MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matval Structured version   Visualization version   GIF version

Theorem matval 21902
Description: Value of the matrix algebra. (Contributed by Stefan O'Rear, 4-Sep-2015.)
Hypotheses
Ref Expression
matval.a 𝐴 = (𝑁 Mat 𝑅)
matval.g 𝐺 = (𝑅 freeLMod (𝑁 Γ— 𝑁))
matval.t Β· = (𝑅 maMul βŸ¨π‘, 𝑁, π‘βŸ©)
Assertion
Ref Expression
matval ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) β†’ 𝐴 = (𝐺 sSet ⟨(.rβ€˜ndx), Β· ⟩))

Proof of Theorem matval
Dummy variables 𝑛 π‘Ÿ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 matval.a . 2 𝐴 = (𝑁 Mat 𝑅)
2 elex 3492 . . 3 (𝑅 ∈ 𝑉 β†’ 𝑅 ∈ V)
3 id 22 . . . . . . 7 (π‘Ÿ = 𝑅 β†’ π‘Ÿ = 𝑅)
4 id 22 . . . . . . . 8 (𝑛 = 𝑁 β†’ 𝑛 = 𝑁)
54sqxpeqd 5707 . . . . . . 7 (𝑛 = 𝑁 β†’ (𝑛 Γ— 𝑛) = (𝑁 Γ— 𝑁))
63, 5oveqan12rd 7425 . . . . . 6 ((𝑛 = 𝑁 ∧ π‘Ÿ = 𝑅) β†’ (π‘Ÿ freeLMod (𝑛 Γ— 𝑛)) = (𝑅 freeLMod (𝑁 Γ— 𝑁)))
7 matval.g . . . . . 6 𝐺 = (𝑅 freeLMod (𝑁 Γ— 𝑁))
86, 7eqtr4di 2790 . . . . 5 ((𝑛 = 𝑁 ∧ π‘Ÿ = 𝑅) β†’ (π‘Ÿ freeLMod (𝑛 Γ— 𝑛)) = 𝐺)
94, 4, 4oteq123d 4887 . . . . . . . 8 (𝑛 = 𝑁 β†’ βŸ¨π‘›, 𝑛, π‘›βŸ© = βŸ¨π‘, 𝑁, π‘βŸ©)
103, 9oveqan12rd 7425 . . . . . . 7 ((𝑛 = 𝑁 ∧ π‘Ÿ = 𝑅) β†’ (π‘Ÿ maMul βŸ¨π‘›, 𝑛, π‘›βŸ©) = (𝑅 maMul βŸ¨π‘, 𝑁, π‘βŸ©))
11 matval.t . . . . . . 7 Β· = (𝑅 maMul βŸ¨π‘, 𝑁, π‘βŸ©)
1210, 11eqtr4di 2790 . . . . . 6 ((𝑛 = 𝑁 ∧ π‘Ÿ = 𝑅) β†’ (π‘Ÿ maMul βŸ¨π‘›, 𝑛, π‘›βŸ©) = Β· )
1312opeq2d 4879 . . . . 5 ((𝑛 = 𝑁 ∧ π‘Ÿ = 𝑅) β†’ ⟨(.rβ€˜ndx), (π‘Ÿ maMul βŸ¨π‘›, 𝑛, π‘›βŸ©)⟩ = ⟨(.rβ€˜ndx), Β· ⟩)
148, 13oveq12d 7423 . . . 4 ((𝑛 = 𝑁 ∧ π‘Ÿ = 𝑅) β†’ ((π‘Ÿ freeLMod (𝑛 Γ— 𝑛)) sSet ⟨(.rβ€˜ndx), (π‘Ÿ maMul βŸ¨π‘›, 𝑛, π‘›βŸ©)⟩) = (𝐺 sSet ⟨(.rβ€˜ndx), Β· ⟩))
15 df-mat 21899 . . . 4 Mat = (𝑛 ∈ Fin, π‘Ÿ ∈ V ↦ ((π‘Ÿ freeLMod (𝑛 Γ— 𝑛)) sSet ⟨(.rβ€˜ndx), (π‘Ÿ maMul βŸ¨π‘›, 𝑛, π‘›βŸ©)⟩))
16 ovex 7438 . . . 4 (𝐺 sSet ⟨(.rβ€˜ndx), Β· ⟩) ∈ V
1714, 15, 16ovmpoa 7559 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) β†’ (𝑁 Mat 𝑅) = (𝐺 sSet ⟨(.rβ€˜ndx), Β· ⟩))
182, 17sylan2 593 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) β†’ (𝑁 Mat 𝑅) = (𝐺 sSet ⟨(.rβ€˜ndx), Β· ⟩))
191, 18eqtrid 2784 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) β†’ 𝐴 = (𝐺 sSet ⟨(.rβ€˜ndx), Β· ⟩))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3474  βŸ¨cop 4633  βŸ¨cotp 4635   Γ— cxp 5673  β€˜cfv 6540  (class class class)co 7405  Fincfn 8935   sSet csts 17092  ndxcnx 17122  .rcmulr 17194   freeLMod cfrlm 21292   maMul cmmul 21876   Mat cmat 21898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-ot 4636  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-mat 21899
This theorem is referenced by:  matbas  21904  matplusg  21905  matsca  21906  matscaOLD  21907  matvsca  21908  matvscaOLD  21909  matmulr  21931
  Copyright terms: Public domain W3C validator