Step | Hyp | Ref
| Expression |
1 | | df-ov 7278 |
. 2
⊢ (𝐴Line𝐴) = (Line‘〈𝐴, 𝐴〉) |
2 | | neirr 2952 |
. . . . . . . . . . 11
⊢ ¬
𝐴 ≠ 𝐴 |
3 | | simp3 1137 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴 ≠ 𝐴) → 𝐴 ≠ 𝐴) |
4 | 2, 3 | mto 196 |
. . . . . . . . . 10
⊢ ¬
(𝐴 ∈
(𝔼‘𝑛) ∧
𝐴 ∈
(𝔼‘𝑛) ∧
𝐴 ≠ 𝐴) |
5 | 4 | intnanr 488 |
. . . . . . . . 9
⊢ ¬
((𝐴 ∈
(𝔼‘𝑛) ∧
𝐴 ∈
(𝔼‘𝑛) ∧
𝐴 ≠ 𝐴) ∧ 𝑙 = [〈𝐴, 𝐴〉]◡ Colinear ) |
6 | 5 | a1i 11 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ → ¬
((𝐴 ∈
(𝔼‘𝑛) ∧
𝐴 ∈
(𝔼‘𝑛) ∧
𝐴 ≠ 𝐴) ∧ 𝑙 = [〈𝐴, 𝐴〉]◡ Colinear )) |
7 | 6 | nrex 3197 |
. . . . . . 7
⊢ ¬
∃𝑛 ∈ ℕ
((𝐴 ∈
(𝔼‘𝑛) ∧
𝐴 ∈
(𝔼‘𝑛) ∧
𝐴 ≠ 𝐴) ∧ 𝑙 = [〈𝐴, 𝐴〉]◡ Colinear ) |
8 | 7 | nex 1803 |
. . . . . 6
⊢ ¬
∃𝑙∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴 ≠ 𝐴) ∧ 𝑙 = [〈𝐴, 𝐴〉]◡ Colinear ) |
9 | | eleq1 2826 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐴 → (𝑥 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑛))) |
10 | | neeq1 3006 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐴 → (𝑥 ≠ 𝑦 ↔ 𝐴 ≠ 𝑦)) |
11 | 9, 10 | 3anbi13d 1437 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐴 → ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝑥 ≠ 𝑦) ↔ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝐴 ≠ 𝑦))) |
12 | | opeq1 4804 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝐴, 𝑦〉) |
13 | 12 | eceq1d 8537 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐴 → [〈𝑥, 𝑦〉]◡ Colinear = [〈𝐴, 𝑦〉]◡ Colinear ) |
14 | 13 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐴 → (𝑙 = [〈𝑥, 𝑦〉]◡ Colinear ↔ 𝑙 = [〈𝐴, 𝑦〉]◡ Colinear )) |
15 | 11, 14 | anbi12d 631 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → (((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝑥 ≠ 𝑦) ∧ 𝑙 = [〈𝑥, 𝑦〉]◡ Colinear ) ↔ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝐴 ≠ 𝑦) ∧ 𝑙 = [〈𝐴, 𝑦〉]◡ Colinear ))) |
16 | 15 | rexbidv 3226 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → (∃𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝑥 ≠ 𝑦) ∧ 𝑙 = [〈𝑥, 𝑦〉]◡ Colinear ) ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝐴 ≠ 𝑦) ∧ 𝑙 = [〈𝐴, 𝑦〉]◡ Colinear ))) |
17 | 16 | exbidv 1924 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (∃𝑙∃𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝑥 ≠ 𝑦) ∧ 𝑙 = [〈𝑥, 𝑦〉]◡ Colinear ) ↔ ∃𝑙∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝐴 ≠ 𝑦) ∧ 𝑙 = [〈𝐴, 𝑦〉]◡ Colinear ))) |
18 | | eleq1 2826 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐴 → (𝑦 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑛))) |
19 | | neeq2 3007 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐴 → (𝐴 ≠ 𝑦 ↔ 𝐴 ≠ 𝐴)) |
20 | 18, 19 | 3anbi23d 1438 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐴 → ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝐴 ≠ 𝑦) ↔ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴 ≠ 𝐴))) |
21 | | opeq2 4805 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐴 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐴〉) |
22 | 21 | eceq1d 8537 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐴 → [〈𝐴, 𝑦〉]◡ Colinear = [〈𝐴, 𝐴〉]◡ Colinear ) |
23 | 22 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐴 → (𝑙 = [〈𝐴, 𝑦〉]◡ Colinear ↔ 𝑙 = [〈𝐴, 𝐴〉]◡ Colinear )) |
24 | 20, 23 | anbi12d 631 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐴 → (((𝐴 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝐴 ≠ 𝑦) ∧ 𝑙 = [〈𝐴, 𝑦〉]◡ Colinear ) ↔ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴 ≠ 𝐴) ∧ 𝑙 = [〈𝐴, 𝐴〉]◡ Colinear ))) |
