MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetfval Structured version   Visualization version   GIF version

Theorem mdetfval 22449
Description: First substitution for the determinant definition. (Contributed by Stefan O'Rear, 9-Sep-2015.) (Revised by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
mdetfval.d 𝐷 = (𝑁 maDet 𝑅)
mdetfval.a 𝐴 = (𝑁 Mat 𝑅)
mdetfval.b 𝐵 = (Base‘𝐴)
mdetfval.p 𝑃 = (Base‘(SymGrp‘𝑁))
mdetfval.y 𝑌 = (ℤRHom‘𝑅)
mdetfval.s 𝑆 = (pmSgn‘𝑁)
mdetfval.t · = (.r𝑅)
mdetfval.u 𝑈 = (mulGrp‘𝑅)
Assertion
Ref Expression
mdetfval 𝐷 = (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))))))
Distinct variable groups:   𝐵,𝑚   𝑚,𝑝,𝑥,𝑁   𝑃,𝑚   𝑅,𝑚,𝑝,𝑥   𝑆,𝑚   · ,𝑚   𝑈,𝑚   𝑚,𝑌
Allowed substitution hints:   𝐴(𝑥,𝑚,𝑝)   𝐵(𝑥,𝑝)   𝐷(𝑥,𝑚,𝑝)   𝑃(𝑥,𝑝)   𝑆(𝑥,𝑝)   · (𝑥,𝑝)   𝑈(𝑥,𝑝)   𝑌(𝑥,𝑝)

Proof of Theorem mdetfval
Dummy variables 𝑦 𝑧 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdetfval.d . 2 𝐷 = (𝑁 maDet 𝑅)
2 oveq12 7378 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = (𝑁 Mat 𝑅))
3 mdetfval.a . . . . . . . 8 𝐴 = (𝑁 Mat 𝑅)
42, 3eqtr4di 2782 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = 𝐴)
54fveq2d 6844 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = (Base‘𝐴))
6 mdetfval.b . . . . . 6 𝐵 = (Base‘𝐴)
75, 6eqtr4di 2782 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = 𝐵)
8 simpr 484 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑟 = 𝑅)
9 simpl 482 . . . . . . . . . 10 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑛 = 𝑁)
109fveq2d 6844 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → (SymGrp‘𝑛) = (SymGrp‘𝑁))
1110fveq2d 6844 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(SymGrp‘𝑛)) = (Base‘(SymGrp‘𝑁)))
12 mdetfval.p . . . . . . . 8 𝑃 = (Base‘(SymGrp‘𝑁))
1311, 12eqtr4di 2782 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(SymGrp‘𝑛)) = 𝑃)
14 fveq2 6840 . . . . . . . . . 10 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
1514adantl 481 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → (.r𝑟) = (.r𝑅))
16 mdetfval.t . . . . . . . . 9 · = (.r𝑅)
1715, 16eqtr4di 2782 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (.r𝑟) = · )
188fveq2d 6844 . . . . . . . . . . 11 ((𝑛 = 𝑁𝑟 = 𝑅) → (ℤRHom‘𝑟) = (ℤRHom‘𝑅))
19 mdetfval.y . . . . . . . . . . 11 𝑌 = (ℤRHom‘𝑅)
2018, 19eqtr4di 2782 . . . . . . . . . 10 ((𝑛 = 𝑁𝑟 = 𝑅) → (ℤRHom‘𝑟) = 𝑌)
21 fveq2 6840 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (pmSgn‘𝑛) = (pmSgn‘𝑁))
2221adantr 480 . . . . . . . . . . 11 ((𝑛 = 𝑁𝑟 = 𝑅) → (pmSgn‘𝑛) = (pmSgn‘𝑁))
23 mdetfval.s . . . . . . . . . . 11 𝑆 = (pmSgn‘𝑁)
2422, 23eqtr4di 2782 . . . . . . . . . 10 ((𝑛 = 𝑁𝑟 = 𝑅) → (pmSgn‘𝑛) = 𝑆)
2520, 24coeq12d 5818 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → ((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛)) = (𝑌𝑆))
2625fveq1d 6842 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝) = ((𝑌𝑆)‘𝑝))
27 fveq2 6840 . . . . . . . . . . 11 (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅))
2827adantl 481 . . . . . . . . . 10 ((𝑛 = 𝑁𝑟 = 𝑅) → (mulGrp‘𝑟) = (mulGrp‘𝑅))
29 mdetfval.u . . . . . . . . . 10 𝑈 = (mulGrp‘𝑅)
3028, 29eqtr4di 2782 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → (mulGrp‘𝑟) = 𝑈)
319mpteq1d 5192 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥)) = (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))
