| Step | Hyp | Ref
| Expression |
| 1 | | elex 3480 |
. 2
⊢ (𝐴 ∈ LinesEE → 𝐴 ∈ V) |
| 2 | | ovex 7438 |
. . . . . . 7
⊢ (𝑝Line𝑞) ∈ V |
| 3 | | eleq1 2822 |
. . . . . . 7
⊢ (𝐴 = (𝑝Line𝑞) → (𝐴 ∈ V ↔ (𝑝Line𝑞) ∈ V)) |
| 4 | 2, 3 | mpbiri 258 |
. . . . . 6
⊢ (𝐴 = (𝑝Line𝑞) → 𝐴 ∈ V) |
| 5 | 4 | adantl 481 |
. . . . 5
⊢ ((𝑝 ≠ 𝑞 ∧ 𝐴 = (𝑝Line𝑞)) → 𝐴 ∈ V) |
| 6 | 5 | rexlimivw 3137 |
. . . 4
⊢
(∃𝑞 ∈
(𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ 𝐴 = (𝑝Line𝑞)) → 𝐴 ∈ V) |
| 7 | 6 | a1i 11 |
. . 3
⊢ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) → (∃𝑞 ∈ (𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ 𝐴 = (𝑝Line𝑞)) → 𝐴 ∈ V)) |
| 8 | 7 | rexlimivv 3186 |
. 2
⊢
(∃𝑛 ∈
ℕ ∃𝑝 ∈
(𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ 𝐴 = (𝑝Line𝑞)) → 𝐴 ∈ V) |
| 9 | | eleq1 2822 |
. . 3
⊢ (𝑥 = 𝐴 → (𝑥 ∈ LinesEE ↔ 𝐴 ∈ LinesEE)) |
| 10 | | eqeq1 2739 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝑥 = (𝑝Line𝑞) ↔ 𝐴 = (𝑝Line𝑞))) |
| 11 | 10 | anbi2d 630 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((𝑝 ≠ 𝑞 ∧ 𝑥 = (𝑝Line𝑞)) ↔ (𝑝 ≠ 𝑞 ∧ 𝐴 = (𝑝Line𝑞)))) |
| 12 | 11 | rexbidv 3164 |
. . . 4
⊢ (𝑥 = 𝐴 → (∃𝑞 ∈ (𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ 𝑥 = (𝑝Line𝑞)) ↔ ∃𝑞 ∈ (𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ 𝐴 = (𝑝Line𝑞)))) |
| 13 | 12 | 2rexbidv 3206 |
. . 3
⊢ (𝑥 = 𝐴 → (∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ 𝑥 = (𝑝Line𝑞)) ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ 𝐴 = (𝑝Line𝑞)))) |
| 14 | | df-lines2 36157 |
. . . . . 6
⊢ LinesEE =
ran Line |
| 15 | | df-line2 36155 |
. . . . . . 7
⊢ Line =
{〈〈𝑝, 𝑞〉, 𝑥〉 ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑞) ∧ 𝑥 = [〈𝑝, 𝑞〉]◡ Colinear )} |
| 16 | 15 | rneqi 5917 |
. . . . . 6
⊢ ran Line
= ran {〈〈𝑝, 𝑞〉, 𝑥〉 ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑞) ∧ 𝑥 = [〈𝑝, 𝑞〉]◡ Colinear )} |
| 17 | | rnoprab 7512 |
. . . . . 6
⊢ ran
{〈〈𝑝, 𝑞〉, 𝑥〉 ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑞) ∧ 𝑥 = [〈𝑝, 𝑞〉]◡ Colinear )} = {𝑥 ∣ ∃𝑝∃𝑞∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑞) ∧ 𝑥 = [〈𝑝, 𝑞〉]◡ Colinear )} |
| 18 | 14, 16, 17 | 3eqtri 2762 |
. . . . 5
⊢ LinesEE =
{𝑥 ∣ ∃𝑝∃𝑞∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑞) ∧ 𝑥 = [〈𝑝, 𝑞〉]◡ Colinear )} |
| 19 | 18 | eleq2i 2826 |
. . . 4
⊢ (𝑥 ∈ LinesEE ↔ 𝑥 ∈ {𝑥 ∣ ∃𝑝∃𝑞∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑞) ∧ 𝑥 = [〈𝑝, 𝑞〉]◡ Colinear )}) |
| 20 | | abid 2717 |
. . . . 5
⊢ (𝑥 ∈ {𝑥 ∣ ∃𝑝∃𝑞∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑞) ∧ 𝑥 = [〈𝑝, 𝑞〉]◡ Colinear )} ↔ ∃𝑝∃𝑞∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑞) ∧ 𝑥 = [〈𝑝, 𝑞〉]◡ Colinear )) |
