Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linedegen Structured version   Visualization version   GIF version

Theorem linedegen 34139
Description: When Line is applied with the same argument, the result is the empty set. (Contributed by Scott Fenton, 29-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
linedegen (𝐴Line𝐴) = ∅

Proof of Theorem linedegen
Dummy variables 𝑙 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 7205 . 2 (𝐴Line𝐴) = (Line‘⟨𝐴, 𝐴⟩)
2 neirr 2944 . . . . . . . . . . 11 ¬ 𝐴𝐴
3 simp3 1140 . . . . . . . . . . 11 ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴𝐴) → 𝐴𝐴)
42, 3mto 200 . . . . . . . . . 10 ¬ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴𝐴)
54intnanr 491 . . . . . . . . 9 ¬ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴𝐴) ∧ 𝑙 = [⟨𝐴, 𝐴⟩] Colinear )
65a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → ¬ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴𝐴) ∧ 𝑙 = [⟨𝐴, 𝐴⟩] Colinear ))
76nrex 3181 . . . . . . 7 ¬ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴𝐴) ∧ 𝑙 = [⟨𝐴, 𝐴⟩] Colinear )
87nex 1808 . . . . . 6 ¬ ∃𝑙𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴𝐴) ∧ 𝑙 = [⟨𝐴, 𝐴⟩] Colinear )
9 eleq1 2821 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (𝑥 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑛)))
10 neeq1 2997 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (𝑥𝑦𝐴𝑦))
119, 103anbi13d 1440 . . . . . . . . . . 11 (𝑥 = 𝐴 → ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝑥𝑦) ↔ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝐴𝑦)))
12 opeq1 4774 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝑦⟩)
1312eceq1d 8419 . . . . . . . . . . . 12 (𝑥 = 𝐴 → [⟨𝑥, 𝑦⟩] Colinear = [⟨𝐴, 𝑦⟩] Colinear )
1413eqeq2d 2745 . . . . . . . . . . 11 (𝑥 = 𝐴 → (𝑙 = [⟨𝑥, 𝑦⟩] Colinear ↔ 𝑙 = [⟨𝐴, 𝑦⟩] Colinear ))
1511, 14anbi12d 634 . . . . . . . . . 10 (𝑥 = 𝐴 → (((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝑥𝑦) ∧ 𝑙 = [⟨𝑥, 𝑦⟩] Colinear ) ↔ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝐴𝑦) ∧ 𝑙 = [⟨𝐴, 𝑦⟩] Colinear )))
1615rexbidv 3209 . . . . . . . . 9 (𝑥 = 𝐴 → (∃𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝑥𝑦) ∧ 𝑙 = [⟨𝑥, 𝑦⟩] Colinear ) ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝐴𝑦) ∧ 𝑙 = [⟨𝐴, 𝑦⟩] Colinear )))
1716exbidv 1929 . . . . . . . 8 (𝑥 = 𝐴 → (∃𝑙𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝑥𝑦) ∧ 𝑙 = [⟨𝑥, 𝑦⟩] Colinear ) ↔ ∃𝑙𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝐴𝑦) ∧ 𝑙 = [⟨𝐴, 𝑦⟩] Colinear )))
18 eleq1 2821 . . . . . . . . . . . 12 (𝑦 = 𝐴 → (𝑦 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑛)))
19 neeq2 2998 . . . . . . . . . . . 12 (𝑦 = 𝐴 → (𝐴𝑦𝐴𝐴))
2018, 193anbi23d 1441 . . . . . . . . . . 11 (𝑦 = 𝐴 → ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝐴𝑦) ↔ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴𝐴)))
21 opeq2 4775 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝐴⟩)
2221eceq1d 8419 . . . . . . . . . . . 12 (𝑦 = 𝐴 → [⟨𝐴, 𝑦⟩] Colinear = [⟨𝐴, 𝐴⟩] Colinear )
2322eqeq2d 2745 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝑙 = [⟨𝐴, 𝑦⟩] Colinear ↔ 𝑙 = [⟨𝐴, 𝐴⟩] Colinear ))
2420, 23anbi12d 634 . . . . . . . . . 10 (𝑦 = 𝐴 → (((𝐴 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝐴𝑦) ∧ 𝑙 = [⟨𝐴, 𝑦⟩] Colinear ) ↔ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴𝐴) ∧ 𝑙 = [⟨𝐴, 𝐴⟩] Colinear )))
2524rexbidv 3209 . . . . . . . . 9 (𝑦 = 𝐴 → (∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝐴𝑦) ∧ 𝑙 = [⟨𝐴, 𝑦⟩] Colinear ) ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴𝐴) ∧ 𝑙 = [⟨𝐴, 𝐴⟩] Colinear )))
