Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvline Structured version   Visualization version   GIF version

Theorem fvline 34446
Description: Calculate the value of the Line function. (Contributed by Scott Fenton, 25-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fvline ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵)) → (𝐴Line𝐵) = {𝑥𝑥 Colinear ⟨𝐴, 𝐵⟩})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑁(𝑥)

Proof of Theorem fvline
Dummy variables 𝑎 𝑏 𝑙 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . 5 [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear
2 fveq2 6774 . . . . . . . . 9 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
32eleq2d 2824 . . . . . . . 8 (𝑛 = 𝑁 → (𝐴 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑁)))
42eleq2d 2824 . . . . . . . 8 (𝑛 = 𝑁 → (𝐵 ∈ (𝔼‘𝑛) ↔ 𝐵 ∈ (𝔼‘𝑁)))
53, 43anbi12d 1436 . . . . . . 7 (𝑛 = 𝑁 → ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ↔ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵)))
65anbi1d 630 . . . . . 6 (𝑛 = 𝑁 → (((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear ) ↔ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear )))
76rspcev 3561 . . . . 5 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear )) → ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear ))
81, 7mpanr2 701 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵)) → ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear ))
9 simpr1 1193 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵)) → 𝐴 ∈ (𝔼‘𝑁))
10 simpr2 1194 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵)) → 𝐵 ∈ (𝔼‘𝑁))
11 colinearex 34362 . . . . . . . 8 Colinear ∈ V
1211cnvex 7772 . . . . . . 7 Colinear ∈ V
13 ecexg 8502 . . . . . . 7 ( Colinear ∈ V → [⟨𝐴, 𝐵⟩] Colinear ∈ V)
1412, 13ax-mp 5 . . . . . 6 [⟨𝐴, 𝐵⟩] Colinear ∈ V
15 eleq1 2826 . . . . . . . . . 10 (𝑎 = 𝐴 → (𝑎 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑛)))
16 neeq1 3006 . . . . . . . . . 10 (𝑎 = 𝐴 → (𝑎𝑏𝐴𝑏))
1715, 163anbi13d 1437 . . . . . . . . 9 (𝑎 = 𝐴 → ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ↔ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝐴𝑏)))
18 opeq1 4804 . . . . . . . . . . 11 (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩)
1918eceq1d 8537 . . . . . . . . . 10 (𝑎 = 𝐴 → [⟨𝑎, 𝑏⟩] Colinear = [⟨𝐴, 𝑏⟩] Colinear )
2019eqeq2d 2749 . . . . . . . . 9 (𝑎 = 𝐴 → (𝑙 = [⟨𝑎, 𝑏⟩] Colinear ↔ 𝑙 = [⟨𝐴, 𝑏⟩] Colinear ))
2117, 20anbi12d 631 . . . . . . . 8 (𝑎 = 𝐴 → (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ↔ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝐴𝑏) ∧ 𝑙 = [⟨𝐴, 𝑏⟩] Colinear )))
2221rexbidv 3226 . . . . . . 7 (𝑎 = 𝐴 → (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝐴𝑏) ∧ 𝑙 = [⟨𝐴, 𝑏⟩] Colinear )))
23 eleq1 2826 . . . . . . . . . 10 (𝑏 = 𝐵 → (𝑏 ∈ (𝔼‘𝑛) ↔ 𝐵 ∈ (𝔼‘𝑛)))
24 neeq2 3007 . . . . . . . . . 10 (𝑏 = 𝐵 → (𝐴𝑏𝐴𝐵))
2523, 243anbi23d 1438 . . . . . . . . 9 (𝑏 = 𝐵 → ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝐴𝑏) ↔ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵)))
26 opeq2 4805 . . . . . . . . . . 11 (𝑏 = 𝐵 → ⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩)
2726eceq1d 8537 . . . . . . . . . 10 (𝑏 = 𝐵 → [⟨𝐴, 𝑏⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear )
2827eqeq2d 2749 . . . . . . . . 9 (𝑏 = 𝐵 → (𝑙 = [⟨𝐴, 𝑏⟩] Colinear ↔ 𝑙 = [⟨𝐴, 𝐵⟩] Colinear ))
2925, 28anbi12d 631 . . . . . . . 8 (𝑏 = 𝐵 → (((𝐴 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝐴𝑏) ∧ 𝑙 = [⟨𝐴, 𝑏⟩] Colinear ) ↔ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ 𝑙 = [⟨𝐴, 𝐵⟩] Colinear )))
