Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellines Structured version   Visualization version   GIF version

Theorem ellines 36147
Description: Membership in the set of all lines. (Contributed by Scott Fenton, 28-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
ellines (𝐴 ∈ LinesEE ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝐴 = (𝑝Line𝑞)))
Distinct variable group:   𝐴,𝑛,𝑝,𝑞

Proof of Theorem ellines
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 3471 . 2 (𝐴 ∈ LinesEE → 𝐴 ∈ V)
2 ovex 7423 . . . . . . 7 (𝑝Line𝑞) ∈ V
3 eleq1 2817 . . . . . . 7 (𝐴 = (𝑝Line𝑞) → (𝐴 ∈ V ↔ (𝑝Line𝑞) ∈ V))
42, 3mpbiri 258 . . . . . 6 (𝐴 = (𝑝Line𝑞) → 𝐴 ∈ V)
54adantl 481 . . . . 5 ((𝑝𝑞𝐴 = (𝑝Line𝑞)) → 𝐴 ∈ V)
65rexlimivw 3131 . . . 4 (∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝐴 = (𝑝Line𝑞)) → 𝐴 ∈ V)
76a1i 11 . . 3 ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) → (∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝐴 = (𝑝Line𝑞)) → 𝐴 ∈ V))
87rexlimivv 3180 . 2 (∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝐴 = (𝑝Line𝑞)) → 𝐴 ∈ V)
9 eleq1 2817 . . 3 (𝑥 = 𝐴 → (𝑥 ∈ LinesEE ↔ 𝐴 ∈ LinesEE))
10 eqeq1 2734 . . . . . 6 (𝑥 = 𝐴 → (𝑥 = (𝑝Line𝑞) ↔ 𝐴 = (𝑝Line𝑞)))
1110anbi2d 630 . . . . 5 (𝑥 = 𝐴 → ((𝑝𝑞𝑥 = (𝑝Line𝑞)) ↔ (𝑝𝑞𝐴 = (𝑝Line𝑞))))
1211rexbidv 3158 . . . 4 (𝑥 = 𝐴 → (∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝑥 = (𝑝Line𝑞)) ↔ ∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝐴 = (𝑝Line𝑞))))
13122rexbidv 3203 . . 3 (𝑥 = 𝐴 → (∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝑥 = (𝑝Line𝑞)) ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝐴 = (𝑝Line𝑞))))
14 df-lines2 36134 . . . . . 6 LinesEE = ran Line
15 df-line2 36132 . . . . . . 7 Line = {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )}
1615rneqi 5904 . . . . . 6 ran Line = ran {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )}
17 rnoprab 7497 . . . . . 6 ran {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )} = {𝑥 ∣ ∃𝑝𝑞𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )}
1814, 16, 173eqtri 2757 . . . . 5 LinesEE = {𝑥 ∣ ∃𝑝𝑞𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )}
1918eleq2i 2821 . . . 4 (𝑥 ∈ LinesEE ↔ 𝑥 ∈ {𝑥 ∣ ∃𝑝𝑞𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )})
20 abid 2712 . . . . 5 (𝑥 ∈ {𝑥 ∣ ∃𝑝𝑞𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )} ↔ ∃𝑝𝑞𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear ))
21 df-rex 3055 . . . . . . 7 (∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear ) ↔ ∃𝑛(𝑛 ∈ ℕ ∧ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )))
22212exbii 1849 . . . . . 6 (∃𝑝𝑞𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear ) ↔ ∃𝑝𝑞𝑛(𝑛 ∈ ℕ ∧ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )))
23 exrot3 2166 . . . . . . 7 (∃𝑛𝑝𝑞(𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞)))) ↔ ∃𝑝𝑞𝑛(𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞)))))
24 r2ex 3175 . . . . . . . 8 (∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝑥 = (𝑝Line𝑞)) ↔ ∃𝑛𝑝((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ ∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝑥 = (𝑝Line𝑞))))
25 r19.42v 3170 . . . . . . . . . 10 (∃𝑞 ∈ (𝔼‘𝑛)((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞))) ↔ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ ∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝑥 = (𝑝Line𝑞))))
26 df-rex 3055 . . . . . . . . . 10 (∃𝑞 ∈ (𝔼‘𝑛)((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞))) ↔ ∃𝑞(𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞)))))
2725, 26bitr3i 277 . . . . . . . . 9 (((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ ∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝑥 = (𝑝Line𝑞))) ↔ ∃𝑞(𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞)))))
28272exbii 1849 . . . . . . . 8 (∃𝑛𝑝((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ ∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝑥 = (𝑝Line𝑞))) ↔ ∃𝑛𝑝𝑞(𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞)))))
2924, 28bitri 275 . . . . . . 7 (∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝑥 = (𝑝Line𝑞)) ↔ ∃𝑛𝑝𝑞(𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞)))))
30 anass 468 . . . . . . . . . 10 (((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞))) ↔ (𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞)))))
31 anass 468 . . . . . . . . . . 11 ((((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝𝑞) ∧ 𝑥 = (𝑝Line𝑞)) ↔ ((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞))))
32 simplrl 776 . . . . . . . . . . . . . 14 (((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝𝑞) → 𝑛 ∈ ℕ)
33 simplrr 777 . . . . . . . . . . . . . . 15 (((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝𝑞) → 𝑝 ∈ (𝔼‘𝑛))
34 simpll 766 . . . . . . . . . . . . . . 15 (((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝𝑞) → 𝑞 ∈ (𝔼‘𝑛))