2625exbidv 1929 . . . . . . . 8 (𝑦 = 𝐴 → (∃𝑙𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝐴𝑦) ∧ 𝑙 = [⟨𝐴, 𝑦⟩] Colinear ) ↔ ∃𝑙𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴𝐴) ∧ 𝑙 = [⟨𝐴, 𝐴⟩] Colinear )))
2717, 26opelopabg 5408 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐴 ∈ V) → (⟨𝐴, 𝐴⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑙𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝑥𝑦) ∧ 𝑙 = [⟨𝑥, 𝑦⟩] Colinear )} ↔ ∃𝑙𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴𝐴) ∧ 𝑙 = [⟨𝐴, 𝐴⟩] Colinear )))
2827anidms 570 . . . . . 6 (𝐴 ∈ V → (⟨𝐴, 𝐴⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑙𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝑥𝑦) ∧ 𝑙 = [⟨𝑥, 𝑦⟩] Colinear )} ↔ ∃𝑙𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴 ∈ (𝔼‘𝑛) ∧ 𝐴𝐴) ∧ 𝑙 = [⟨𝐴, 𝐴⟩] Colinear )))
298, 28mtbiri 330 . . . . 5 (𝐴 ∈ V → ¬ ⟨𝐴, 𝐴⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑙𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝑥𝑦) ∧ 𝑙 = [⟨𝑥, 𝑦⟩] Colinear )})
30 elopaelxp 5627 . . . . . . 7 (⟨𝐴, 𝐴⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑙𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝑥𝑦) ∧ 𝑙 = [⟨𝑥, 𝑦⟩] Colinear )} → ⟨𝐴, 𝐴⟩ ∈ (V × V))
31 opelxp1 5581 . . . . . . 7 (⟨𝐴, 𝐴⟩ ∈ (V × V) → 𝐴 ∈ V)
3230, 31syl 17 . . . . . 6 (⟨𝐴, 𝐴⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑙𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝑥𝑦) ∧ 𝑙 = [⟨𝑥, 𝑦⟩] Colinear )} → 𝐴 ∈ V)
3332con3i 157 . . . . 5 𝐴 ∈ V → ¬ ⟨𝐴, 𝐴⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑙𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝑥𝑦) ∧ 𝑙 = [⟨𝑥, 𝑦⟩] Colinear )})
3429, 33pm2.61i 185 . . . 4 ¬ ⟨𝐴, 𝐴⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑙𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝑥𝑦) ∧ 𝑙 = [⟨𝑥, 𝑦⟩] Colinear )}
35 df-line2 34133 . . . . . . 7 Line = {⟨⟨𝑥, 𝑦⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝑥𝑦) ∧ 𝑙 = [⟨𝑥, 𝑦⟩] Colinear )}
3635dmeqi 5762 . . . . . 6 dom Line = dom {⟨⟨𝑥, 𝑦⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝑥𝑦) ∧ 𝑙 = [⟨𝑥, 𝑦⟩] Colinear )}
37 dmoprab 7301 . . . . . 6 dom {⟨⟨𝑥, 𝑦⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝑥𝑦) ∧ 𝑙 = [⟨𝑥, 𝑦⟩] Colinear )} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑙𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝑥𝑦) ∧ 𝑙 = [⟨𝑥, 𝑦⟩] Colinear )}
3836, 37eqtri 2762 . . . . 5 dom Line = {⟨𝑥, 𝑦⟩ ∣ ∃𝑙𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝑥𝑦) ∧ 𝑙 = [⟨𝑥, 𝑦⟩] Colinear )}
3938eleq2i 2825 . . . 4 (⟨𝐴, 𝐴⟩ ∈ dom Line ↔ ⟨𝐴, 𝐴⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑙𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛) ∧ 𝑥𝑦) ∧ 𝑙 = [⟨𝑥, 𝑦⟩] Colinear )})
4034, 39mtbir 326 . . 3 ¬ ⟨𝐴, 𝐴⟩ ∈ dom Line
41 ndmfv 6736 . . 3 (¬ ⟨𝐴, 𝐴⟩ ∈ dom Line → (Line‘⟨𝐴, 𝐴⟩) = ∅)
4240, 41ax-mp 5 . 2 (Line‘⟨𝐴, 𝐴⟩) = ∅
431, 42eqtri 2762 1 (𝐴Line𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wa 399  w3a 1089   = wceq 1543  wex 1787  wcel 2110  wne 2935  wrex 3055  Vcvv 3401  c0 4227  cop 4537  {copab 5105   × cxp 5538  ccnv 5539  dom cdm 5540  cfv 6369  (class class class)co 7202  {coprab 7203  [cec 8378  cn 11813  𝔼cee 26951   Colinear ccolin 34033  Linecline2 34130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pr 5311
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3403  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-nul 4228  df-if 4430  df-sn 4532  df-pr 4534  df-op 4538  df-uni 4810  df-br 5044  df-opab 5106  df-xp 5546  df-cnv 5548  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-iota 6327  df-fv 6377  df-ov 7205  df-oprab 7206  df-ec 8382  df-line2 34133
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator