| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > matval | Structured version Visualization version GIF version | ||
| Description: Value of the matrix algebra. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
| Ref | Expression |
|---|---|
| matval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| matval.g | ⊢ 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁)) |
| matval.t | ⊢ · = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) |
| Ref | Expression |
|---|---|
| matval | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐴 = (𝐺 sSet 〈(.r‘ndx), · 〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matval.a | . 2 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | elex 3459 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
| 3 | id 22 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
| 4 | id 22 | . . . . . . . 8 ⊢ (𝑛 = 𝑁 → 𝑛 = 𝑁) | |
| 5 | 4 | sqxpeqd 5655 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → (𝑛 × 𝑛) = (𝑁 × 𝑁)) |
| 6 | 3, 5 | oveqan12rd 7373 | . . . . . 6 ⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑟 freeLMod (𝑛 × 𝑛)) = (𝑅 freeLMod (𝑁 × 𝑁))) |
| 7 | matval.g | . . . . . 6 ⊢ 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁)) | |
| 8 | 6, 7 | eqtr4di 2782 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑟 freeLMod (𝑛 × 𝑛)) = 𝐺) |
| 9 | 4, 4, 4 | oteq123d 4842 | . . . . . . . 8 ⊢ (𝑛 = 𝑁 → 〈𝑛, 𝑛, 𝑛〉 = 〈𝑁, 𝑁, 𝑁〉) |
| 10 | 3, 9 | oveqan12rd 7373 | . . . . . . 7 ⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑟 maMul 〈𝑛, 𝑛, 𝑛〉) = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)) |
| 11 | matval.t | . . . . . . 7 ⊢ · = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) | |
| 12 | 10, 11 | eqtr4di 2782 | . . . . . 6 ⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑟 maMul 〈𝑛, 𝑛, 𝑛〉) = · ) |
| 13 | 12 | opeq2d 4834 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → 〈(.r‘ndx), (𝑟 maMul 〈𝑛, 𝑛, 𝑛〉)〉 = 〈(.r‘ndx), · 〉) |
| 14 | 8, 13 | oveq12d 7371 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → ((𝑟 freeLMod (𝑛 × 𝑛)) sSet 〈(.r‘ndx), (𝑟 maMul 〈𝑛, 𝑛, 𝑛〉)〉) = (𝐺 sSet 〈(.r‘ndx), · 〉)) |
| 15 | df-mat 22311 | . . . 4 ⊢ Mat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ ((𝑟 freeLMod (𝑛 × 𝑛)) sSet 〈(.r‘ndx), (𝑟 maMul 〈𝑛, 𝑛, 𝑛〉)〉)) | |
| 16 | ovex 7386 | . . . 4 ⊢ (𝐺 sSet 〈(.r‘ndx), · 〉) ∈ V | |
| 17 | 14, 15, 16 | ovmpoa 7508 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑁 Mat 𝑅) = (𝐺 sSet 〈(.r‘ndx), · 〉)) |
| 18 | 2, 17 | sylan2 593 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑁 Mat 𝑅) = (𝐺 sSet 〈(.r‘ndx), · 〉)) |
| 19 | 1, 18 | eqtrid 2776 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐴 = (𝐺 sSet 〈(.r‘ndx), · 〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 〈cop 4585 〈cotp 4587 × cxp 5621 ‘cfv 6486 (class class class)co 7353 Fincfn 8879 sSet csts 17092 ndxcnx 17122 .rcmulr 17180 freeLMod cfrlm 21671 maMul cmmul 22293 Mat cmat 22310 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-ot 4588 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-mat 22311 |
| This theorem is referenced by: matbas 22316 matplusg 22317 matsca 22318 matvsca 22319 matmulr 22341 |
| Copyright terms: Public domain | W3C validator |