| Step | Hyp | Ref
| Expression |
| 1 | | reeanv 3216 |
. . . . . 6
⊢
(∃𝑛 ∈
ℕ ∃𝑚 ∈
ℕ (((𝑎 ∈
(𝔼‘𝑛) ∧
𝑏 ∈
(𝔼‘𝑛) ∧
𝑎 ≠ 𝑏) ∧ 𝑙 = [〈𝑎, 𝑏〉]◡ Colinear ) ∧ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎 ≠ 𝑏) ∧ 𝑘 = [〈𝑎, 𝑏〉]◡ Colinear )) ↔ (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏) ∧ 𝑙 = [〈𝑎, 𝑏〉]◡ Colinear ) ∧ ∃𝑚 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎 ≠ 𝑏) ∧ 𝑘 = [〈𝑎, 𝑏〉]◡ Colinear ))) |
| 2 | | eqtr3 2756 |
. . . . . . . . 9
⊢ ((𝑙 = [〈𝑎, 𝑏〉]◡ Colinear ∧ 𝑘 = [〈𝑎, 𝑏〉]◡ Colinear ) → 𝑙 = 𝑘) |
| 3 | 2 | ad2ant2l 746 |
. . . . . . . 8
⊢ ((((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏) ∧ 𝑙 = [〈𝑎, 𝑏〉]◡ Colinear ) ∧ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎 ≠ 𝑏) ∧ 𝑘 = [〈𝑎, 𝑏〉]◡ Colinear )) → 𝑙 = 𝑘) |
| 4 | 3 | a1i 11 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) →
((((𝑎 ∈
(𝔼‘𝑛) ∧
𝑏 ∈
(𝔼‘𝑛) ∧
𝑎 ≠ 𝑏) ∧ 𝑙 = [〈𝑎, 𝑏〉]◡ Colinear ) ∧ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎 ≠ 𝑏) ∧ 𝑘 = [〈𝑎, 𝑏〉]◡ Colinear )) → 𝑙 = 𝑘)) |
| 5 | 4 | rexlimivv 3188 |
. . . . . 6
⊢
(∃𝑛 ∈
ℕ ∃𝑚 ∈
ℕ (((𝑎 ∈
(𝔼‘𝑛) ∧
𝑏 ∈
(𝔼‘𝑛) ∧
𝑎 ≠ 𝑏) ∧ 𝑙 = [〈𝑎, 𝑏〉]◡ Colinear ) ∧ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎 ≠ 𝑏) ∧ 𝑘 = [〈𝑎, 𝑏〉]◡ Colinear )) → 𝑙 = 𝑘) |
| 6 | 1, 5 | sylbir 235 |
. . . . 5
⊢
((∃𝑛 ∈
ℕ ((𝑎 ∈
(𝔼‘𝑛) ∧
𝑏 ∈
(𝔼‘𝑛) ∧
𝑎 ≠ 𝑏) ∧ 𝑙 = [〈𝑎, 𝑏〉]◡ Colinear ) ∧ ∃𝑚 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎 ≠ 𝑏) ∧ 𝑘 = [〈𝑎, 𝑏〉]◡ Colinear )) → 𝑙 = 𝑘) |
| 7 | 6 | gen2 1795 |
. . . 4
⊢
∀𝑙∀𝑘((∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏) ∧ 𝑙 = [〈𝑎, 𝑏〉]◡ Colinear ) ∧ ∃𝑚 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎 ≠ 𝑏) ∧ 𝑘 = [〈𝑎, 𝑏〉]◡ Colinear )) → 𝑙 = 𝑘) |
| 8 | | eqeq1 2738 |
. . . . . . . 8
⊢ (𝑙 = 𝑘 → (𝑙 = [〈𝑎, 𝑏〉]◡ Colinear ↔ 𝑘 = [〈𝑎, 𝑏〉]◡ Colinear )) |
| 9 | 8 | anbi2d 630 |
. . . . . . 7
⊢ (𝑙 = 𝑘 → (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏) ∧ 𝑙 = [〈𝑎, 𝑏〉]◡ Colinear ) ↔ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏) ∧ 𝑘 = [〈𝑎, 𝑏〉]◡ Colinear ))) |
| 10 | 9 | rexbidv 3166 |
. . . . . 6
⊢ (𝑙 = 𝑘 → (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏) ∧ 𝑙 = [〈𝑎, 𝑏〉]◡ Colinear ) ↔ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏) ∧ 𝑘 = [〈𝑎, 𝑏〉]◡ Colinear ))) |