| 21 | | df-rex 3061 |
. . . . . . 7
⊢
(∃𝑛 ∈
ℕ ((𝑝 ∈
(𝔼‘𝑛) ∧
𝑞 ∈
(𝔼‘𝑛) ∧
𝑝 ≠ 𝑞) ∧ 𝑥 = [〈𝑝, 𝑞〉]◡ Colinear ) ↔ ∃𝑛(𝑛 ∈ ℕ ∧ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑞) ∧ 𝑥 = [〈𝑝, 𝑞〉]◡ Colinear ))) |
| 22 | 21 | 2exbii 1849 |
. . . . . 6
⊢
(∃𝑝∃𝑞∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑞) ∧ 𝑥 = [〈𝑝, 𝑞〉]◡ Colinear ) ↔ ∃𝑝∃𝑞∃𝑛(𝑛 ∈ ℕ ∧ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑞) ∧ 𝑥 = [〈𝑝, 𝑞〉]◡ Colinear ))) |
| 23 | | exrot3 2165 |
. . . . . . 7
⊢
(∃𝑛∃𝑝∃𝑞(𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑥 = (𝑝Line𝑞)))) ↔ ∃𝑝∃𝑞∃𝑛(𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑥 = (𝑝Line𝑞))))) |
| 24 | | r2ex 3181 |
. . . . . . . 8
⊢
(∃𝑛 ∈
ℕ ∃𝑝 ∈
(𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ 𝑥 = (𝑝Line𝑞)) ↔ ∃𝑛∃𝑝((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ ∃𝑞 ∈ (𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ 𝑥 = (𝑝Line𝑞)))) |
| 25 | | r19.42v 3176 |
. . . . . . . . . 10
⊢
(∃𝑞 ∈
(𝔼‘𝑛)((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑥 = (𝑝Line𝑞))) ↔ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ ∃𝑞 ∈ (𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ 𝑥 = (𝑝Line𝑞)))) |
| 26 | | df-rex 3061 |
. . . . . . . . . 10
⊢
(∃𝑞 ∈
(𝔼‘𝑛)((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑥 = (𝑝Line𝑞))) ↔ ∃𝑞(𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑥 = (𝑝Line𝑞))))) |
| 27 | 25, 26 | bitr3i 277 |
. . . . . . . . 9
⊢ (((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ ∃𝑞 ∈ (𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ 𝑥 = (𝑝Line𝑞))) ↔ ∃𝑞(𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑥 = (𝑝Line𝑞))))) |
| 28 | 27 | 2exbii 1849 |
. . . . . . . 8
⊢
(∃𝑛∃𝑝((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ ∃𝑞 ∈ (𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ 𝑥 = (𝑝Line𝑞))) ↔ ∃𝑛∃𝑝∃𝑞(𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑥 = (𝑝Line𝑞))))) |
| 29 | 24, 28 | bitri 275 |
. . . . . . 7
⊢
(∃𝑛 ∈
ℕ ∃𝑝 ∈
(𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ 𝑥 = (𝑝Line𝑞)) ↔ ∃𝑛∃𝑝∃𝑞(𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑥 = (𝑝Line𝑞))))) |
| 30 | | anass 468 |
. . . . . . . . . 10
⊢ (((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ (𝑝 ≠ 𝑞 ∧ 𝑥 = (𝑝Line𝑞))) ↔ (𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑥 = (𝑝Line𝑞))))) |
| 31 | | anass 468 |
. . . . . . . . . . 11
⊢ ((((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝 ≠ 𝑞) ∧ 𝑥 = (𝑝Line𝑞)) ↔ ((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ (𝑝 ≠ 𝑞 ∧ 𝑥 = (𝑝Line𝑞)))) |
| 32 | | simplrl 776 |
. . . . . . . . . . . . . 14
⊢ (((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝 ≠ 𝑞) → 𝑛 ∈ ℕ) |
