Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funline Structured version   Visualization version   GIF version

Theorem funline 36106
Description: Show that the Line relationship is a function. (Contributed by Scott Fenton, 25-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
funline Fun Line

Proof of Theorem funline
Dummy variables 𝑎 𝑏 𝑘 𝑙 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reeanv 3235 . . . . . 6 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ∧ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )) ↔ (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ∧ ∃𝑚 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )))
2 eqtr3 2766 . . . . . . . . 9 ((𝑙 = [⟨𝑎, 𝑏⟩] Colinear ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear ) → 𝑙 = 𝑘)
32ad2ant2l 745 . . . . . . . 8 ((((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ∧ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )) → 𝑙 = 𝑘)
43a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → ((((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ∧ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )) → 𝑙 = 𝑘))
54rexlimivv 3207 . . . . . 6 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ∧ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )) → 𝑙 = 𝑘)
61, 5sylbir 235 . . . . 5 ((∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ∧ ∃𝑚 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )) → 𝑙 = 𝑘)
76gen2 1794 . . . 4 𝑙𝑘((∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ∧ ∃𝑚 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )) → 𝑙 = 𝑘)
8 eqeq1 2744 . . . . . . . 8 (𝑙 = 𝑘 → (𝑙 = [⟨𝑎, 𝑏⟩] Colinear ↔ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear ))
98anbi2d 629 . . . . . . 7 (𝑙 = 𝑘 → (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ↔ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )))
109rexbidv 3185 . . . . . 6 (𝑙 = 𝑘 → (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ↔ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )))
11 fveq2 6920 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝔼‘𝑛) = (𝔼‘𝑚))
1211eleq2d 2830 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑎 ∈ (𝔼‘𝑛) ↔ 𝑎 ∈ (𝔼‘𝑚)))
1311eleq2d 2830 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑏 ∈ (𝔼‘𝑛) ↔ 𝑏 ∈ (𝔼‘𝑚)))
1412, 133anbi12d 1437 . . . . . . . 8 (𝑛 = 𝑚 → ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ↔ (𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏)))
1514anbi1d 630 . . . . . . 7 (𝑛 = 𝑚 → (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear ) ↔ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )))
1615cbvrexvw 3244 . . . . . 6 (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear ) ↔ ∃𝑚 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear ))
1710, 16bitrdi 287 . . . . 5 (𝑙 = 𝑘 → (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ↔ ∃𝑚 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )))
1817mo4 2569 . . . 4 (∃*𝑙𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ↔ ∀𝑙𝑘((∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ∧ ∃𝑚 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )) → 𝑙 = 𝑘))
197, 18mpbir 231 . . 3 ∃*𝑙𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )
2019funoprab 7572 . 2 Fun {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )}
21 df-line2 36101 . . 3 Line = {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )}
2221funeqi 6599 . 2 (Fun Line ↔ Fun {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )})
2320, 22mpbir 231 1 Fun Line
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wal 1535   = wceq 1537  wcel 2108  ∃*wmo 2541  wne 2946  wrex 3076  cop 4654  ccnv 5699  Fun wfun 6567  cfv 6573  {coprab 7449  [cec 8761  cn 12293  𝔼cee 28921   Colinear ccolin 36001  Linecline2 36098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-iota 6525  df-fun 6575  df-fv 6581  df-oprab 7452  df-line2 36101
This theorem is referenced by:  fvline  36108
  Copyright terms: Public domain W3C validator