| 11 | | fveq2 6887 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → (𝔼‘𝑛) = (𝔼‘𝑚)) |
| 12 | 11 | eleq2d 2819 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (𝑎 ∈ (𝔼‘𝑛) ↔ 𝑎 ∈ (𝔼‘𝑚))) |
| 13 | 11 | eleq2d 2819 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (𝑏 ∈ (𝔼‘𝑛) ↔ 𝑏 ∈ (𝔼‘𝑚))) |
| 14 | 12, 13 | 3anbi12d 1438 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏) ↔ (𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎 ≠ 𝑏))) |
| 15 | 14 | anbi1d 631 |
. . . . . . 7
⊢ (𝑛 = 𝑚 → (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏) ∧ 𝑘 = [〈𝑎, 𝑏〉]◡ Colinear ) ↔ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎 ≠ 𝑏) ∧ 𝑘 = [〈𝑎, 𝑏〉]◡ Colinear ))) |
| 16 | 15 | cbvrexvw 3225 |
. . . . . 6
⊢
(∃𝑛 ∈
ℕ ((𝑎 ∈
(𝔼‘𝑛) ∧
𝑏 ∈
(𝔼‘𝑛) ∧
𝑎 ≠ 𝑏) ∧ 𝑘 = [〈𝑎, 𝑏〉]◡ Colinear ) ↔ ∃𝑚 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎 ≠ 𝑏) ∧ 𝑘 = [〈𝑎, 𝑏〉]◡ Colinear )) |
| 17 | 10, 16 | bitrdi 287 |
. . . . 5
⊢ (𝑙 = 𝑘 → (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏) ∧ 𝑙 = [〈𝑎, 𝑏〉]◡ Colinear ) ↔ ∃𝑚 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎 ≠ 𝑏) ∧ 𝑘 = [〈𝑎, 𝑏〉]◡ Colinear ))) |
| 18 | 17 | mo4 2564 |
. . . 4
⊢
(∃*𝑙∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏) ∧ 𝑙 = [〈𝑎, 𝑏〉]◡ Colinear ) ↔ ∀𝑙∀𝑘((∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏) ∧ 𝑙 = [〈𝑎, 𝑏〉]◡ Colinear ) ∧ ∃𝑚 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎 ≠ 𝑏) ∧ 𝑘 = [〈𝑎, 𝑏〉]◡ Colinear )) → 𝑙 = 𝑘)) |
| 19 | 7, 18 | mpbir 231 |
. . 3
⊢
∃*𝑙∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏) ∧ 𝑙 = [〈𝑎, 𝑏〉]◡ Colinear ) |
| 20 | 19 | funoprab 7538 |
. 2
⊢ Fun
{〈〈𝑎, 𝑏〉, 𝑙〉 ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏) ∧ 𝑙 = [〈𝑎, 𝑏〉]◡ Colinear )} |
| 21 | | df-line2 36079 |
. . 3
⊢ Line =
{〈〈𝑎, 𝑏〉, 𝑙〉 ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏) ∧ 𝑙 = [〈𝑎, 𝑏〉]◡ Colinear )} |
| 22 | 21 | funeqi 6568 |
. 2
⊢ (Fun Line
↔ Fun {〈〈𝑎,
𝑏〉, 𝑙〉 ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏) ∧ 𝑙 = [〈𝑎, 𝑏〉]◡ Colinear )}) |
| 23 | 20, 22 | mpbir 231 |
1
⊢ Fun
Line |