Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvline Structured version   Visualization version   GIF version

Theorem fvline 35147
Description: Calculate the value of the Line function. (Contributed by Scott Fenton, 25-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fvline ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐴 β‰  𝐡)) β†’ (𝐴Line𝐡) = {π‘₯ ∣ π‘₯ Colinear ⟨𝐴, 𝐡⟩})
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝐡
Allowed substitution hint:   𝑁(π‘₯)

Proof of Theorem fvline
Dummy variables π‘Ž 𝑏 𝑙 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . . 5 [⟨𝐴, 𝐡⟩]β—‘ Colinear = [⟨𝐴, 𝐡⟩]β—‘ Colinear
2 fveq2 6892 . . . . . . . . 9 (𝑛 = 𝑁 β†’ (π”Όβ€˜π‘›) = (π”Όβ€˜π‘))
32eleq2d 2820 . . . . . . . 8 (𝑛 = 𝑁 β†’ (𝐴 ∈ (π”Όβ€˜π‘›) ↔ 𝐴 ∈ (π”Όβ€˜π‘)))
42eleq2d 2820 . . . . . . . 8 (𝑛 = 𝑁 β†’ (𝐡 ∈ (π”Όβ€˜π‘›) ↔ 𝐡 ∈ (π”Όβ€˜π‘)))
53, 43anbi12d 1438 . . . . . . 7 (𝑛 = 𝑁 β†’ ((𝐴 ∈ (π”Όβ€˜π‘›) ∧ 𝐡 ∈ (π”Όβ€˜π‘›) ∧ 𝐴 β‰  𝐡) ↔ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐴 β‰  𝐡)))
65anbi1d 631 . . . . . 6 (𝑛 = 𝑁 β†’ (((𝐴 ∈ (π”Όβ€˜π‘›) ∧ 𝐡 ∈ (π”Όβ€˜π‘›) ∧ 𝐴 β‰  𝐡) ∧ [⟨𝐴, 𝐡⟩]β—‘ Colinear = [⟨𝐴, 𝐡⟩]β—‘ Colinear ) ↔ ((𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐴 β‰  𝐡) ∧ [⟨𝐴, 𝐡⟩]β—‘ Colinear = [⟨𝐴, 𝐡⟩]β—‘ Colinear )))
76rspcev 3613 . . . . 5 ((𝑁 ∈ β„• ∧ ((𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐴 β‰  𝐡) ∧ [⟨𝐴, 𝐡⟩]β—‘ Colinear = [⟨𝐴, 𝐡⟩]β—‘ Colinear )) β†’ βˆƒπ‘› ∈ β„• ((𝐴 ∈ (π”Όβ€˜π‘›) ∧ 𝐡 ∈ (π”Όβ€˜π‘›) ∧ 𝐴 β‰  𝐡) ∧ [⟨𝐴, 𝐡⟩]β—‘ Colinear = [⟨𝐴, 𝐡⟩]β—‘ Colinear ))
81, 7mpanr2 703 . . . 4 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐴 β‰  𝐡)) β†’ βˆƒπ‘› ∈ β„• ((𝐴 ∈ (π”Όβ€˜π‘›) ∧ 𝐡 ∈ (π”Όβ€˜π‘›) ∧ 𝐴 β‰  𝐡) ∧ [⟨𝐴, 𝐡⟩]β—‘ Colinear = [⟨𝐴, 𝐡⟩]β—‘ Colinear ))
9 simpr1 1195 . . . . 5 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐴 β‰  𝐡)) β†’ 𝐴 ∈ (π”Όβ€˜π‘))
10 simpr2 1196 . . . . 5 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐴 β‰  𝐡)) β†’ 𝐡 ∈ (π”Όβ€˜π‘))
11 colinearex 35063 . . . . . . . 8 Colinear ∈ V
