MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matval Structured version   Visualization version   GIF version

Theorem matval 22262
Description: Value of the matrix algebra. (Contributed by Stefan O'Rear, 4-Sep-2015.)
Hypotheses
Ref Expression
matval.a 𝐴 = (𝑁 Mat 𝑅)
matval.g 𝐺 = (𝑅 freeLMod (𝑁 Γ— 𝑁))
matval.t Β· = (𝑅 maMul βŸ¨π‘, 𝑁, π‘βŸ©)
Assertion
Ref Expression
matval ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) β†’ 𝐴 = (𝐺 sSet ⟨(.rβ€˜ndx), Β· ⟩))

Proof of Theorem matval
Dummy variables 𝑛 π‘Ÿ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 matval.a . 2 𝐴 = (𝑁 Mat 𝑅)
2 elex 3487 . . 3 (𝑅 ∈ 𝑉 β†’ 𝑅 ∈ V)
3 id 22 . . . . . . 7 (π‘Ÿ = 𝑅 β†’ π‘Ÿ = 𝑅)
4 id 22 . . . . . . . 8 (𝑛 = 𝑁 β†’ 𝑛 = 𝑁)
54sqxpeqd 5701 . . . . . . 7 (𝑛 = 𝑁 β†’ (𝑛 Γ— 𝑛) = (𝑁 Γ— 𝑁))
63, 5oveqan12rd 7424 . . . . . 6 ((𝑛 = 𝑁 ∧ π‘Ÿ = 𝑅) β†’ (π‘Ÿ freeLMod (𝑛 Γ— 𝑛)) = (𝑅 freeLMod (𝑁 Γ— 𝑁)))
7 matval.g . . . . . 6 𝐺 = (𝑅 freeLMod (𝑁 Γ— 𝑁))
86, 7eqtr4di 2784 . . . . 5 ((𝑛 = 𝑁 ∧ π‘Ÿ = 𝑅) β†’ (π‘Ÿ freeLMod (𝑛 Γ— 𝑛)) = 𝐺)
94, 4, 4oteq123d 4883 . . . . . . . 8 (𝑛 = 𝑁 β†’ βŸ¨π‘›, 𝑛, π‘›βŸ© = βŸ¨π‘, 𝑁, π‘βŸ©)
103, 9oveqan12rd 7424 . . . . . . 7 ((𝑛 = 𝑁 ∧ π‘Ÿ = 𝑅) β†’ (π‘Ÿ maMul βŸ¨π‘›, 𝑛, π‘›βŸ©) = (𝑅 maMul βŸ¨π‘, 𝑁, π‘βŸ©))
11 matval.t . . . . . . 7 Β· = (𝑅 maMul βŸ¨π‘, 𝑁, π‘βŸ©)
1210, 11eqtr4di 2784 . . . . . 6 ((𝑛 = 𝑁 ∧ π‘Ÿ = 𝑅) β†’ (π‘Ÿ maMul βŸ¨π‘›, 𝑛, π‘›βŸ©) = Β· )
1312opeq2d 4875 . . . . 5 ((𝑛 = 𝑁 ∧ π‘Ÿ = 𝑅) β†’ ⟨(.rβ€˜ndx), (π‘Ÿ maMul βŸ¨π‘›, 𝑛, π‘›βŸ©)⟩ = ⟨(.rβ€˜ndx), Β· ⟩)
148, 13oveq12d 7422 . . . 4 ((𝑛 = 𝑁 ∧ π‘Ÿ = 𝑅) β†’ ((π‘Ÿ freeLMod (𝑛 Γ— 𝑛)) sSet ⟨(.rβ€˜ndx), (π‘Ÿ maMul βŸ¨π‘›, 𝑛, π‘›βŸ©)⟩) = (𝐺 sSet ⟨(.rβ€˜ndx), Β· ⟩))
15 df-mat 22259 . . . 4 Mat = (𝑛 ∈ Fin, π‘Ÿ ∈ V ↦ ((π‘Ÿ freeLMod (𝑛 Γ— 𝑛)) sSet ⟨(.rβ€˜ndx), (π‘Ÿ maMul βŸ¨π‘›, 𝑛, π‘›βŸ©)⟩))
16 ovex 7437 . . . 4 (𝐺 sSet ⟨(.rβ€˜ndx), Β· ⟩) ∈ V
1714, 15, 16ovmpoa 7558 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) β†’ (𝑁 Mat 𝑅) = (𝐺 sSet ⟨(.rβ€˜ndx), Β· ⟩))
182, 17sylan2 592 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) β†’ (𝑁 Mat 𝑅) = (𝐺 sSet ⟨(.rβ€˜ndx), Β· ⟩))
191, 18eqtrid 2778 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) β†’ 𝐴 = (𝐺 sSet ⟨(.rβ€˜ndx), Β· ⟩))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098  Vcvv 3468  βŸ¨cop 4629  βŸ¨cotp 4631   Γ— cxp 5667  β€˜cfv 6536  (class class class)co 7404  Fincfn 8938   sSet csts 17103  ndxcnx 17133  .rcmulr 17205   freeLMod cfrlm 21637   maMul cmmul 22236   Mat cmat 22258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-ot 4632  df-uni 4903  df-br 5142  df-opab 5204  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-iota 6488  df-fun 6538  df-fv 6544  df-ov 7407  df-oprab 7408  df-mpo 7409  df-mat 22259
This theorem is referenced by:  matbas  22264  matplusg  22265  matsca  22266  matscaOLD  22267  matvsca  22268  matvscaOLD  22269  matmulr  22291
  Copyright terms: Public domain W3C validator