35 simpr 484 . . . . . . . . . . . . . . 15 (((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝𝑞) → 𝑝𝑞)
3633, 34, 353jca 1128 . . . . . . . . . . . . . 14 (((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝𝑞) → (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞))
3732, 36jca 511 . . . . . . . . . . . . 13 (((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝𝑞) → (𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)))
38 simpr2 1196 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) → 𝑞 ∈ (𝔼‘𝑛))
39 simpl 482 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) → 𝑛 ∈ ℕ)
40 simpr1 1195 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) → 𝑝 ∈ (𝔼‘𝑛))
4138, 39, 40jca32 515 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) → (𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))))
42 simpr3 1197 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) → 𝑝𝑞)
4341, 42jca 511 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) → ((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝𝑞))
4437, 43impbii 209 . . . . . . . . . . . 12 (((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝𝑞) ↔ (𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)))
4544anbi1i 624 . . . . . . . . . . 11 ((((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝𝑞) ∧ 𝑥 = (𝑝Line𝑞)) ↔ ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) ∧ 𝑥 = (𝑝Line𝑞)))
4631, 45bitr3i 277 . . . . . . . . . 10 (((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞))) ↔ ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) ∧ 𝑥 = (𝑝Line𝑞)))
4730, 46bitr3i 277 . . . . . . . . 9 ((𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞)))) ↔ ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) ∧ 𝑥 = (𝑝Line𝑞)))
48 fvline 36139 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) → (𝑝Line𝑞) = {𝑥𝑥 Colinear ⟨𝑝, 𝑞⟩})
49 opex 5427 . . . . . . . . . . . . . 14 𝑝, 𝑞⟩ ∈ V
50 dfec2 8677 . . . . . . . . . . . . . 14 (⟨𝑝, 𝑞⟩ ∈ V → [⟨𝑝, 𝑞⟩] Colinear = {𝑥 ∣ ⟨𝑝, 𝑞 Colinear 𝑥})
5149, 50ax-mp 5 . . . . . . . . . . . . 13 [⟨𝑝, 𝑞⟩] Colinear = {𝑥 ∣ ⟨𝑝, 𝑞 Colinear 𝑥}
52 vex 3454 . . . . . . . . . . . . . . 15 𝑥 ∈ V
5349, 52brcnv 5849 . . . . . . . . . . . . . 14 (⟨𝑝, 𝑞 Colinear 𝑥𝑥 Colinear ⟨𝑝, 𝑞⟩)
5453abbii 2797 . . . . . . . . . . . . 13 {𝑥 ∣ ⟨𝑝, 𝑞 Colinear 𝑥} = {𝑥𝑥 Colinear ⟨𝑝, 𝑞⟩}
5551, 54eqtri 2753 . . . . . . . . . . . 12 [⟨𝑝, 𝑞⟩] Colinear = {𝑥𝑥 Colinear ⟨𝑝, 𝑞⟩}
5648, 55eqtr4di 2783 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) → (𝑝Line𝑞) = [⟨𝑝, 𝑞⟩] Colinear )
5756eqeq2d 2741 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) → (𝑥 = (𝑝Line𝑞) ↔ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear ))
5857pm5.32i 574 . . . . . . . . 9 (((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) ∧ 𝑥 = (𝑝Line𝑞)) ↔ ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear ))
59 anass 468 . . . . . . . . 9 (((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear ) ↔ (𝑛 ∈ ℕ ∧ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )))
6047, 58, 593bitrri 298 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )) ↔ (𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞)))))
61603exbii 1850 . . . . . . 7 (∃𝑝𝑞𝑛(𝑛 ∈ ℕ ∧ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )) ↔ ∃𝑝𝑞𝑛(𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞)))))
6223, 29, 613bitr4ri 304 . . . . . 6 (∃𝑝𝑞𝑛(𝑛 ∈ ℕ ∧ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )) ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝑥 = (𝑝Line𝑞)))
6322, 62bitri 275 . . . . 5 (∃𝑝𝑞𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear ) ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝑥 = (𝑝Line𝑞)))
6420, 63bitri 275 . . . 4 (𝑥 ∈ {𝑥 ∣ ∃𝑝𝑞𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )} ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝑥 = (𝑝Line𝑞)))
6519, 64bitri 275 . . 3 (𝑥 ∈ LinesEE ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝑥 = (𝑝Line𝑞)))
669, 13, 65vtoclbg 3526 . 2 (𝐴 ∈ V → (𝐴 ∈ LinesEE ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝐴 = (𝑝Line𝑞))))
671, 8, 66pm5.21nii 378 1 (𝐴 ∈ LinesEE ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝐴 = (𝑝Line𝑞)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2708  wne 2926  wrex 3054  Vcvv 3450  cop 4598   class class class wbr 5110  ccnv 5640  ran crn 5642  cfv 6514  (class class class)co 7390  {coprab 7391  [cec 8672  cn 12193  𝔼cee 28822   Colinear ccolin 36032  Linecline2 36129  LinesEEclines2 36131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-1cn 11133  ax-addcl 11135
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-ec 8676  df-nn 12194  df-colinear 36034  df-line2 36132  df-lines2 36134
This theorem is referenced by:  linethru  36148  hilbert1.1  36149
  Copyright terms: Public domain W3C validator