ [〈𝐴, 𝐵〉]◡ Colinear = [〈𝐴, 𝐵〉]◡ Colinear ))) |
| 36 | 9, 10, 35 | syl2anc 584 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵)) → (〈〈𝐴, 𝐵〉, [〈𝐴, 𝐵〉]◡ Colinear 〉 ∈ {〈〈𝑎, 𝑏〉, 𝑙〉 ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏) ∧ 𝑙 = [〈𝑎, 𝑏〉]◡ Colinear )} ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴 ≠ 𝐵) ∧ [〈𝐴, 𝐵〉]◡ Colinear = [〈𝐴, 𝐵〉]◡ Colinear ))) |
| 37 | 8, 36 | mpbird 257 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵)) → 〈〈𝐴, 𝐵〉, [〈𝐴, 𝐵〉]◡ Colinear 〉 ∈ {〈〈𝑎, 𝑏〉, 𝑙〉 ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏) ∧ 𝑙 = [〈𝑎, 𝑏〉]◡ Colinear )}) |
| 38 | | df-ov 7413 |
. . . 4
⊢ (𝐴Line𝐵) = (Line‘〈𝐴, 𝐵〉) |
| 39 | | df-br 5125 |
. . . . . 6
⊢
(〈𝐴, 𝐵〉Line[〈𝐴, 𝐵〉]◡ Colinear ↔ 〈〈𝐴, 𝐵〉, [〈𝐴, 𝐵〉]◡ Colinear 〉 ∈
Line) |
| 40 | | df-line2 36160 |
. . . . . . 7
⊢ Line =
{〈〈𝑎, 𝑏〉, 𝑙〉 ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏) ∧ 𝑙 = [〈𝑎, 𝑏〉]◡ Colinear )} |
| 41 | 40 | eleq2i 2827 |
. . . . . 6
⊢
(〈〈𝐴,
𝐵〉, [〈𝐴, 𝐵〉]◡ Colinear 〉 ∈ Line ↔
〈〈𝐴, 𝐵〉, [〈𝐴, 𝐵〉]◡ Colinear 〉 ∈ {〈〈𝑎, 𝑏〉, 𝑙〉 ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏) ∧ 𝑙 = [〈𝑎, 𝑏〉]◡ Colinear )}) |
| 42 | 39, 41 | bitri 275 |
. . . . 5
⊢
(〈𝐴, 𝐵〉Line[〈𝐴, 𝐵〉]◡ Colinear ↔ 〈〈𝐴, 𝐵〉, [〈𝐴, 𝐵〉]◡ Colinear 〉 ∈ {〈〈𝑎, 𝑏〉, 𝑙〉 ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏) ∧ 𝑙 = [〈𝑎, 𝑏〉]◡ Colinear )}) |
| 43 | | funline 36165 |
. . . . . 6
⊢ Fun
Line |
| 44 | | funbrfv 6932 |
. . . . . 6
⊢ (Fun Line
→ (〈𝐴, 𝐵〉Line[〈𝐴, 𝐵〉]◡ Colinear → (Line‘〈𝐴, 𝐵〉) = [〈𝐴, 𝐵〉]◡ Colinear )) |
| 45 | 43, 44 | ax-mp 5 |
. . . . 5
⊢
(〈𝐴, 𝐵〉Line[〈𝐴, 𝐵〉]◡ Colinear → (Line‘〈𝐴, 𝐵〉) = [〈𝐴, 𝐵〉]◡ Colinear ) |
| 46 | 42, 45 | sylbir 235 |
. . . 4
⊢
(〈〈𝐴,
𝐵〉, [〈𝐴, 𝐵〉]◡ Colinear 〉 ∈ {〈〈𝑎, 𝑏〉, 𝑙〉 ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏) ∧ 𝑙 = [〈𝑎, 𝑏〉]◡ Colinear )} → (Line‘〈𝐴, 𝐵〉) = [〈𝐴, 𝐵〉]◡ Colinear ) |
| 47 | 38, 46 | eqtrid 2783 |
. . 3
⊢
(〈〈𝐴,
𝐵〉, [〈𝐴, 𝐵〉]◡ Colinear 〉 ∈ {〈〈𝑎, 𝑏〉, 𝑙〉 ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏) ∧ 𝑙 = [〈𝑎, 𝑏〉]◡ Colinear )} → (𝐴Line𝐵) = [〈𝐴, 𝐵〉]◡ Colinear ) |
| 48 | 37, 47 | syl 17 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵)) → (𝐴Line𝐵) = [〈𝐴, 𝐵〉]◡ Colinear ) |
| 49 | | opex 5444 |
. . . 4
⊢
〈𝐴, 𝐵〉 ∈ V |
| 50 | | dfec2 8727 |
. . . 4
⊢
(〈𝐴, 𝐵〉 ∈ V →
[〈𝐴, 𝐵〉]◡ Colinear = {𝑥 ∣ 〈𝐴, 𝐵〉◡ Colinear 𝑥}) |
| 51 | 49, 50 | ax-mp 5 |
. . 3
⊢
[〈𝐴, 𝐵〉]◡ Colinear = {𝑥 ∣ 〈𝐴, 𝐵〉◡ Colinear 𝑥} |
| 52 | | vex 3468 |
. . . . 5
⊢ 𝑥 ∈ V |
| 53 | 49, 52 | brcnv 5867 |
. . . 4
⊢
(〈𝐴, 𝐵〉◡ Colinear 𝑥 ↔ 𝑥 Colinear 〈𝐴, 𝐵〉) |
| 54 | 53 | abbii 2803 |
. . 3
⊢ {𝑥 ∣ 〈𝐴, 𝐵〉◡ Colinear 𝑥} = {𝑥 ∣ 𝑥 Colinear 〈𝐴, 𝐵〉} |
| 55 | 51, 54 | eqtri 2759 |
. 2
⊢
[〈𝐴, 𝐵〉]◡ Colinear = {𝑥 ∣ 𝑥 Colinear 〈𝐴, 𝐵〉} |
| 56 | 48, 55 | eqtrdi 2787 |
1
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵)) → (𝐴Line𝐵) = {𝑥 ∣ 𝑥 Colinear 〈𝐴, 𝐵〉}) |