Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funline Structured version   Visualization version   GIF version

Theorem funline 34444
Description: Show that the Line relationship is a function. (Contributed by Scott Fenton, 25-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
funline Fun Line

Proof of Theorem funline
Dummy variables 𝑎 𝑏 𝑘 𝑙 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reeanv 3294 . . . . . 6 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ∧ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )) ↔ (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ∧ ∃𝑚 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )))
2 eqtr3 2764 . . . . . . . . 9 ((𝑙 = [⟨𝑎, 𝑏⟩] Colinear ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear ) → 𝑙 = 𝑘)
32ad2ant2l 743 . . . . . . . 8 ((((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ∧ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )) → 𝑙 = 𝑘)
43a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → ((((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ∧ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )) → 𝑙 = 𝑘))
54rexlimivv 3221 . . . . . 6 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ∧ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )) → 𝑙 = 𝑘)
61, 5sylbir 234 . . . . 5 ((∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ∧ ∃𝑚 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )) → 𝑙 = 𝑘)
76gen2 1799 . . . 4 𝑙𝑘((∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ∧ ∃𝑚 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )) → 𝑙 = 𝑘)
8 eqeq1 2742 . . . . . . . 8 (𝑙 = 𝑘 → (𝑙 = [⟨𝑎, 𝑏⟩] Colinear ↔ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear ))
98anbi2d 629 . . . . . . 7 (𝑙 = 𝑘 → (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ↔ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )))
109rexbidv 3226 . . . . . 6 (𝑙 = 𝑘 → (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ↔ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )))
11 fveq2 6774 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝔼‘𝑛) = (𝔼‘𝑚))
1211eleq2d 2824 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑎 ∈ (𝔼‘𝑛) ↔ 𝑎 ∈ (𝔼‘𝑚)))
1311eleq2d 2824 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑏 ∈ (𝔼‘𝑛) ↔ 𝑏 ∈ (𝔼‘𝑚)))
1412, 133anbi12d 1436 . . . . . . . 8 (𝑛 = 𝑚 → ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ↔ (𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏)))
1514anbi1d 630 . . . . . . 7 (𝑛 = 𝑚 → (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear ) ↔ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )))
1615cbvrexvw 3384 . . . . . 6 (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear ) ↔ ∃𝑚 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear ))
1710, 16bitrdi 287 . . . . 5 (𝑙 = 𝑘 → (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ↔ ∃𝑚 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )))
1817mo4 2566 . . . 4 (∃*𝑙𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ↔ ∀𝑙𝑘((∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ∧ ∃𝑚 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )) → 𝑙 = 𝑘))
197, 18mpbir 230 . . 3 ∃*𝑙𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )
2019funoprab 7396 . 2 Fun {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )}
21 df-line2 34439 . . 3 Line = {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )}
2221funeqi 6455 . 2 (Fun Line ↔ Fun {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )})
2320, 22mpbir 230 1 Fun Line
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wal 1537   = wceq 1539  wcel 2106  ∃*wmo 2538  wne 2943  wrex 3065  cop 4567  ccnv 5588  Fun wfun 6427  cfv 6433  {coprab 7276  [cec 8496  cn 11973  𝔼cee 27256   Colinear ccolin 34339  Linecline2 34436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-iota 6391  df-fun 6435  df-fv 6441  df-oprab 7279  df-line2 34439
This theorem is referenced by:  fvline  34446
  Copyright terms: Public domain W3C validator