Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellines Structured version   Visualization version   GIF version

Theorem ellines 33613
Description: Membership in the set of all lines. (Contributed by Scott Fenton, 28-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
ellines (𝐴 ∈ LinesEE ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝐴 = (𝑝Line𝑞)))
Distinct variable group:   𝐴,𝑛,𝑝,𝑞

Proof of Theorem ellines
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 3512 . 2 (𝐴 ∈ LinesEE → 𝐴 ∈ V)
2 ovex 7189 . . . . . . 7 (𝑝Line𝑞) ∈ V
3 eleq1 2900 . . . . . . 7 (𝐴 = (𝑝Line𝑞) → (𝐴 ∈ V ↔ (𝑝Line𝑞) ∈ V))
42, 3mpbiri 260 . . . . . 6 (𝐴 = (𝑝Line𝑞) → 𝐴 ∈ V)
54adantl 484 . . . . 5 ((𝑝𝑞𝐴 = (𝑝Line𝑞)) → 𝐴 ∈ V)
65rexlimivw 3282 . . . 4 (∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝐴 = (𝑝Line𝑞)) → 𝐴 ∈ V)
76a1i 11 . . 3 ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) → (∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝐴 = (𝑝Line𝑞)) → 𝐴 ∈ V))
87rexlimivv 3292 . 2 (∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝐴 = (𝑝Line𝑞)) → 𝐴 ∈ V)
9 eleq1 2900 . . 3 (𝑥 = 𝐴 → (𝑥 ∈ LinesEE ↔ 𝐴 ∈ LinesEE))
10 eqeq1 2825 . . . . . 6 (𝑥 = 𝐴 → (𝑥 = (𝑝Line𝑞) ↔ 𝐴 = (𝑝Line𝑞)))
1110anbi2d 630 . . . . 5 (𝑥 = 𝐴 → ((𝑝𝑞𝑥 = (𝑝Line𝑞)) ↔ (𝑝𝑞𝐴 = (𝑝Line𝑞))))
1211rexbidv 3297 . . . 4 (𝑥 = 𝐴 → (∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝑥 = (𝑝Line𝑞)) ↔ ∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝐴 = (𝑝Line𝑞))))
13122rexbidv 3300 . . 3 (𝑥 = 𝐴 → (∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝑥 = (𝑝Line𝑞)) ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝐴 = (𝑝Line𝑞))))
14 df-lines2 33600 . . . . . 6 LinesEE = ran Line
15 df-line2 33598 . . . . . . 7 Line = {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )}
1615rneqi 5807 . . . . . 6 ran Line = ran {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )}
17 rnoprab 7257 . . . . . 6 ran {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )} = {𝑥 ∣ ∃𝑝𝑞𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )}
1814, 16, 173eqtri 2848 . . . . 5 LinesEE = {𝑥 ∣ ∃𝑝𝑞𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )}
1918eleq2i 2904 . . . 4 (𝑥 ∈ LinesEE ↔ 𝑥 ∈ {𝑥 ∣ ∃𝑝𝑞𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )})
20 abid 2803 . . . . 5 (𝑥 ∈ {𝑥 ∣ ∃𝑝𝑞𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )} ↔ ∃𝑝𝑞𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear ))
21 df-rex 3144 . . . . . . 7 (∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear ) ↔ ∃𝑛(𝑛 ∈ ℕ ∧ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )))
22212exbii 1849 . . . . . 6 (∃𝑝𝑞𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear ) ↔ ∃𝑝𝑞𝑛(𝑛 ∈ ℕ ∧ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )))
23 exrot3 2172 . . . . . . 7 (∃𝑛𝑝𝑞(𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞)))) ↔ ∃𝑝𝑞𝑛(𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞)))))
24 r2ex 3303 . . . . . . . 8 (∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝑥 = (𝑝Line𝑞)) ↔ ∃𝑛𝑝((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ ∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝑥 = (𝑝Line𝑞))))
25 r19.42v 3350 . . . . . . . . . 10 (∃𝑞 ∈ (𝔼‘𝑛)((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞))) ↔ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ ∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝑥 = (𝑝Line𝑞))))
26 df-rex 3144 . . . . . . . . . 10 (∃𝑞 ∈ (𝔼‘𝑛)((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞))) ↔ ∃𝑞(𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞)))))
2725, 26bitr3i 279 . . . . . . . . 9 (((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ ∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝑥 = (𝑝Line𝑞))) ↔ ∃𝑞(𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞)))))
28272exbii 1849 . . . . . . . 8 (∃𝑛𝑝((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ ∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝑥 = (𝑝Line𝑞))) ↔ ∃𝑛𝑝𝑞(𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞)))))
2924, 28bitri 277 . . . . . . 7 (∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝑥 = (𝑝Line𝑞)) ↔ ∃𝑛𝑝𝑞(𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞)))))
30 anass 471 . . . . . . . . . 10 (((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞))) ↔ (𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞)))))
31 anass 471 . . . . . . . . . . 11 ((((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝𝑞) ∧ 𝑥 = (𝑝Line𝑞)) ↔ ((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞))))
32 simplrl 775 . . . . . . . . . . . . . 14 (((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝𝑞) → 𝑛 ∈ ℕ)
33 simplrr 776 . . . . . . . . . . . . . . 15 (((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝𝑞) → 𝑝 ∈ (𝔼‘𝑛))
34 simpll 765 . . . . . . . . . . . . . . 15 (((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝𝑞) → 𝑞 ∈ (𝔼‘𝑛))
