MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetfval Structured version   Visualization version   GIF version

Theorem mdetfval 20759
Description: First substitution for the determinant definition. (Contributed by Stefan O'Rear, 9-Sep-2015.) (Revised by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
mdetfval.d 𝐷 = (𝑁 maDet 𝑅)
mdetfval.a 𝐴 = (𝑁 Mat 𝑅)
mdetfval.b 𝐵 = (Base‘𝐴)
mdetfval.p 𝑃 = (Base‘(SymGrp‘𝑁))
mdetfval.y 𝑌 = (ℤRHom‘𝑅)
mdetfval.s 𝑆 = (pmSgn‘𝑁)
mdetfval.t · = (.r𝑅)
mdetfval.u 𝑈 = (mulGrp‘𝑅)
Assertion
Ref Expression
mdetfval 𝐷 = (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))))))
Distinct variable groups:   𝐵,𝑚   𝑚,𝑝,𝑥,𝑁   𝑃,𝑚   𝑅,𝑚,𝑝,𝑥   𝑆,𝑚   · ,𝑚   𝑈,𝑚   𝑚,𝑌
Allowed substitution hints:   𝐴(𝑥,𝑚,𝑝)   𝐵(𝑥,𝑝)   𝐷(𝑥,𝑚,𝑝)   𝑃(𝑥,𝑝)   𝑆(𝑥,𝑝)   · (𝑥,𝑝)   𝑈(𝑥,𝑝)   𝑌(𝑥,𝑝)

Proof of Theorem mdetfval
Dummy variables 𝑦 𝑧 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdetfval.d . 2 𝐷 = (𝑁 maDet 𝑅)
2 oveq12 6913 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = (𝑁 Mat 𝑅))
3 mdetfval.a . . . . . . . 8 𝐴 = (𝑁 Mat 𝑅)
42, 3syl6eqr 2878 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = 𝐴)
54fveq2d 6436 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = (Base‘𝐴))
6 mdetfval.b . . . . . 6 𝐵 = (Base‘𝐴)
75, 6syl6eqr 2878 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = 𝐵)
8 simpr 479 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑟 = 𝑅)
9 simpl 476 . . . . . . . . . 10 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑛 = 𝑁)
109fveq2d 6436 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → (SymGrp‘𝑛) = (SymGrp‘𝑁))
1110fveq2d 6436 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(SymGrp‘𝑛)) = (Base‘(SymGrp‘𝑁)))
12 mdetfval.p . . . . . . . 8 𝑃 = (Base‘(SymGrp‘𝑁))
1311, 12syl6eqr 2878 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(SymGrp‘𝑛)) = 𝑃)
14 fveq2 6432 . . . . . . . . . 10 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
1514adantl 475 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → (.r𝑟) = (.r𝑅))
16 mdetfval.t . . . . . . . . 9 · = (.r𝑅)
1715, 16syl6eqr 2878 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (.r𝑟) = · )
188fveq2d 6436 . . . . . . . . . . 11 ((𝑛 = 𝑁𝑟 = 𝑅) → (ℤRHom‘𝑟) = (ℤRHom‘𝑅))
19 mdetfval.y . . . . . . . . . . 11 𝑌 = (ℤRHom‘𝑅)
2018, 19syl6eqr 2878 . . . . . . . . . 10 ((𝑛 = 𝑁𝑟 = 𝑅) → (ℤRHom‘𝑟) = 𝑌)
21 fveq2 6432 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (pmSgn‘𝑛) = (pmSgn‘𝑁))
2221adantr 474 . . . . . . . . . . 11 ((𝑛 = 𝑁𝑟 = 𝑅) → (pmSgn‘𝑛) = (pmSgn‘𝑁))
23 mdetfval.s . . . . . . . . . . 11 𝑆 = (pmSgn‘𝑁)
2422, 23syl6eqr 2878 . . . . . . . . . 10 ((𝑛 = 𝑁𝑟 = 𝑅) → (pmSgn‘𝑛) = 𝑆)
2520, 24coeq12d 5518 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → ((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛)) = (𝑌𝑆))
2625fveq1d 6434 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝) = ((𝑌𝑆)‘𝑝))
27 fveq2 6432 . . . . . . . . . . 11 (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅))
2827adantl 475 . . . . . . . . . 10 ((𝑛 = 𝑁𝑟 = 𝑅) → (mulGrp‘𝑟) = (mulGrp‘𝑅))
29 mdetfval.u . . . . . . . . . 10 𝑈 = (mulGrp‘𝑅)
3028, 29syl6eqr 2878 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → (mulGrp‘𝑟) = 𝑈)
319mpteq1d 4960 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥)) = (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))
3230, 31oveq12d 6922 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → ((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))) = (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))