3029rexbidv 3226 . . . . . . 7 (𝑏 = 𝐵 → (∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝐴𝑏) ∧ 𝑙 = [⟨𝐴, 𝑏⟩] Colinear ) ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ 𝑙 = [⟨𝐴, 𝐵⟩] Colinear )))
31 eqeq1 2742 . . . . . . . . 9 (𝑙 = [⟨𝐴, 𝐵⟩] Colinear → (𝑙 = [⟨𝐴, 𝐵⟩] Colinear ↔ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear ))
3231anbi2d 629 . . . . . . . 8 (𝑙 = [⟨𝐴, 𝐵⟩] Colinear → (((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ 𝑙 = [⟨𝐴, 𝐵⟩] Colinear ) ↔ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear )))
3332rexbidv 3226 . . . . . . 7 (𝑙 = [⟨𝐴, 𝐵⟩] Colinear → (∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ 𝑙 = [⟨𝐴, 𝐵⟩] Colinear ) ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear )))
3422, 30, 33eloprabg 7384 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ [⟨𝐴, 𝐵⟩] Colinear ∈ V) → (⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )} ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear )))
3514, 34mp3an3 1449 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )} ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear )))
369, 10, 35syl2anc 584 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵)) → (⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )} ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear )))
378, 36mpbird 256 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵)) → ⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )})
38 df-ov 7278 . . . 4 (𝐴Line𝐵) = (Line‘⟨𝐴, 𝐵⟩)
39 df-br 5075 . . . . . 6 (⟨𝐴, 𝐵⟩Line[⟨𝐴, 𝐵⟩] Colinear ↔ ⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ Line)
40 df-line2 34439 . . . . . . 7 Line = {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )}
4140eleq2i 2830 . . . . . 6 (⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ Line ↔ ⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )})
4239, 41bitri 274 . . . . 5 (⟨𝐴, 𝐵⟩Line[⟨𝐴, 𝐵⟩] Colinear ↔ ⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )})
43 funline 34444 . . . . . 6 Fun Line
44 funbrfv 6820 . . . . . 6 (Fun Line → (⟨𝐴, 𝐵⟩Line[⟨𝐴, 𝐵⟩] Colinear → (Line‘⟨𝐴, 𝐵⟩) = [⟨𝐴, 𝐵⟩] Colinear ))
4543, 44ax-mp 5 . . . . 5 (⟨𝐴, 𝐵⟩Line[⟨𝐴, 𝐵⟩] Colinear → (Line‘⟨𝐴, 𝐵⟩) = [⟨𝐴, 𝐵⟩] Colinear )
4642, 45sylbir 234 . . . 4 (⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )} → (Line‘⟨𝐴, 𝐵⟩) = [⟨𝐴, 𝐵⟩] Colinear )
4738, 46eqtrid 2790 . . 3 (⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )} → (𝐴Line𝐵) = [⟨𝐴, 𝐵⟩] Colinear )
4837, 47syl 17 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵)) → (𝐴Line𝐵) = [⟨𝐴, 𝐵⟩] Colinear )
49 opex 5379 . . . 4 𝐴, 𝐵⟩ ∈ V
50 dfec2 8501 . . . 4 (⟨𝐴, 𝐵⟩ ∈ V → [⟨𝐴, 𝐵⟩] Colinear = {𝑥 ∣ ⟨𝐴, 𝐵 Colinear 𝑥})
5149, 50ax-mp 5 . . 3 [⟨𝐴, 𝐵⟩] Colinear = {𝑥 ∣ ⟨𝐴, 𝐵 Colinear 𝑥}
52 vex 3436 . . . . 5 𝑥 ∈ V
5349, 52brcnv 5791 . . . 4 (⟨𝐴, 𝐵 Colinear 𝑥𝑥 Colinear ⟨𝐴, 𝐵⟩)
5453abbii 2808 . . 3 {𝑥 ∣ ⟨𝐴, 𝐵 Colinear 𝑥} = {𝑥𝑥 Colinear ⟨𝐴, 𝐵⟩}
5551, 54eqtri 2766 . 2 [⟨𝐴, 𝐵⟩] Colinear = {𝑥𝑥 Colinear ⟨𝐴, 𝐵⟩}
5648, 55eqtrdi 2794 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵)) → (𝐴Line𝐵) = {𝑥𝑥 Colinear ⟨𝐴, 𝐵⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  {cab 2715  wne 2943  wrex 3065  Vcvv 3432  cop 4567   class class class wbr 5074  ccnv 5588  Fun wfun 6427  cfv 6433  (class class class)co 7275  {coprab 7276  [cec 8496  cn 11973  𝔼cee 27256   Colinear ccolin 34339  Linecline2 34436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-1cn 10929  ax-addcl 10931
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-ec 8500  df-nn 11974  df-colinear 34341  df-line2 34439
This theorem is referenced by:  liness  34447  fvline2  34448  ellines  34454
  Copyright terms: Public domain W3C validator