Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellines Structured version   Visualization version   GIF version

Theorem ellines 33229
Description: Membership in the set of all lines. (Contributed by Scott Fenton, 28-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
ellines (𝐴 ∈ LinesEE ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝐴 = (𝑝Line𝑞)))
Distinct variable group:   𝐴,𝑛,𝑝,𝑞

Proof of Theorem ellines
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 3455 . 2 (𝐴 ∈ LinesEE → 𝐴 ∈ V)
2 ovex 7053 . . . . . . 7 (𝑝Line𝑞) ∈ V
3 eleq1 2870 . . . . . . 7 (𝐴 = (𝑝Line𝑞) → (𝐴 ∈ V ↔ (𝑝Line𝑞) ∈ V))
42, 3mpbiri 259 . . . . . 6 (𝐴 = (𝑝Line𝑞) → 𝐴 ∈ V)
54adantl 482 . . . . 5 ((𝑝𝑞𝐴 = (𝑝Line𝑞)) → 𝐴 ∈ V)
65rexlimivw 3245 . . . 4 (∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝐴 = (𝑝Line𝑞)) → 𝐴 ∈ V)
76a1i 11 . . 3 ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) → (∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝐴 = (𝑝Line𝑞)) → 𝐴 ∈ V))
87rexlimivv 3255 . 2 (∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝐴 = (𝑝Line𝑞)) → 𝐴 ∈ V)
9 eleq1 2870 . . 3 (𝑥 = 𝐴 → (𝑥 ∈ LinesEE ↔ 𝐴 ∈ LinesEE))
10 eqeq1 2799 . . . . . 6 (𝑥 = 𝐴 → (𝑥 = (𝑝Line𝑞) ↔ 𝐴 = (𝑝Line𝑞)))
1110anbi2d 628 . . . . 5 (𝑥 = 𝐴 → ((𝑝𝑞𝑥 = (𝑝Line𝑞)) ↔ (𝑝𝑞𝐴 = (𝑝Line𝑞))))
1211rexbidv 3260 . . . 4 (𝑥 = 𝐴 → (∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝑥 = (𝑝Line𝑞)) ↔ ∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝐴 = (𝑝Line𝑞))))
13122rexbidv 3263 . . 3 (𝑥 = 𝐴 → (∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝑥 = (𝑝Line𝑞)) ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝐴 = (𝑝Line𝑞))))
14 df-lines2 33216 . . . . . 6 LinesEE = ran Line
15 df-line2 33214 . . . . . . 7 Line = {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )}
1615rneqi 5694 . . . . . 6 ran Line = ran {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )}
17 rnoprab 7118 . . . . . 6 ran {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )} = {𝑥 ∣ ∃𝑝𝑞𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )}
1814, 16, 173eqtri 2823 . . . . 5 LinesEE = {𝑥 ∣ ∃𝑝𝑞𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )}
1918eleq2i 2874 . . . 4 (𝑥 ∈ LinesEE ↔ 𝑥 ∈ {𝑥 ∣ ∃𝑝𝑞𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )})
20 abid 2779 . . . . 5 (𝑥 ∈ {𝑥 ∣ ∃𝑝𝑞𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )} ↔ ∃𝑝𝑞𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear ))
21 df-rex 3111 . . . . . . 7 (∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear ) ↔ ∃𝑛(𝑛 ∈ ℕ ∧ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )))
22212exbii 1830 . . . . . 6 (∃𝑝𝑞𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear ) ↔ ∃𝑝𝑞𝑛(𝑛 ∈ ℕ ∧ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )))
23 exrot3 2136 . . . . . . 7 (∃𝑛𝑝𝑞(𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞)))) ↔ ∃𝑝𝑞𝑛(𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞)))))
24 r2ex 3266 . . . . . . . 8 (∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝑥 = (𝑝Line𝑞)) ↔ ∃𝑛𝑝((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ ∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝑥 = (𝑝Line𝑞))))
25 r19.42v 3311 . . . . . . . . . 10 (∃𝑞 ∈ (𝔼‘𝑛)((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞))) ↔ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ ∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝑥 = (𝑝Line𝑞))))
