MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetfval Structured version   Visualization version   GIF version

Theorem mdetfval 21643
Description: First substitution for the determinant definition. (Contributed by Stefan O'Rear, 9-Sep-2015.) (Revised by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
mdetfval.d 𝐷 = (𝑁 maDet 𝑅)
mdetfval.a 𝐴 = (𝑁 Mat 𝑅)
mdetfval.b 𝐵 = (Base‘𝐴)
mdetfval.p 𝑃 = (Base‘(SymGrp‘𝑁))
mdetfval.y 𝑌 = (ℤRHom‘𝑅)
mdetfval.s 𝑆 = (pmSgn‘𝑁)
mdetfval.t · = (.r𝑅)
mdetfval.u 𝑈 = (mulGrp‘𝑅)
Assertion
Ref Expression
mdetfval 𝐷 = (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))))))
Distinct variable groups:   𝐵,𝑚   𝑚,𝑝,𝑥,𝑁   𝑃,𝑚   𝑅,𝑚,𝑝,𝑥   𝑆,𝑚   · ,𝑚   𝑈,𝑚   𝑚,𝑌
Allowed substitution hints:   𝐴(𝑥,𝑚,𝑝)   𝐵(𝑥,𝑝)   𝐷(𝑥,𝑚,𝑝)   𝑃(𝑥,𝑝)   𝑆(𝑥,𝑝)   · (𝑥,𝑝)   𝑈(𝑥,𝑝)   𝑌(𝑥,𝑝)

Proof of Theorem mdetfval
Dummy variables 𝑦 𝑧 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdetfval.d . 2 𝐷 = (𝑁 maDet 𝑅)
2 oveq12 7264 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = (𝑁 Mat 𝑅))
3 mdetfval.a . . . . . . . 8 𝐴 = (𝑁 Mat 𝑅)
42, 3eqtr4di 2797 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = 𝐴)
54fveq2d 6760 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = (Base‘𝐴))
6 mdetfval.b . . . . . 6 𝐵 = (Base‘𝐴)
75, 6eqtr4di 2797 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = 𝐵)
8 simpr 484 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑟 = 𝑅)
9 simpl 482 . . . . . . . . . 10 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑛 = 𝑁)
109fveq2d 6760 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → (SymGrp‘𝑛) = (SymGrp‘𝑁))
1110fveq2d 6760 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(SymGrp‘𝑛)) = (Base‘(SymGrp‘𝑁)))
12 mdetfval.p . . . . . . . 8 𝑃 = (Base‘(SymGrp‘𝑁))
1311, 12eqtr4di 2797 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(SymGrp‘𝑛)) = 𝑃)
14 fveq2 6756 . . . . . . . . . 10 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
1514adantl 481 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → (.r𝑟) = (.r𝑅))
16 mdetfval.t . . . . . . . . 9 · = (.r𝑅)
1715, 16eqtr4di 2797 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (.r𝑟) = · )
188fveq2d 6760 . . . . . . . . . . 11 ((𝑛 = 𝑁𝑟 = 𝑅) → (ℤRHom‘𝑟) = (ℤRHom‘𝑅))
19 mdetfval.y . . . . . . . . . . 11 𝑌 = (ℤRHom‘𝑅)
2018, 19eqtr4di 2797 . . . . . . . . . 10 ((𝑛 = 𝑁𝑟 = 𝑅) → (ℤRHom‘𝑟) = 𝑌)
21 fveq2 6756 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (pmSgn‘𝑛) = (pmSgn‘𝑁))
2221adantr 480 . . . . . . . . . . 11 ((𝑛 = 𝑁𝑟 = 𝑅) → (pmSgn‘𝑛) = (pmSgn‘𝑁))
23 mdetfval.s . . . . . . . . . . 11 𝑆 = (pmSgn‘𝑁)
2422, 23eqtr4di 2797 . . . . . . . . . 10 ((𝑛 = 𝑁𝑟 = 𝑅) → (pmSgn‘𝑛) = 𝑆)
2520, 24coeq12d 5762 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → ((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛)) = (𝑌𝑆))
2625fveq1d 6758 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝) = ((𝑌𝑆)‘𝑝))
27 fveq2 6756 . . . . . . . . . . 11 (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅))
2827adantl 481 . . . . . . . . . 10 ((𝑛 = 𝑁𝑟 = 𝑅) → (mulGrp‘𝑟) = (mulGrp‘𝑅))
29 mdetfval.u . . . . . . . . . 10 𝑈 = (mulGrp‘𝑅)
3028, 29eqtr4di 2797 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → (mulGrp‘𝑟) = 𝑈)
319mpteq1d 5165 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥)) = (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))
