Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funline Structured version   Visualization version   GIF version

Theorem funline 36084
Description: Show that the Line relationship is a function. (Contributed by Scott Fenton, 25-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
funline Fun Line

Proof of Theorem funline
Dummy variables 𝑎 𝑏 𝑘 𝑙 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reeanv 3216 . . . . . 6 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ∧ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )) ↔ (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ∧ ∃𝑚 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )))
2 eqtr3 2756 . . . . . . . . 9 ((𝑙 = [⟨𝑎, 𝑏⟩] Colinear ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear ) → 𝑙 = 𝑘)
32ad2ant2l 746 . . . . . . . 8 ((((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ∧ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )) → 𝑙 = 𝑘)
43a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → ((((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ∧ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )) → 𝑙 = 𝑘))
54rexlimivv 3188 . . . . . 6 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ∧ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )) → 𝑙 = 𝑘)
61, 5sylbir 235 . . . . 5 ((∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ∧ ∃𝑚 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )) → 𝑙 = 𝑘)
76gen2 1795 . . . 4 𝑙𝑘((∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ∧ ∃𝑚 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )) → 𝑙 = 𝑘)
8 eqeq1 2738 . . . . . . . 8 (𝑙 = 𝑘 → (𝑙 = [⟨𝑎, 𝑏⟩] Colinear ↔ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear ))
98anbi2d 630 . . . . . . 7 (𝑙 = 𝑘 → (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ↔ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )))
109rexbidv 3166 . . . . . 6 (𝑙 = 𝑘 → (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ↔ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )))
11 fveq2 6887 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝔼‘𝑛) = (𝔼‘𝑚))
1211eleq2d 2819 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑎 ∈ (𝔼‘𝑛) ↔ 𝑎 ∈ (𝔼‘𝑚)))
1311eleq2d 2819 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑏 ∈ (𝔼‘𝑛) ↔ 𝑏 ∈ (𝔼‘𝑚)))
1412, 133anbi12d 1438 . . . . . . . 8 (𝑛 = 𝑚 → ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ↔ (𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏)))
1514anbi1d 631 . . . . . . 7 (𝑛 = 𝑚 → (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear ) ↔ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )))
1615cbvrexvw 3225 . . . . . 6 (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear ) ↔ ∃𝑚 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear ))
1710, 16bitrdi 287 . . . . 5 (𝑙 = 𝑘 → (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ↔ ∃𝑚 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )))
1817mo4 2564 . . . 4 (∃*𝑙𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ↔ ∀𝑙𝑘((∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ∧ ∃𝑚 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )) → 𝑙 = 𝑘))
197, 18mpbir 231 . . 3 ∃*𝑙𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )
2019funoprab 7538 . 2 Fun {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )}
21 df-line2 36079 . . 3 Line = {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )}
2221funeqi 6568 . 2 (Fun Line ↔ Fun {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )})
2320, 22mpbir 231 1 Fun Line
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wal 1537   = wceq 1539  wcel 2107  ∃*wmo 2536  wne 2931  wrex 3059  cop 4614  ccnv 5666  Fun wfun 6536  cfv 6542  {coprab 7415  [cec 8726  cn 12249  𝔼cee 28852   Colinear ccolin 35979  Linecline2 36076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-iota 6495  df-fun 6544  df-fv 6550  df-oprab 7418  df-line2 36079
This theorem is referenced by:  fvline  36086
  Copyright terms: Public domain W3C validator