1211cnvex 7916 . . . . . . 7 β—‘ Colinear ∈ V
13 ecexg 8707 . . . . . . 7 (β—‘ Colinear ∈ V β†’ [⟨𝐴, 𝐡⟩]β—‘ Colinear ∈ V)
1412, 13ax-mp 5 . . . . . 6 [⟨𝐴, 𝐡⟩]β—‘ Colinear ∈ V
15 eleq1 2822 . . . . . . . . . 10 (π‘Ž = 𝐴 β†’ (π‘Ž ∈ (π”Όβ€˜π‘›) ↔ 𝐴 ∈ (π”Όβ€˜π‘›)))
16 neeq1 3004 . . . . . . . . . 10 (π‘Ž = 𝐴 β†’ (π‘Ž β‰  𝑏 ↔ 𝐴 β‰  𝑏))
1715, 163anbi13d 1439 . . . . . . . . 9 (π‘Ž = 𝐴 β†’ ((π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑏 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž β‰  𝑏) ↔ (𝐴 ∈ (π”Όβ€˜π‘›) ∧ 𝑏 ∈ (π”Όβ€˜π‘›) ∧ 𝐴 β‰  𝑏)))
18 opeq1 4874 . . . . . . . . . . 11 (π‘Ž = 𝐴 β†’ βŸ¨π‘Ž, π‘βŸ© = ⟨𝐴, π‘βŸ©)
1918eceq1d 8742 . . . . . . . . . 10 (π‘Ž = 𝐴 β†’ [βŸ¨π‘Ž, π‘βŸ©]β—‘ Colinear = [⟨𝐴, π‘βŸ©]β—‘ Colinear )
2019eqeq2d 2744 . . . . . . . . 9 (π‘Ž = 𝐴 β†’ (𝑙 = [βŸ¨π‘Ž, π‘βŸ©]β—‘ Colinear ↔ 𝑙 = [⟨𝐴, π‘βŸ©]β—‘ Colinear ))
2117, 20anbi12d 632 . . . . . . . 8 (π‘Ž = 𝐴 β†’ (((π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑏 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž β‰  𝑏) ∧ 𝑙 = [βŸ¨π‘Ž, π‘βŸ©]β—‘ Colinear ) ↔ ((𝐴 ∈ (π”Όβ€˜π‘›) ∧ 𝑏 ∈ (π”Όβ€˜π‘›) ∧ 𝐴 β‰  𝑏) ∧ 𝑙 = [⟨𝐴, π‘βŸ©]β—‘ Colinear )))
2221rexbidv 3179 . . . . . . 7 (π‘Ž = 𝐴 β†’ (βˆƒπ‘› ∈ β„• ((π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑏 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž β‰  𝑏) ∧ 𝑙 = [βŸ¨π‘Ž, π‘βŸ©]β—‘ Colinear ) ↔ βˆƒπ‘› ∈ β„• ((𝐴 ∈ (π”Όβ€˜π‘›) ∧ 𝑏 ∈ (π”Όβ€˜π‘›) ∧ 𝐴 β‰  𝑏) ∧ 𝑙 = [⟨𝐴, π‘βŸ©]β—‘ Colinear )))
23 eleq1 2822 . . . . . . . . . 10 (𝑏 = 𝐡 β†’ (𝑏 ∈ (π”Όβ€˜π‘›) ↔ 𝐡 ∈ (π”Όβ€˜π‘›)))
24 neeq2 3005 . . . . . . . . . 10 (𝑏 = 𝐡 β†’ (𝐴 β‰  𝑏 ↔ 𝐴 β‰  𝐡))
2523, 243anbi23d 1440 . . . . . . . . 9 (𝑏 = 𝐡 β†’ ((𝐴 ∈ (π”Όβ€˜π‘›) ∧ 𝑏 ∈ (π”Όβ€˜π‘›) ∧ 𝐴 β‰  𝑏) ↔ (𝐴 ∈ (π”Όβ€˜π‘›) ∧ 𝐡 ∈ (π”Όβ€˜π‘›) ∧ 𝐴 β‰  𝐡)))
26 opeq2 4875 . . . . . . . . . . 11 (𝑏 = 𝐡 β†’ ⟨𝐴, π‘βŸ© = ⟨𝐴, 𝐡⟩)
2726eceq1d 8742 . . . . . . . . . 10 (𝑏 = 𝐡 β†’ [⟨𝐴, π‘βŸ©]β—‘ Colinear = [⟨𝐴, 𝐡⟩]β—‘ Colinear )