| 33 | | simplrr 777 |
. . . . . . . . . . . . . . 15
⊢ (((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝 ≠ 𝑞) → 𝑝 ∈ (𝔼‘𝑛)) |
| 34 | | simpll 766 |
. . . . . . . . . . . . . . 15
⊢ (((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝 ≠ 𝑞) → 𝑞 ∈ (𝔼‘𝑛)) |
| 35 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝 ≠ 𝑞) → 𝑝 ≠ 𝑞) |
| 36 | 33, 34, 35 | 3jca 1128 |
. . . . . . . . . . . . . 14
⊢ (((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝 ≠ 𝑞) → (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑞)) |
| 37 | 32, 36 | jca 511 |
. . . . . . . . . . . . 13
⊢ (((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝 ≠ 𝑞) → (𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑞))) |
| 38 | | simpr2 1196 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑞)) → 𝑞 ∈ (𝔼‘𝑛)) |
| 39 | | simpl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑞)) → 𝑛 ∈ ℕ) |
| 40 | | simpr1 1195 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑞)) → 𝑝 ∈ (𝔼‘𝑛)) |
| 41 | 38, 39, 40 | jca32 515 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑞)) → (𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)))) |
| 42 | | simpr3 1197 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑞)) → 𝑝 ≠ 𝑞) |
| 43 | 41, 42 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑞)) → ((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝 ≠ 𝑞)) |
| 44 | 37, 43 | impbii 209 |
. . . . . . . . . . . 12
⊢ (((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝 ≠ 𝑞) ↔ (𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑞))) |
| 45 | 44 | anbi1i 624 |
. . . . . . . . . . 11
⊢ ((((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝 ≠ 𝑞) ∧ 𝑥 = (𝑝Line𝑞)) ↔ ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑞)) ∧ 𝑥 = (𝑝Line𝑞))) |
| 46 | 31, 45 | bitr3i 277 |
. . . . . . . . . 10
⊢ (((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ (𝑝 ≠ 𝑞 ∧ 𝑥 = (𝑝Line𝑞))) ↔ ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑞)) ∧ 𝑥 = (𝑝Line𝑞))) |
| 47 | 30, 46 | bitr3i 277 |
. . . . . . . . 9
⊢ ((𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑥 = (𝑝Line𝑞)))) ↔ ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑞)) ∧ 𝑥 = (𝑝Line𝑞))) |
| 48 | | fvline 36162 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑞)) → (𝑝Line𝑞) = {𝑥 ∣ 𝑥 Colinear 〈𝑝, 𝑞〉}) |
| 49 | | opex 5439 |
. . . . . . . . . . . . . 14
⊢
〈𝑝, 𝑞〉 ∈ V |
| 50 | | dfec2 8722 |
. . . . . . . . . . . . . 14
⊢
(〈𝑝, 𝑞〉 ∈ V →
[〈𝑝, 𝑞〉]◡ Colinear = {𝑥 ∣ 〈𝑝, 𝑞〉◡ Colinear 𝑥}) |
| 51 | 49, 50 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
[〈𝑝, 𝑞〉]◡ Colinear = {𝑥 ∣ 〈𝑝, 𝑞〉◡ Colinear 𝑥} |