26 df-rex 3111 . . . . . . . . . 10 (∃𝑞 ∈ (𝔼‘𝑛)((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞))) ↔ ∃𝑞(𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞)))))
2725, 26bitr3i 278 . . . . . . . . 9 (((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ ∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝑥 = (𝑝Line𝑞))) ↔ ∃𝑞(𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞)))))
28272exbii 1830 . . . . . . . 8 (∃𝑛𝑝((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ ∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝑥 = (𝑝Line𝑞))) ↔ ∃𝑛𝑝𝑞(𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞)))))
2924, 28bitri 276 . . . . . . 7 (∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝑥 = (𝑝Line𝑞)) ↔ ∃𝑛𝑝𝑞(𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞)))))
30 anass 469 . . . . . . . . . 10 (((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞))) ↔ (𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞)))))
31 anass 469 . . . . . . . . . . 11 ((((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝𝑞) ∧ 𝑥 = (𝑝Line𝑞)) ↔ ((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞))))
32 simplrl 773 . . . . . . . . . . . . . 14 (((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝𝑞) → 𝑛 ∈ ℕ)
33 simplrr 774 . . . . . . . . . . . . . . 15 (((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝𝑞) → 𝑝 ∈ (𝔼‘𝑛))
34 simpll 763 . . . . . . . . . . . . . . 15 (((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝𝑞) → 𝑞 ∈ (𝔼‘𝑛))
35 simpr 485 . . . . . . . . . . . . . . 15 (((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝𝑞) → 𝑝𝑞)
3633, 34, 353jca 1121 . . . . . . . . . . . . . 14 (((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝𝑞) → (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞))
3732, 36jca 512 . . . . . . . . . . . . 13 (((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝𝑞) → (𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)))
38 simpr2 1188 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) → 𝑞 ∈ (𝔼‘𝑛))
39 simpl 483 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) → 𝑛 ∈ ℕ)
40 simpr1 1187 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) → 𝑝 ∈ (𝔼‘𝑛))
4138, 39, 40jca32 516 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) → (𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))))
42 simpr3 1189 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) → 𝑝𝑞)
4341, 42jca 512 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) → ((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝𝑞))
4437, 43impbii 210 . . . . . . . . . . . 12 (((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝𝑞) ↔ (𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)))
4544anbi1i 623 . . . . . . . . . . 11 ((((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ 𝑝𝑞) ∧ 𝑥 = (𝑝Line𝑞)) ↔ ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) ∧ 𝑥 = (𝑝Line𝑞)))
4631, 45bitr3i 278 . . . . . . . . . 10 (((𝑞 ∈ (𝔼‘𝑛) ∧ (𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛))) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞))) ↔ ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) ∧ 𝑥 = (𝑝Line𝑞)))
4730, 46bitr3i 278 . . . . . . . . 9 ((𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞)))) ↔ ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) ∧ 𝑥 = (𝑝Line𝑞)))
48 fvline 33221 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) → (𝑝Line𝑞) = {𝑥𝑥 Colinear ⟨𝑝, 𝑞⟩})
49 opex 5253 . . . . . . . . . . . . . 14 𝑝, 𝑞⟩ ∈ V