3230, 31oveq12d 7273 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → ((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))) = (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))
3317, 26, 32oveq123d 7276 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥)))) = (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))))
3413, 33mpteq12dv 5161 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))) = (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))
358, 34oveq12d 7273 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥)))))) = (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))))))
367, 35mpteq12dv 5161 . . . 4 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))))) = (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))))
37 df-mdet 21642 . . . 4 maDet = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))))))
386fvexi 6770 . . . . 5 𝐵 ∈ V
3938mptex 7081 . . . 4 (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))) ∈ V
4036, 37, 39ovmpoa 7406 . . 3 ((𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maDet 𝑅) = (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))))
4137reldmmpo 7386 . . . . . 6 Rel dom maDet
4241ovprc 7293 . . . . 5 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maDet 𝑅) = ∅)
43 mpt0 6559 . . . . 5 (𝑚 ∈ ∅ ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))) = ∅
4442, 43eqtr4di 2797 . . . 4 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maDet 𝑅) = (𝑚 ∈ ∅ ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))))
45 df-mat 21465 . . . . . . . . . 10 Mat = (𝑦 ∈ Fin, 𝑧 ∈ V ↦ ((𝑧 freeLMod (𝑦 × 𝑦)) sSet ⟨(.r‘ndx), (𝑧 maMul ⟨𝑦, 𝑦, 𝑦⟩)⟩))
4645reldmmpo 7386 . . . . . . . . 9 Rel dom Mat
4746ovprc 7293 . . . . . . . 8 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 Mat 𝑅) = ∅)
483, 47eqtrid 2790 . . . . . . 7 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → 𝐴 = ∅)
4948fveq2d 6760 . . . . . 6 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (Base‘𝐴) = (Base‘∅))
50 base0 16845 . . . . . 6 ∅ = (Base‘∅)
5149, 6, 503eqtr4g 2804 . . . . 5 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ∅)
5251mpteq1d 5165 . . . 4 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))) = (𝑚 ∈ ∅ ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))))
5344, 52eqtr4d 2781 . . 3 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maDet 𝑅) = (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))))
5440, 53pm2.61i 182 . 2 (𝑁 maDet 𝑅) = (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))))))
551, 54eqtri 2766 1 𝐷 = (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253  cop 4564  cotp 4566  cmpt 5153   × cxp 5578  ccom 5584  cfv 6418  (class class class)co 7255  Fincfn 8691   sSet csts 16792  ndxcnx 16822  Basecbs 16840  .rcmulr 16889   Σg cgsu 17068  SymGrpcsymg 18889  pmSgncpsgn 19012  mulGrpcmgp 19635  ℤRHomczrh 20613   freeLMod cfrlm 20863   maMul cmmul 21442   Mat cmat 21464   maDet cmdat 21641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-1cn 10860  ax-addcl 10862
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-nn 11904  df-slot 16811  df-ndx 16823  df-base 16841  df-mat 21465  df-mdet 21642
This theorem is referenced by:  mdetleib  21644  nfimdetndef  21646  mdetfval1  21647  mdet0pr  21649  mdetf  21652
  Copyright terms: Public domain W3C validator