Detailed syntax breakdown of Definition df-mat
Step | Hyp | Ref
| Expression |
1 | | cmat 21563 |
. 2
class
Mat |
2 | | vn |
. . 3
setvar 𝑛 |
3 | | vr |
. . 3
setvar 𝑟 |
4 | | cfn 8742 |
. . 3
class
Fin |
5 | | cvv 3433 |
. . 3
class
V |
6 | 3 | cv 1538 |
. . . . 5
class 𝑟 |
7 | 2 | cv 1538 |
. . . . . 6
class 𝑛 |
8 | 7, 7 | cxp 5588 |
. . . . 5
class (𝑛 × 𝑛) |
9 | | cfrlm 20962 |
. . . . 5
class
freeLMod |
10 | 6, 8, 9 | co 7284 |
. . . 4
class (𝑟 freeLMod (𝑛 × 𝑛)) |
11 | | cnx 16903 |
. . . . . 6
class
ndx |
12 | | cmulr 16972 |
. . . . . 6
class
.r |
13 | 11, 12 | cfv 6437 |
. . . . 5
class
(.r‘ndx) |
14 | 7, 7, 7 | cotp 4570 |
. . . . . 6
class
〈𝑛, 𝑛, 𝑛〉 |
15 | | cmmul 21541 |
. . . . . 6
class
maMul |
16 | 6, 14, 15 | co 7284 |
. . . . 5
class (𝑟 maMul 〈𝑛, 𝑛, 𝑛〉) |
17 | 13, 16 | cop 4568 |
. . . 4
class
〈(.r‘ndx), (𝑟 maMul 〈𝑛, 𝑛, 𝑛〉)〉 |
18 | | csts 16873 |
. . . 4
class
sSet |
19 | 10, 17, 18 | co 7284 |
. . 3
class ((𝑟 freeLMod (𝑛 × 𝑛)) sSet 〈(.r‘ndx),
(𝑟 maMul 〈𝑛, 𝑛, 𝑛〉)〉) |
20 | 2, 3, 4, 5, 19 | cmpo 7286 |
. 2
class (𝑛 ∈ Fin, 𝑟 ∈ V ↦ ((𝑟 freeLMod (𝑛 × 𝑛)) sSet 〈(.r‘ndx),
(𝑟 maMul 〈𝑛, 𝑛, 𝑛〉)〉)) |
21 | 1, 20 | wceq 1539 |
1
wff Mat =
(𝑛 ∈ Fin, 𝑟 ∈ V ↦ ((𝑟 freeLMod (𝑛 × 𝑛)) sSet 〈(.r‘ndx),
(𝑟 maMul 〈𝑛, 𝑛, 𝑛〉)〉)) |