3230, 31oveq12d 7387 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → ((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))) = (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))
3317, 26, 32oveq123d 7390 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥)))) = (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))))
3413, 33mpteq12dv 5189 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))) = (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))
358, 34oveq12d 7387 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥)))))) = (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))))))
367, 35mpteq12dv 5189 . . . 4 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))))) = (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))))
37 df-mdet 22448 . . . 4 maDet = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))))))
386fvexi 6854 . . . . 5 𝐵 ∈ V
3938mptex 7179 . . . 4 (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))) ∈ V
4036, 37, 39ovmpoa 7524 . . 3 ((𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maDet 𝑅) = (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))))
4137reldmmpo 7503 . . . . . 6 Rel dom maDet
4241ovprc 7407 . . . . 5 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maDet 𝑅) = ∅)
43 mpt0 6642 . . . . 5 (𝑚 ∈ ∅ ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))) = ∅
4442, 43eqtr4di 2782 . . . 4 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maDet 𝑅) = (𝑚 ∈ ∅ ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))))
45 df-mat 22271 . . . . . . . . . 10 Mat = (𝑦 ∈ Fin, 𝑧 ∈ V ↦ ((𝑧 freeLMod (𝑦 × 𝑦)) sSet ⟨(.r‘ndx), (𝑧 maMul ⟨𝑦, 𝑦, 𝑦⟩)⟩))
4645reldmmpo 7503 . . . . . . . . 9 Rel dom Mat
4746ovprc 7407 . . . . . . . 8 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 Mat 𝑅) = ∅)
483, 47eqtrid 2776 . . . . . . 7 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → 𝐴 = ∅)
4948fveq2d 6844 . . . . . 6 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (Base‘𝐴) = (Base‘∅))
50 base0 17160 . . . . . 6 ∅ = (Base‘∅)
5149, 6, 503eqtr4g 2789 . . . . 5 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ∅)
5251mpteq1d 5192 . . . 4 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))) = (𝑚 ∈ ∅ ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))))
5344, 52eqtr4d 2767 . . 3 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maDet 𝑅) = (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))))
5440, 53pm2.61i 182 . 2 (𝑁 maDet 𝑅) = (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))))))
551, 54eqtri 2752 1 𝐷 = (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  c0 4292  cop 4591  cotp 4593  cmpt 5183   × cxp 5629  ccom 5635  cfv 6499  (class class class)co 7369  Fincfn 8895   sSet csts 17109  ndxcnx 17139  Basecbs 17155  .rcmulr 17197   Σg cgsu 17379  SymGrpcsymg 19275  pmSgncpsgn 19395  mulGrpcmgp 20025  ℤRHomczrh 21385   freeLMod cfrlm 21631   maMul cmmul 22253   Mat cmat 22270   maDet cmdat 22447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-1cn 11102  ax-addcl 11104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-nn 12163  df-slot 17128  df-ndx 17140  df-base 17156  df-mat 22271  df-mdet 22448
This theorem is referenced by:  mdetleib  22450  nfimdetndef  22452  mdetfval1  22453  mdet0pr  22455  mdetf  22458
  Copyright terms: Public domain W3C validator