MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matval Structured version   Visualization version   GIF version

Theorem matval 22298
Description: Value of the matrix algebra. (Contributed by Stefan O'Rear, 4-Sep-2015.)
Hypotheses
Ref Expression
matval.a 𝐴 = (𝑁 Mat 𝑅)
matval.g 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁))
matval.t · = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
Assertion
Ref Expression
matval ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝐴 = (𝐺 sSet ⟨(.r‘ndx), · ⟩))

Proof of Theorem matval
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 matval.a . 2 𝐴 = (𝑁 Mat 𝑅)
2 elex 3468 . . 3 (𝑅𝑉𝑅 ∈ V)
3 id 22 . . . . . . 7 (𝑟 = 𝑅𝑟 = 𝑅)
4 id 22 . . . . . . . 8 (𝑛 = 𝑁𝑛 = 𝑁)
54sqxpeqd 5670 . . . . . . 7 (𝑛 = 𝑁 → (𝑛 × 𝑛) = (𝑁 × 𝑁))
63, 5oveqan12rd 7407 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑟 freeLMod (𝑛 × 𝑛)) = (𝑅 freeLMod (𝑁 × 𝑁)))
7 matval.g . . . . . 6 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁))
86, 7eqtr4di 2782 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑟 freeLMod (𝑛 × 𝑛)) = 𝐺)
94, 4, 4oteq123d 4852 . . . . . . . 8 (𝑛 = 𝑁 → ⟨𝑛, 𝑛, 𝑛⟩ = ⟨𝑁, 𝑁, 𝑁⟩)
103, 9oveqan12rd 7407 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑟 maMul ⟨𝑛, 𝑛, 𝑛⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩))
11 matval.t . . . . . . 7 · = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
1210, 11eqtr4di 2782 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑟 maMul ⟨𝑛, 𝑛, 𝑛⟩) = · )
1312opeq2d 4844 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → ⟨(.r‘ndx), (𝑟 maMul ⟨𝑛, 𝑛, 𝑛⟩)⟩ = ⟨(.r‘ndx), · ⟩)
148, 13oveq12d 7405 . . . 4 ((𝑛 = 𝑁𝑟 = 𝑅) → ((𝑟 freeLMod (𝑛 × 𝑛)) sSet ⟨(.r‘ndx), (𝑟 maMul ⟨𝑛, 𝑛, 𝑛⟩)⟩) = (𝐺 sSet ⟨(.r‘ndx), · ⟩))
15 df-mat 22295 . . . 4 Mat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ ((𝑟 freeLMod (𝑛 × 𝑛)) sSet ⟨(.r‘ndx), (𝑟 maMul ⟨𝑛, 𝑛, 𝑛⟩)⟩))
16 ovex 7420 . . . 4 (𝐺 sSet ⟨(.r‘ndx), · ⟩) ∈ V
1714, 15, 16ovmpoa 7544 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑁 Mat 𝑅) = (𝐺 sSet ⟨(.r‘ndx), · ⟩))
182, 17sylan2 593 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑁 Mat 𝑅) = (𝐺 sSet ⟨(.r‘ndx), · ⟩))
191, 18eqtrid 2776 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝐴 = (𝐺 sSet ⟨(.r‘ndx), · ⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cop 4595  cotp 4597   × cxp 5636  cfv 6511  (class class class)co 7387  Fincfn 8918   sSet csts 17133  ndxcnx 17163  .rcmulr 17221   freeLMod cfrlm 21655   maMul cmmul 22277   Mat cmat 22294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-ot 4598  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-mat 22295
This theorem is referenced by:  matbas  22300  matplusg  22301  matsca  22302  matvsca  22303  matmulr  22325
  Copyright terms: Public domain W3C validator