50 dfec2 8147 . . . . . . . . . . . . . 14 (⟨𝑝, 𝑞⟩ ∈ V → [⟨𝑝, 𝑞⟩] Colinear = {𝑥 ∣ ⟨𝑝, 𝑞 Colinear 𝑥})
5149, 50ax-mp 5 . . . . . . . . . . . . 13 [⟨𝑝, 𝑞⟩] Colinear = {𝑥 ∣ ⟨𝑝, 𝑞 Colinear 𝑥}
52 vex 3440 . . . . . . . . . . . . . . 15 𝑥 ∈ V
5349, 52brcnv 5644 . . . . . . . . . . . . . 14 (⟨𝑝, 𝑞 Colinear 𝑥𝑥 Colinear ⟨𝑝, 𝑞⟩)
5453abbii 2861 . . . . . . . . . . . . 13 {𝑥 ∣ ⟨𝑝, 𝑞 Colinear 𝑥} = {𝑥𝑥 Colinear ⟨𝑝, 𝑞⟩}
5551, 54eqtri 2819 . . . . . . . . . . . 12 [⟨𝑝, 𝑞⟩] Colinear = {𝑥𝑥 Colinear ⟨𝑝, 𝑞⟩}
5648, 55syl6eqr 2849 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) → (𝑝Line𝑞) = [⟨𝑝, 𝑞⟩] Colinear )
5756eqeq2d 2805 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) → (𝑥 = (𝑝Line𝑞) ↔ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear ))
5857pm5.32i 575 . . . . . . . . 9 (((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) ∧ 𝑥 = (𝑝Line𝑞)) ↔ ((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear ))
59 anass 469 . . . . . . . . 9 (((𝑛 ∈ ℕ ∧ (𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞)) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear ) ↔ (𝑛 ∈ ℕ ∧ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )))
6047, 58, 593bitrri 299 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )) ↔ (𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞)))))
61603exbii 1831 . . . . . . 7 (∃𝑝𝑞𝑛(𝑛 ∈ ℕ ∧ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )) ↔ ∃𝑝𝑞𝑛(𝑞 ∈ (𝔼‘𝑛) ∧ ((𝑛 ∈ ℕ ∧ 𝑝 ∈ (𝔼‘𝑛)) ∧ (𝑝𝑞𝑥 = (𝑝Line𝑞)))))
6223, 29, 613bitr4ri 305 . . . . . 6 (∃𝑝𝑞𝑛(𝑛 ∈ ℕ ∧ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )) ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝑥 = (𝑝Line𝑞)))
6322, 62bitri 276 . . . . 5 (∃𝑝𝑞𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear ) ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝑥 = (𝑝Line𝑞)))
6420, 63bitri 276 . . . 4 (𝑥 ∈ {𝑥 ∣ ∃𝑝𝑞𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑞 ∈ (𝔼‘𝑛) ∧ 𝑝𝑞) ∧ 𝑥 = [⟨𝑝, 𝑞⟩] Colinear )} ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝑥 = (𝑝Line𝑞)))
6519, 64bitri 276 . . 3 (𝑥 ∈ LinesEE ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝑥 = (𝑝Line𝑞)))
669, 13, 65vtoclbg 3511 . 2 (𝐴 ∈ V → (𝐴 ∈ LinesEE ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝐴 = (𝑝Line𝑞))))
671, 8, 66pm5.21nii 380 1 (𝐴 ∈ LinesEE ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞𝐴 = (𝑝Line𝑞)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wex 1761  wcel 2081  {cab 2775  wne 2984  wrex 3106  Vcvv 3437  cop 4482   class class class wbr 4966  ccnv 5447  ran crn 5449  cfv 6230  (class class class)co 7021  {coprab 7022  [cec 8142  cn 11491  𝔼cee 26362   Colinear ccolin 33114  Linecline2 33211  LinesEEclines2 33213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5086  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-cnex 10444  ax-1cn 10446  ax-addcl 10448
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-tp 4481  df-op 4483  df-uni 4750  df-iun 4831  df-br 4967  df-opab 5029  df-mpt 5046  df-tr 5069  df-id 5353  df-eprel 5358  df-po 5367  df-so 5368  df-fr 5407  df-we 5409  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-pred 6028  df-ord 6074  df-on 6075  df-lim 6076  df-suc 6077  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-ov 7024  df-oprab 7025  df-om 7442  df-wrecs 7803  df-recs 7865  df-rdg 7903  df-ec 8146  df-nn 11492  df-colinear 33116  df-line2 33214  df-lines2 33216
This theorem is referenced by:  linethru  33230  hilbert1.1  33231
  Copyright terms: Public domain W3C validator