25 | 24 | rexbidv 3226 |
. . . . . . . . 9
⊢ (𝑦 = 𝐴 → (∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝐴 ≠ 𝑦) ∧ 𝑙 = [〈𝐴, 𝑦〉]◡ Colinear ) ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴 ≠ 𝐴) ∧ 𝑙 = [〈𝐴, 𝐴〉]◡ Colinear ))) |
26 | 25 | exbidv 1924 |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → (∃𝑙∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝐴 ≠ 𝑦) ∧ 𝑙 = [〈𝐴, 𝑦〉]◡ Colinear ) ↔ ∃𝑙∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴 ≠ 𝐴) ∧ 𝑙 = [〈𝐴, 𝐴〉]◡ Colinear ))) |
27 | 17, 26 | opelopabg 5451 |
. . . . . . 7
⊢ ((𝐴 ∈ V ∧ 𝐴 ∈ V) → (〈𝐴, 𝐴〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑙∃𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝑥 ≠ 𝑦) ∧ 𝑙 = [〈𝑥, 𝑦〉]◡ Colinear )} ↔ ∃𝑙∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴 ≠ 𝐴) ∧ 𝑙 = [〈𝐴, 𝐴〉]◡ Colinear ))) |
28 | 27 | anidms 567 |
. . . . . 6
⊢ (𝐴 ∈ V → (〈𝐴, 𝐴〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑙∃𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝑥 ≠ 𝑦) ∧ 𝑙 = [〈𝑥, 𝑦〉]◡ Colinear )} ↔ ∃𝑙∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴 ≠ 𝐴) ∧ 𝑙 = [〈𝐴, 𝐴〉]◡ Colinear ))) |
29 | 8, 28 | mtbiri 327 |
. . . . 5
⊢ (𝐴 ∈ V → ¬
〈𝐴, 𝐴〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑙∃𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝑥 ≠ 𝑦) ∧ 𝑙 = [〈𝑥, 𝑦〉]◡ Colinear )}) |
30 | | elopaelxp 5676 |
. . . . . . 7
⊢
(〈𝐴, 𝐴〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑙∃𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝑥 ≠ 𝑦) ∧ 𝑙 = [〈𝑥, 𝑦〉]◡ Colinear )} → 〈𝐴, 𝐴〉 ∈ (V ×
V)) |
31 | | opelxp1 5630 |
. . . . . . 7
⊢
(〈𝐴, 𝐴〉 ∈ (V × V)
→ 𝐴 ∈
V) |
32 | 30, 31 | syl 17 |
. . . . . 6
⊢
(〈𝐴, 𝐴〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑙∃𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝑥 ≠ 𝑦) ∧ 𝑙 = [〈𝑥, 𝑦〉]◡ Colinear )} → 𝐴 ∈ V) |
33 | 32 | con3i 154 |
. . . . 5
⊢ (¬
𝐴 ∈ V → ¬
〈𝐴, 𝐴〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑙∃𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝑥 ≠ 𝑦) ∧ 𝑙 = [〈𝑥, 𝑦〉]◡ Colinear )}) |
34 | 29, 33 | pm2.61i 182 |
. . . 4
⊢ ¬
〈𝐴, 𝐴〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑙∃𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝑥 ≠ 𝑦) ∧ 𝑙 = [〈𝑥, 𝑦〉]◡ Colinear )} |
35 | | df-line2 34439 |
. . . . . . 7
⊢ Line =
{〈〈𝑥, 𝑦〉, 𝑙〉 ∣ ∃𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝑥 ≠ 𝑦) ∧ 𝑙 = [〈𝑥, 𝑦〉]◡ Colinear )} |
36 | 35 | dmeqi 5813 |
. . . . . 6
⊢ dom Line
= dom {〈〈𝑥, 𝑦〉, 𝑙〉 ∣ ∃𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝑥 ≠ 𝑦) ∧ 𝑙 = [〈𝑥, 𝑦〉]◡ Colinear )} |
37 | | dmoprab 7376 |
. . . . . 6
⊢ dom
{〈〈𝑥, 𝑦〉, 𝑙〉 ∣ ∃𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝑥 ≠ 𝑦) ∧ 𝑙 = [〈𝑥, 𝑦〉]◡ Colinear )} = {〈𝑥, 𝑦〉 ∣ ∃𝑙∃𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝑥 ≠ 𝑦) ∧ 𝑙 = [〈𝑥, 𝑦〉]◡ Colinear )} |
38 | 36, 37 | eqtri 2766 |
. . . . 5
⊢ dom Line
= {〈𝑥, 𝑦〉 ∣ ∃𝑙∃𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝑥 ≠ 𝑦) ∧ 𝑙 = [〈𝑥, 𝑦〉]◡ Colinear )} |
39 | 38 | eleq2i 2830 |
. . . 4
⊢
(〈𝐴, 𝐴〉 ∈ dom Line ↔
〈𝐴, 𝐴〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑙∃𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝑥 ≠ 𝑦) ∧ 𝑙 = [〈𝑥, 𝑦〉]◡ Colinear )}) |
40 | 34, 39 | mtbir 323 |
. . 3
⊢ ¬
〈𝐴, 𝐴〉 ∈ dom Line |
41 | | ndmfv 6804 |
. . 3
⊢ (¬
〈𝐴, 𝐴〉 ∈ dom Line →
(Line‘〈𝐴, 𝐴〉) =
∅) |
42 | 40, 41 | ax-mp 5 |
. 2
⊢
(Line‘〈𝐴,
𝐴〉) =
∅ |
43 | 1, 42 | eqtri 2766 |
1
⊢ (𝐴Line𝐴) = ∅ |