| 52 | | vex 3463 |
. . . . . . . . . . . . . . 15
⊢ 𝑥 ∈ V |
| 53 | 49, 52 | brcnv 5862 |
. . . . . . . . . . . . . 14
⊢
(〈𝑝, 𝑞〉◡ Colinear 𝑥 ↔ 𝑥 Colinear 〈𝑝, 𝑞〉) |
| 54 | 53 | abbii 2802 |
. . . . . . . . . . . . 13
⊢ {𝑥 ∣ 〈𝑝, 𝑞〉◡ Colinear 𝑥} = {𝑥 ∣ 𝑥 Colinear 〈𝑝, 𝑞〉} |
| 55 | 51, 54 | eqtri 2758 |
. . . . . . . . . . . 12
⊢
[〈𝑝, 𝑞〉]◡ Colinear = {𝑥 ∣ 𝑥 Colinear 〈𝑝, 𝑞〉} |
| 56 | 48, 55 | eqtr4di 2788 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑞)) → (𝑝Line𝑞) = [〈𝑝, 𝑞〉]◡ Colinear ) |
| 57 | 56 | eqeq2d 2746 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑞)) → (𝑥 = (𝑝Line𝑞) ↔ 𝑥 = [〈𝑝, 𝑞〉]◡ Colinear )) |
| 58 | 57 | pm5.32i 574 |
. . . . . . . . 9
⊢ (((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑞)) ∧ 𝑥 = (𝑝Line𝑞)) ↔ ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑞)) ∧ 𝑥 = [〈𝑝, 𝑞〉]◡ Colinear )) |
| 59 | | anass 468 |
. . . . . . . . 9
⊢ (((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑞)) ∧ 𝑥 = [〈𝑝, 𝑞〉]◡ Colinear ) ↔ (𝑛 ∈ ℕ ∧ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑞) ∧ 𝑥 = [〈𝑝, 𝑞〉]◡ Colinear ))) |
| 60 | 47, 58, 59 | 3bitrri 298 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ ∧ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑞) ∧ 𝑥 = [〈𝑝, 𝑞〉]◡ Colinear )) ↔ (𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑥 = (𝑝Line𝑞))))) |
| 61 | 60 | 3exbii 1850 |
. . . . . . 7
⊢
(∃𝑝∃𝑞∃𝑛(𝑛 ∈ ℕ ∧ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑞) ∧ 𝑥 = [〈𝑝, 𝑞〉]◡ Colinear )) ↔ ∃𝑝∃𝑞∃𝑛(𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝 ≠ 𝑞 ∧ 𝑥 = (𝑝Line𝑞))))) |
| 62 | 23, 29, 61 | 3bitr4ri 304 |
. . . . . 6
⊢
(∃𝑝∃𝑞∃𝑛(𝑛 ∈ ℕ ∧ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑞) ∧ 𝑥 = [〈𝑝, 𝑞〉]◡ Colinear )) ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ 𝑥 = (𝑝Line𝑞))) |
| 63 | 22, 62 | bitri 275 |
. . . . 5
⊢
(∃𝑝∃𝑞∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑞) ∧ 𝑥 = [〈𝑝, 𝑞〉]◡ Colinear ) ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ 𝑥 = (𝑝Line𝑞))) |
| 64 | 20, 63 | bitri 275 |
. . . 4
⊢ (𝑥 ∈ {𝑥 ∣ ∃𝑝∃𝑞∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑞) ∧ 𝑥 = [〈𝑝, 𝑞〉]◡ Colinear )} ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ 𝑥 = (𝑝Line𝑞))) |
| 65 | 19, 64 | bitri 275 |
. . 3
⊢ (𝑥 ∈ LinesEE ↔
∃𝑛 ∈ ℕ
∃𝑝 ∈
(𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ 𝑥 = (𝑝Line𝑞))) |
| 66 | 9, 13, 65 | vtoclbg 3536 |
. 2
⊢ (𝐴 ∈ V → (𝐴 ∈ LinesEE ↔
∃𝑛 ∈ ℕ
∃𝑝 ∈
(𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ 𝐴 = (𝑝Line𝑞)))) |
| 67 | 1, 8, 66 | pm5.21nii 378 |
1
⊢ (𝐴 ∈ LinesEE ↔
∃𝑛 ∈ ℕ
∃𝑝 ∈
(𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝 ≠ 𝑞 ∧ 𝐴 = (𝑝Line𝑞))) |