2827eqeq2d 2744 . . . . . . . . 9 (𝑏 = 𝐡 β†’ (𝑙 = [⟨𝐴, π‘βŸ©]β—‘ Colinear ↔ 𝑙 = [⟨𝐴, 𝐡⟩]β—‘ Colinear ))
2925, 28anbi12d 632 . . . . . . . 8 (𝑏 = 𝐡 β†’ (((𝐴 ∈ (π”Όβ€˜π‘›) ∧ 𝑏 ∈ (π”Όβ€˜π‘›) ∧ 𝐴 β‰  𝑏) ∧ 𝑙 = [⟨𝐴, π‘βŸ©]β—‘ Colinear ) ↔ ((𝐴 ∈ (π”Όβ€˜π‘›) ∧ 𝐡 ∈ (π”Όβ€˜π‘›) ∧ 𝐴 β‰  𝐡) ∧ 𝑙 = [⟨𝐴, 𝐡⟩]β—‘ Colinear )))
3029rexbidv 3179 . . . . . . 7 (𝑏 = 𝐡 β†’ (βˆƒπ‘› ∈ β„• ((𝐴 ∈ (π”Όβ€˜π‘›) ∧ 𝑏 ∈ (π”Όβ€˜π‘›) ∧ 𝐴 β‰  𝑏) ∧ 𝑙 = [⟨𝐴, π‘βŸ©]β—‘ Colinear ) ↔ βˆƒπ‘› ∈ β„• ((𝐴 ∈ (π”Όβ€˜π‘›) ∧ 𝐡 ∈ (π”Όβ€˜π‘›) ∧ 𝐴 β‰  𝐡) ∧ 𝑙 = [⟨𝐴, 𝐡⟩]β—‘ Colinear )))
31 eqeq1 2737 . . . . . . . . 9 (𝑙 = [⟨𝐴, 𝐡⟩]β—‘ Colinear β†’ (𝑙 = [⟨𝐴, 𝐡⟩]β—‘ Colinear ↔ [⟨𝐴, 𝐡⟩]β—‘ Colinear = [⟨𝐴, 𝐡⟩]β—‘ Colinear ))
3231anbi2d 630 . . . . . . . 8 (𝑙 = [⟨𝐴, 𝐡⟩]β—‘ Colinear β†’ (((𝐴 ∈ (π”Όβ€˜π‘›) ∧ 𝐡 ∈ (π”Όβ€˜π‘›) ∧ 𝐴 β‰  𝐡) ∧ 𝑙 = [⟨𝐴, 𝐡⟩]β—‘ Colinear ) ↔ ((𝐴 ∈ (π”Όβ€˜π‘›) ∧ 𝐡 ∈ (π”Όβ€˜π‘›) ∧ 𝐴 β‰  𝐡) ∧ [⟨𝐴, 𝐡⟩]β—‘ Colinear = [⟨𝐴, 𝐡⟩]β—‘ Colinear )))
3332rexbidv 3179 . . . . . . 7 (𝑙 = [⟨𝐴, 𝐡⟩]β—‘ Colinear β†’ (βˆƒπ‘› ∈ β„• ((𝐴 ∈ (π”Όβ€˜π‘›) ∧ 𝐡 ∈ (π”Όβ€˜π‘›) ∧ 𝐴 β‰  𝐡) ∧ 𝑙 = [⟨𝐴, 𝐡⟩]β—‘ Colinear ) ↔ βˆƒπ‘› ∈ β„• ((𝐴 ∈ (π”Όβ€˜π‘›) ∧ 𝐡 ∈ (π”Όβ€˜π‘›) ∧ 𝐴 β‰  𝐡) ∧ [⟨𝐴, 𝐡⟩]β—‘ Colinear = [⟨𝐴, 𝐡⟩]β—‘ Colinear )))
3422, 30, 33eloprabg 7518 . . . . . 6 ((𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ [⟨𝐴, 𝐡⟩]β—‘ Colinear ∈ V) β†’ (⟨⟨𝐴, 𝐡⟩, [⟨𝐴, 𝐡⟩]β—‘ Colinear ⟩ ∈ {βŸ¨βŸ¨π‘Ž, π‘βŸ©, π‘™βŸ© ∣ βˆƒπ‘› ∈ β„• ((π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑏 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž β‰  𝑏) ∧ 𝑙 = [βŸ¨π‘Ž, π‘βŸ©]β—‘ Colinear )} ↔ βˆƒπ‘› ∈ β„• ((𝐴 ∈ (π”Όβ€˜π‘›) ∧ 𝐡 ∈ (π”Όβ€˜π‘›) ∧ 𝐴 β‰  𝐡) ∧ [⟨𝐴, 𝐡⟩]β—‘ Colinear = [⟨𝐴, 𝐡⟩]β—‘ Colinear )))
3514, 34mp3an3 1451 . . . . 5 ((𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) β†’ (⟨⟨𝐴, 𝐡⟩, [⟨𝐴, 𝐡⟩]β—‘ Colinear ⟩ ∈ {βŸ¨βŸ¨π‘Ž, π‘βŸ©, π‘™βŸ© ∣ βˆƒπ‘› ∈ β„• ((π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑏 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž β‰  𝑏) ∧ 𝑙 = [βŸ¨π‘Ž, π‘βŸ©]β—‘ Colinear )} ↔ βˆƒπ‘› ∈ β„• ((𝐴 ∈ (π”Όβ€˜π‘›) ∧ 𝐡 ∈ (π”Όβ€˜π‘›) ∧ 𝐴 β‰  𝐡) ∧ [⟨𝐴, 𝐡⟩]β—‘ Colinear = [⟨𝐴, 𝐡⟩]β—‘ Colinear )))
369, 10, 35syl2anc 585 . . . 4 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐴 β‰  𝐡)) β†’ (⟨⟨𝐴, 𝐡⟩, [⟨𝐴, 𝐡⟩]β—‘ Colinear ⟩ ∈ {βŸ¨βŸ¨π‘Ž, π‘βŸ©, π‘™βŸ© ∣ βˆƒπ‘› ∈ β„• ((π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑏 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž β‰  𝑏) ∧ 𝑙 = [βŸ¨π‘Ž, π‘βŸ©]β—‘ Colinear )} ↔ βˆƒπ‘› ∈ β„• ((𝐴 ∈ (π”Όβ€˜π‘›) ∧ 𝐡 ∈ (π”Όβ€˜π‘›) ∧ 𝐴 β‰  𝐡) ∧ [⟨𝐴, 𝐡⟩]β—‘ Colinear = [⟨𝐴, 𝐡⟩]β—‘ Colinear )))
378, 36mpbird 257 . . 3 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐴 β‰  𝐡)) β†’ ⟨⟨𝐴, 𝐡⟩, [⟨𝐴, 𝐡⟩]β—‘ Colinear ⟩ ∈ {βŸ¨βŸ¨π‘Ž, π‘βŸ©, π‘™βŸ© ∣ βˆƒπ‘› ∈ β„• ((π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑏 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž β‰  𝑏) ∧ 𝑙 = [βŸ¨π‘Ž, π‘βŸ©]β—‘ Colinear )})
38 df-ov 7412 . . . 4 (𝐴Line𝐡) = (Lineβ€˜βŸ¨π΄, 𝐡⟩)
39 df-br 5150 . . . . . 6 (⟨𝐴, 𝐡⟩Line[⟨𝐴, 𝐡⟩]β—‘ Colinear ↔ ⟨⟨𝐴, 𝐡⟩, [⟨𝐴, 𝐡⟩]β—‘ Colinear ⟩ ∈ Line)
40 df-line2 35140 . . . . . . 7 Line = {βŸ¨βŸ¨π‘Ž, π‘βŸ©, π‘™βŸ© ∣ βˆƒπ‘› ∈ β„• ((π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑏 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž β‰  𝑏) ∧ 𝑙 = [βŸ¨π‘Ž, π‘βŸ©]β—‘ Colinear )}
4140eleq2i 2826 . . . . . 6 (⟨⟨𝐴, 𝐡⟩, [⟨𝐴, 𝐡⟩]β—‘ Colinear ⟩ ∈ Line ↔ ⟨⟨𝐴, 𝐡⟩, [⟨𝐴, 𝐡⟩]β—‘ Colinear ⟩ ∈ {βŸ¨βŸ¨π‘Ž, π‘βŸ©, π‘™βŸ© ∣ βˆƒπ‘› ∈ β„• ((π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑏 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž β‰  𝑏) ∧ 𝑙 = [βŸ¨π‘Ž, π‘βŸ©]β—‘ Colinear )})
4239, 41bitri 275 . . . . 5 (⟨𝐴, 𝐡⟩Line[⟨𝐴, 𝐡⟩]β—‘ Colinear ↔ ⟨⟨𝐴, 𝐡⟩, [⟨𝐴, 𝐡⟩]β—‘ Colinear ⟩ ∈ {βŸ¨βŸ¨π‘Ž, π‘βŸ©, π‘™βŸ© ∣ βˆƒπ‘› ∈ β„• ((π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑏 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž β‰  𝑏) ∧ 𝑙 = [βŸ¨π‘Ž, π‘βŸ©]β—‘ Colinear )})
43 funline 35145 . . . . . 6 Fun Line
44 funbrfv 6943 . . . . . 6 (Fun Line β†’ (⟨𝐴, 𝐡⟩Line[⟨𝐴, 𝐡⟩]β—‘ Colinear β†’ (Lineβ€˜βŸ¨π΄, 𝐡⟩) = [⟨𝐴, 𝐡⟩]β—‘ Colinear ))
4543, 44ax-mp 5 . . . . 5 (⟨𝐴, 𝐡⟩Line[⟨𝐴, 𝐡⟩]β—‘ Colinear β†’ (Lineβ€˜βŸ¨π΄, 𝐡⟩) = [⟨𝐴, 𝐡⟩]β—‘ Colinear )
4642, 45sylbir 234 . . . 4 (⟨⟨𝐴, 𝐡⟩, [⟨𝐴, 𝐡⟩]β—‘ Colinear ⟩ ∈ {βŸ¨βŸ¨π‘Ž, π‘βŸ©, π‘™βŸ© ∣ βˆƒπ‘› ∈ β„• ((π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑏 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž β‰  𝑏) ∧ 𝑙 = [βŸ¨π‘Ž, π‘βŸ©]β—‘ Colinear )} β†’ (Lineβ€˜βŸ¨π΄, 𝐡⟩) = [⟨𝐴, 𝐡⟩]β—‘ Colinear )
4738, 46eqtrid 2785 . . 3 (⟨⟨𝐴, 𝐡⟩, [⟨𝐴, 𝐡⟩]β—‘ Colinear ⟩ ∈ {βŸ¨βŸ¨π‘Ž, π‘βŸ©, π‘™βŸ© ∣ βˆƒπ‘› ∈ β„• ((π‘Ž ∈ (π”Όβ€˜π‘›) ∧ 𝑏 ∈ (π”Όβ€˜π‘›) ∧ π‘Ž β‰  𝑏) ∧ 𝑙 = [βŸ¨π‘Ž, π‘βŸ©]β—‘ Colinear )} β†’ (𝐴Line𝐡) = [⟨𝐴, 𝐡⟩]β—‘ Colinear )
4837, 47syl 17 . 2 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐴 β‰  𝐡)) β†’ (𝐴Line𝐡) = [⟨𝐴, 𝐡⟩]β—‘ Colinear )
49 opex 5465 . . . 4 ⟨𝐴, 𝐡⟩ ∈ V
50 dfec2 8706 . . . 4 (⟨𝐴, 𝐡⟩ ∈ V β†’ [⟨𝐴, 𝐡⟩]β—‘ Colinear = {π‘₯ ∣ ⟨𝐴, π΅βŸ©β—‘ Colinear π‘₯})
5149, 50ax-mp 5 . . 3 [⟨𝐴, 𝐡⟩]β—‘ Colinear = {π‘₯ ∣ ⟨𝐴, π΅βŸ©β—‘ Colinear π‘₯}
52 vex 3479 . . . . 5 π‘₯ ∈ V
5349, 52brcnv 5883 . . . 4 (⟨𝐴, π΅βŸ©β—‘ Colinear π‘₯ ↔ π‘₯ Colinear ⟨𝐴, 𝐡⟩)
5453abbii 2803 . . 3 {π‘₯ ∣ ⟨𝐴, π΅βŸ©β—‘ Colinear π‘₯} = {π‘₯ ∣ π‘₯ Colinear ⟨𝐴, 𝐡⟩}
5551, 54eqtri 2761 . 2 [⟨𝐴, 𝐡⟩]β—‘ Colinear = {π‘₯ ∣ π‘₯ Colinear ⟨𝐴, 𝐡⟩}
5648, 55eqtrdi 2789 1 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐴 β‰  𝐡)) β†’ (𝐴Line𝐡) = {π‘₯ ∣ π‘₯ Colinear ⟨𝐴, 𝐡⟩})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  {cab 2710   β‰  wne 2941  βˆƒwrex 3071  Vcvv 3475  βŸ¨cop 4635   class class class wbr 5149  β—‘ccnv 5676  Fun wfun 6538  β€˜cfv 6544  (class class class)co 7409  {coprab 7410  [cec 8701  β„•cn 12212  π”Όcee 28177   Colinear ccolin 35040  Linecline2 35137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-1cn 11168  ax-addcl 11170
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-ec 8705  df-nn 12213  df-colinear 35042  df-line2 35140
This theorem is referenced by:  liness  35148  fvline2  35149  ellines  35155
  Copyright terms: Public domain W3C validator