3317, 26, 32oveq123d 6925 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥)))) = (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))))
3413, 33mpteq12dv 4955 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))) = (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))
358, 34oveq12d 6922 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥)))))) = (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))))))
367, 35mpteq12dv 4955 . . . 4 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))))) = (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))))
37 df-mdet 20758 . . . 4 maDet = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))))))
386fvexi 6446 . . . . 5 𝐵 ∈ V
3938mptex 6741 . . . 4 (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))) ∈ V
4036, 37, 39ovmpt2a 7050 . . 3 ((𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maDet 𝑅) = (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))))
4137reldmmpt2 7030 . . . . . 6 Rel dom maDet
4241ovprc 6941 . . . . 5 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maDet 𝑅) = ∅)
43 mpt0 6253 . . . . 5 (𝑚 ∈ ∅ ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))) = ∅
4442, 43syl6eqr 2878 . . . 4 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maDet 𝑅) = (𝑚 ∈ ∅ ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))))
45 df-mat 20580 . . . . . . . . . 10 Mat = (𝑦 ∈ Fin, 𝑧 ∈ V ↦ ((𝑧 freeLMod (𝑦 × 𝑦)) sSet ⟨(.r‘ndx), (𝑧 maMul ⟨𝑦, 𝑦, 𝑦⟩)⟩))
4645reldmmpt2 7030 . . . . . . . . 9 Rel dom Mat
4746ovprc 6941 . . . . . . . 8 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 Mat 𝑅) = ∅)
483, 47syl5eq 2872 . . . . . . 7 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → 𝐴 = ∅)
4948fveq2d 6436 . . . . . 6 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (Base‘𝐴) = (Base‘∅))
50 base0 16274 . . . . . 6 ∅ = (Base‘∅)
5149, 6, 503eqtr4g 2885 . . . . 5 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ∅)
5251mpteq1d 4960 . . . 4 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))) = (𝑚 ∈ ∅ ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))))
5344, 52eqtr4d 2863 . . 3 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maDet 𝑅) = (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))))
5440, 53pm2.61i 177 . 2 (𝑁 maDet 𝑅) = (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))))))
551, 54eqtri 2848 1 𝐷 = (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 386   = wceq 1658  wcel 2166  Vcvv 3413  c0 4143  cop 4402  cotp 4404  cmpt 4951   × cxp 5339  ccom 5345  cfv 6122  (class class class)co 6904  Fincfn 8221  ndxcnx 16218   sSet csts 16219  Basecbs 16221  .rcmulr 16305   Σg cgsu 16453  SymGrpcsymg 18146  pmSgncpsgn 18258  mulGrpcmgp 18842  ℤRHomczrh 20207   freeLMod cfrlm 20452   maMul cmmul 20555   Mat cmat 20579   maDet cmdat 20757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-rep 4993  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-ral 3121  df-rex 3122  df-reu 3123  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-nul 4144  df-if 4306  df-sn 4397  df-pr 4399  df-op 4403  df-uni 4658  df-iun 4741  df-br 4873  df-opab 4935  df-mpt 4952  df-id 5249  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-slot 16225  df-base 16227  df-mat 20580  df-mdet 20758
This theorem is referenced by:  mdetleib  20760  nfimdetndef  20762  mdetfval1  20763  mdet0pr  20765  mdetf  20768
  Copyright terms: Public domain W3C validator