35 simpr 487 . . . . . . . . . . . . . . 15 (((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝𝑞) → 𝑝𝑞)
3633, 34, 353jca 1124 . . . . . . . . . . . . . 14 (((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝𝑞) → (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞))
3732, 36jca 514 . . . . . . . . . . . . 13 (((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝𝑞) → (𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)))
38 simpr2 1191 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) → 𝑞 ∈ (𝔼‘𝑛))
39 simpl 485 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) → 𝑛 ∈ ℕ)
40 simpr1 1190 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) → 𝑝 ∈ (𝔼‘𝑛))
4138, 39, 40jca32 518 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) → (𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))))
42 simpr3 1192 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) → 𝑝𝑞)
4341, 42jca 514 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) → ((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝𝑞))
4437, 43impbii 211 . . . . . . . . . . . 12 (((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝𝑞) ↔ (𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)))
4544anbi1i 625 . . . . . . . . . . 11 ((((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝𝑞) ∧ 𝑥 = (𝑝Line𝑞)) ↔ ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) ∧ 𝑥 = (𝑝Line𝑞)))
4631, 45bitr3i 279 . . . . . . . . . 10 (((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞))) ↔ ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) ∧ 𝑥 = (𝑝Line𝑞)))
4730, 46bitr3i 279 . . . . . . . . 9 ((𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞)))) ↔ ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) ∧ 𝑥 = (𝑝Line𝑞)))
48 fvline 33605 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) → (𝑝Line𝑞) = {𝑥𝑥 Colinear ⟨𝑝, 𝑞⟩})
49 opex 5356 . . . . . . . . . . . . . 14 𝑝, 𝑞⟩ ∈ V
50 dfec2 8292 . . . . . . . . . . . . . 14 (⟨𝑝, 𝑞⟩ ∈ V → [⟨𝑝, 𝑞⟩] Colinear = {𝑥 ∣ ⟨𝑝, 𝑞 Colinear 𝑥})
5149, 50ax-mp 5 . . . . . . . . . . . . 13 [⟨𝑝, 𝑞⟩] Colinear = {𝑥 ∣ ⟨𝑝, 𝑞 Colinear 𝑥}
52 vex 3497 . . . . . . . . . . . . . . 15 𝑥 ∈ V
5349, 52brcnv 5753 . . . . . . . . . . . . . 14 (⟨𝑝, 𝑞 Colinear 𝑥𝑥 Colinear ⟨𝑝, 𝑞⟩)
5453abbii 2886 . . . . . . . . . . . . 13 {𝑥 ∣ ⟨𝑝, 𝑞 Colinear 𝑥} = {𝑥𝑥 Colinear ⟨𝑝, 𝑞⟩}
5551, 54eqtri 2844 . . . . . . . . . . . 12 [⟨𝑝, 𝑞⟩] Colinear = {𝑥𝑥 Colinear ⟨𝑝, 𝑞⟩}
5648, 55syl6eqr 2874 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) → (𝑝Line𝑞) = [⟨𝑝, 𝑞⟩] Colinear )
5756eqeq2d 2832 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) → (𝑥 = (𝑝Line𝑞) ↔ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear ))
5857pm5.32i 577 . . . . . . . . 9 (((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) ∧ 𝑥 = (𝑝Line𝑞)) ↔ ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear ))
59 anass 471 . . . . . . . . 9 (((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear ) ↔ (𝑛 ∈ ℕ ∧ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )))
6047, 58, 593bitrri 300 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )) ↔ (𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞)))))
61603exbii 1850 . . . . . . 7 (∃𝑝𝑞𝑛(𝑛 ∈ ℕ ∧ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )) ↔ ∃𝑝𝑞𝑛(𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞)))))
6223, 29, 613bitr4ri 306 . . . . . 6 (∃𝑝𝑞𝑛(𝑛 ∈ ℕ ∧ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )) ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝑥 = (𝑝Line𝑞)))
6322, 62bitri 277 . . . . 5 (∃𝑝𝑞𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear ) ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝑥 = (𝑝Line𝑞)))
6420, 63bitri 277 . . . 4 (𝑥 ∈ {𝑥 ∣ ∃𝑝𝑞𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )} ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝑥 = (𝑝Line𝑞)))
6519, 64bitri 277 . . 3 (𝑥 ∈ LinesEE ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝑥 = (𝑝Line𝑞)))
669, 13, 65vtoclbg 3569 . 2 (𝐴 ∈ V → (𝐴 ∈ LinesEE ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝐴 = (𝑝Line𝑞))))
671, 8, 66pm5.21nii 382 1 (𝐴 ∈ LinesEE ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝐴 = (𝑝Line𝑞)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  {cab 2799  wne 3016  wrex 3139  Vcvv 3494  cop 4573   class class class wbr 5066  ccnv 5554  ran crn 5556  cfv 6355  (class class class)co 7156  {coprab 7157  [cec 8287  cn 11638  𝔼cee 26674   Colinear ccolin 33498  Linecline2 33595  LinesEEclines2 33597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-1cn 10595  ax-addcl 10597
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-ec 8291  df-nn 11639  df-colinear 33500  df-line2 33598  df-lines2 33600
This theorem is referenced by:  linethru  33614  hilbert1.1  33615
  Copyright terms: Public domain W3C validator