MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matval Structured version   Visualization version   GIF version

Theorem matval 22327
Description: Value of the matrix algebra. (Contributed by Stefan O'Rear, 4-Sep-2015.)
Hypotheses
Ref Expression
matval.a 𝐴 = (𝑁 Mat 𝑅)
matval.g 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁))
matval.t · = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
Assertion
Ref Expression
matval ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝐴 = (𝐺 sSet ⟨(.r‘ndx), · ⟩))

Proof of Theorem matval
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 matval.a . 2 𝐴 = (𝑁 Mat 𝑅)
2 elex 3458 . . 3 (𝑅𝑉𝑅 ∈ V)
3 id 22 . . . . . . 7 (𝑟 = 𝑅𝑟 = 𝑅)
4 id 22 . . . . . . . 8 (𝑛 = 𝑁𝑛 = 𝑁)
54sqxpeqd 5651 . . . . . . 7 (𝑛 = 𝑁 → (𝑛 × 𝑛) = (𝑁 × 𝑁))
63, 5oveqan12rd 7372 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑟 freeLMod (𝑛 × 𝑛)) = (𝑅 freeLMod (𝑁 × 𝑁)))
7 matval.g . . . . . 6 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁))
86, 7eqtr4di 2786 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑟 freeLMod (𝑛 × 𝑛)) = 𝐺)
94, 4, 4oteq123d 4839 . . . . . . . 8 (𝑛 = 𝑁 → ⟨𝑛, 𝑛, 𝑛⟩ = ⟨𝑁, 𝑁, 𝑁⟩)
103, 9oveqan12rd 7372 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑟 maMul ⟨𝑛, 𝑛, 𝑛⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩))
11 matval.t . . . . . . 7 · = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
1210, 11eqtr4di 2786 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑟 maMul ⟨𝑛, 𝑛, 𝑛⟩) = · )
1312opeq2d 4831 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → ⟨(.r‘ndx), (𝑟 maMul ⟨𝑛, 𝑛, 𝑛⟩)⟩ = ⟨(.r‘ndx), · ⟩)
148, 13oveq12d 7370 . . . 4 ((𝑛 = 𝑁𝑟 = 𝑅) → ((𝑟 freeLMod (𝑛 × 𝑛)) sSet ⟨(.r‘ndx), (𝑟 maMul ⟨𝑛, 𝑛, 𝑛⟩)⟩) = (𝐺 sSet ⟨(.r‘ndx), · ⟩))
15 df-mat 22324 . . . 4 Mat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ ((𝑟 freeLMod (𝑛 × 𝑛)) sSet ⟨(.r‘ndx), (𝑟 maMul ⟨𝑛, 𝑛, 𝑛⟩)⟩))
16 ovex 7385 . . . 4 (𝐺 sSet ⟨(.r‘ndx), · ⟩) ∈ V
1714, 15, 16ovmpoa 7507 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑁 Mat 𝑅) = (𝐺 sSet ⟨(.r‘ndx), · ⟩))
182, 17sylan2 593 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑁 Mat 𝑅) = (𝐺 sSet ⟨(.r‘ndx), · ⟩))
191, 18eqtrid 2780 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝐴 = (𝐺 sSet ⟨(.r‘ndx), · ⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  cop 4581  cotp 4583   × cxp 5617  cfv 6486  (class class class)co 7352  Fincfn 8875   sSet csts 17076  ndxcnx 17106  .rcmulr 17164   freeLMod cfrlm 21685   maMul cmmul 22306   Mat cmat 22323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-ot 4584  df-uni 4859  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-mat 22324
This theorem is referenced by:  matbas  22329  matplusg  22330  matsca  22331  matvsca  22332  matmulr  22354
  Copyright terms: Public domain W3C validator