Step | Hyp | Ref
| Expression |
1 | | matval.a |
. 2
β’ π΄ = (π Mat π
) |
2 | | elex 3492 |
. . 3
β’ (π
β π β π
β V) |
3 | | id 22 |
. . . . . . 7
β’ (π = π
β π = π
) |
4 | | id 22 |
. . . . . . . 8
β’ (π = π β π = π) |
5 | 4 | sqxpeqd 5707 |
. . . . . . 7
β’ (π = π β (π Γ π) = (π Γ π)) |
6 | 3, 5 | oveqan12rd 7425 |
. . . . . 6
β’ ((π = π β§ π = π
) β (π freeLMod (π Γ π)) = (π
freeLMod (π Γ π))) |
7 | | matval.g |
. . . . . 6
β’ πΊ = (π
freeLMod (π Γ π)) |
8 | 6, 7 | eqtr4di 2790 |
. . . . 5
β’ ((π = π β§ π = π
) β (π freeLMod (π Γ π)) = πΊ) |
9 | 4, 4, 4 | oteq123d 4887 |
. . . . . . . 8
β’ (π = π β β¨π, π, πβ© = β¨π, π, πβ©) |
10 | 3, 9 | oveqan12rd 7425 |
. . . . . . 7
β’ ((π = π β§ π = π
) β (π maMul β¨π, π, πβ©) = (π
maMul β¨π, π, πβ©)) |
11 | | matval.t |
. . . . . . 7
β’ Β· =
(π
maMul β¨π, π, πβ©) |
12 | 10, 11 | eqtr4di 2790 |
. . . . . 6
β’ ((π = π β§ π = π
) β (π maMul β¨π, π, πβ©) = Β· ) |
13 | 12 | opeq2d 4879 |
. . . . 5
β’ ((π = π β§ π = π
) β β¨(.rβndx),
(π maMul β¨π, π, πβ©)β© =
β¨(.rβndx), Β·
β©) |
14 | 8, 13 | oveq12d 7423 |
. . . 4
β’ ((π = π β§ π = π
) β ((π freeLMod (π Γ π)) sSet β¨(.rβndx),
(π maMul β¨π, π, πβ©)β©) = (πΊ sSet β¨(.rβndx), Β·
β©)) |
15 | | df-mat 21899 |
. . . 4
β’ Mat =
(π β Fin, π β V β¦ ((π freeLMod (π Γ π)) sSet β¨(.rβndx),
(π maMul β¨π, π, πβ©)β©)) |
16 | | ovex 7438 |
. . . 4
β’ (πΊ sSet
β¨(.rβndx), Β· β©) β
V |
17 | 14, 15, 16 | ovmpoa 7559 |
. . 3
β’ ((π β Fin β§ π
β V) β (π Mat π
) = (πΊ sSet β¨(.rβndx), Β·
β©)) |
18 | 2, 17 | sylan2 593 |
. 2
β’ ((π β Fin β§ π
β π) β (π Mat π
) = (πΊ sSet β¨(.rβndx), Β·
β©)) |
19 | 1, 18 | eqtrid 2784 |
1
β’ ((π β Fin β§ π
β π) β π΄ = (πΊ sSet β¨(.rβndx), Β·
β©)) |