Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > matval | Structured version Visualization version GIF version |
Description: Value of the matrix algebra. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
Ref | Expression |
---|---|
matval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
matval.g | ⊢ 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁)) |
matval.t | ⊢ · = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) |
Ref | Expression |
---|---|
matval | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐴 = (𝐺 sSet 〈(.r‘ndx), · 〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | matval.a | . 2 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | elex 3428 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
3 | id 22 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
4 | id 22 | . . . . . . . 8 ⊢ (𝑛 = 𝑁 → 𝑛 = 𝑁) | |
5 | 4 | sqxpeqd 5556 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → (𝑛 × 𝑛) = (𝑁 × 𝑁)) |
6 | 3, 5 | oveqan12rd 7170 | . . . . . 6 ⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑟 freeLMod (𝑛 × 𝑛)) = (𝑅 freeLMod (𝑁 × 𝑁))) |
7 | matval.g | . . . . . 6 ⊢ 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁)) | |
8 | 6, 7 | eqtr4di 2811 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑟 freeLMod (𝑛 × 𝑛)) = 𝐺) |
9 | 4, 4, 4 | oteq123d 4778 | . . . . . . . 8 ⊢ (𝑛 = 𝑁 → 〈𝑛, 𝑛, 𝑛〉 = 〈𝑁, 𝑁, 𝑁〉) |
10 | 3, 9 | oveqan12rd 7170 | . . . . . . 7 ⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑟 maMul 〈𝑛, 𝑛, 𝑛〉) = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)) |
11 | matval.t | . . . . . . 7 ⊢ · = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) | |
12 | 10, 11 | eqtr4di 2811 | . . . . . 6 ⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑟 maMul 〈𝑛, 𝑛, 𝑛〉) = · ) |
13 | 12 | opeq2d 4770 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → 〈(.r‘ndx), (𝑟 maMul 〈𝑛, 𝑛, 𝑛〉)〉 = 〈(.r‘ndx), · 〉) |
14 | 8, 13 | oveq12d 7168 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → ((𝑟 freeLMod (𝑛 × 𝑛)) sSet 〈(.r‘ndx), (𝑟 maMul 〈𝑛, 𝑛, 𝑛〉)〉) = (𝐺 sSet 〈(.r‘ndx), · 〉)) |
15 | df-mat 21108 | . . . 4 ⊢ Mat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ ((𝑟 freeLMod (𝑛 × 𝑛)) sSet 〈(.r‘ndx), (𝑟 maMul 〈𝑛, 𝑛, 𝑛〉)〉)) | |
16 | ovex 7183 | . . . 4 ⊢ (𝐺 sSet 〈(.r‘ndx), · 〉) ∈ V | |
17 | 14, 15, 16 | ovmpoa 7300 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑁 Mat 𝑅) = (𝐺 sSet 〈(.r‘ndx), · 〉)) |
18 | 2, 17 | sylan2 595 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑁 Mat 𝑅) = (𝐺 sSet 〈(.r‘ndx), · 〉)) |
19 | 1, 18 | syl5eq 2805 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐴 = (𝐺 sSet 〈(.r‘ndx), · 〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 Vcvv 3409 〈cop 4528 〈cotp 4530 × cxp 5522 ‘cfv 6335 (class class class)co 7150 Fincfn 8527 ndxcnx 16538 sSet csts 16539 .rcmulr 16624 freeLMod cfrlm 20511 maMul cmmul 21085 Mat cmat 21107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-ot 4531 df-uni 4799 df-br 5033 df-opab 5095 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-iota 6294 df-fun 6337 df-fv 6343 df-ov 7153 df-oprab 7154 df-mpo 7155 df-mat 21108 |
This theorem is referenced by: matbas 21113 matplusg 21114 matsca 21115 matvsca 21116 matmulr 21138 |
Copyright terms: Public domain | W3C validator |