Detailed syntax breakdown of Definition df-mat
| Step | Hyp | Ref
| Expression |
| 1 | | cmat 22411 |
. 2
class
Mat |
| 2 | | vn |
. . 3
setvar 𝑛 |
| 3 | | vr |
. . 3
setvar 𝑟 |
| 4 | | cfn 8985 |
. . 3
class
Fin |
| 5 | | cvv 3480 |
. . 3
class
V |
| 6 | 3 | cv 1539 |
. . . . 5
class 𝑟 |
| 7 | 2 | cv 1539 |
. . . . . 6
class 𝑛 |
| 8 | 7, 7 | cxp 5683 |
. . . . 5
class (𝑛 × 𝑛) |
| 9 | | cfrlm 21766 |
. . . . 5
class
freeLMod |
| 10 | 6, 8, 9 | co 7431 |
. . . 4
class (𝑟 freeLMod (𝑛 × 𝑛)) |
| 11 | | cnx 17230 |
. . . . . 6
class
ndx |
| 12 | | cmulr 17298 |
. . . . . 6
class
.r |
| 13 | 11, 12 | cfv 6561 |
. . . . 5
class
(.r‘ndx) |
| 14 | 7, 7, 7 | cotp 4634 |
. . . . . 6
class
〈𝑛, 𝑛, 𝑛〉 |
| 15 | | cmmul 22394 |
. . . . . 6
class
maMul |
| 16 | 6, 14, 15 | co 7431 |
. . . . 5
class (𝑟 maMul 〈𝑛, 𝑛, 𝑛〉) |
| 17 | 13, 16 | cop 4632 |
. . . 4
class
〈(.r‘ndx), (𝑟 maMul 〈𝑛, 𝑛, 𝑛〉)〉 |
| 18 | | csts 17200 |
. . . 4
class
sSet |
| 19 | 10, 17, 18 | co 7431 |
. . 3
class ((𝑟 freeLMod (𝑛 × 𝑛)) sSet 〈(.r‘ndx),
(𝑟 maMul 〈𝑛, 𝑛, 𝑛〉)〉) |
| 20 | 2, 3, 4, 5, 19 | cmpo 7433 |
. 2
class (𝑛 ∈ Fin, 𝑟 ∈ V ↦ ((𝑟 freeLMod (𝑛 × 𝑛)) sSet 〈(.r‘ndx),
(𝑟 maMul 〈𝑛, 𝑛, 𝑛〉)〉)) |
| 21 | 1, 20 | wceq 1540 |
1
wff Mat =
(𝑛 ∈ Fin, 𝑟 ∈ V ↦ ((𝑟 freeLMod (𝑛 × 𝑛)) sSet 〈(.r‘ndx),
(𝑟 maMul 〈𝑛, 𝑛, 𝑛〉)〉)) |