MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetfval Structured version   Visualization version   GIF version

Theorem mdetfval 22501
Description: First substitution for the determinant definition. (Contributed by Stefan O'Rear, 9-Sep-2015.) (Revised by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
mdetfval.d 𝐷 = (𝑁 maDet 𝑅)
mdetfval.a 𝐴 = (𝑁 Mat 𝑅)
mdetfval.b 𝐵 = (Base‘𝐴)
mdetfval.p 𝑃 = (Base‘(SymGrp‘𝑁))
mdetfval.y 𝑌 = (ℤRHom‘𝑅)
mdetfval.s 𝑆 = (pmSgn‘𝑁)
mdetfval.t · = (.r𝑅)
mdetfval.u 𝑈 = (mulGrp‘𝑅)
Assertion
Ref Expression
mdetfval 𝐷 = (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))))))
Distinct variable groups:   𝐵,𝑚   𝑚,𝑝,𝑥,𝑁   𝑃,𝑚   𝑅,𝑚,𝑝,𝑥   𝑆,𝑚   · ,𝑚   𝑈,𝑚   𝑚,𝑌
Allowed substitution hints:   𝐴(𝑥,𝑚,𝑝)   𝐵(𝑥,𝑝)   𝐷(𝑥,𝑚,𝑝)   𝑃(𝑥,𝑝)   𝑆(𝑥,𝑝)   · (𝑥,𝑝)   𝑈(𝑥,𝑝)   𝑌(𝑥,𝑝)

Proof of Theorem mdetfval
Dummy variables 𝑦 𝑧 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdetfval.d . 2 𝐷 = (𝑁 maDet 𝑅)
2 oveq12 7355 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = (𝑁 Mat 𝑅))
3 mdetfval.a . . . . . . . 8 𝐴 = (𝑁 Mat 𝑅)
42, 3eqtr4di 2784 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = 𝐴)
54fveq2d 6826 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = (Base‘𝐴))
6 mdetfval.b . . . . . 6 𝐵 = (Base‘𝐴)
75, 6eqtr4di 2784 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = 𝐵)
8 simpr 484 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑟 = 𝑅)
9 simpl 482 . . . . . . . . . 10 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑛 = 𝑁)
109fveq2d 6826 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → (SymGrp‘𝑛) = (SymGrp‘𝑁))
1110fveq2d 6826 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(SymGrp‘𝑛)) = (Base‘(SymGrp‘𝑁)))
12 mdetfval.p . . . . . . . 8 𝑃 = (Base‘(SymGrp‘𝑁))
1311, 12eqtr4di 2784 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(SymGrp‘𝑛)) = 𝑃)
14 fveq2 6822 . . . . . . . . . 10 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
1514adantl 481 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → (.r𝑟) = (.r𝑅))
16 mdetfval.t . . . . . . . . 9 · = (.r𝑅)
1715, 16eqtr4di 2784 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (.r𝑟) = · )
188fveq2d 6826 . . . . . . . . . . 11 ((𝑛 = 𝑁𝑟 = 𝑅) → (ℤRHom‘𝑟) = (ℤRHom‘𝑅))
19 mdetfval.y . . . . . . . . . . 11 𝑌 = (ℤRHom‘𝑅)
2018, 19eqtr4di 2784 . . . . . . . . . 10 ((𝑛 = 𝑁𝑟 = 𝑅) → (ℤRHom‘𝑟) = 𝑌)
21 fveq2 6822 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (pmSgn‘𝑛) = (pmSgn‘𝑁))
2221adantr 480 . . . . . . . . . . 11 ((𝑛 = 𝑁𝑟 = 𝑅) → (pmSgn‘𝑛) = (pmSgn‘𝑁))
23 mdetfval.s . . . . . . . . . . 11 𝑆 = (pmSgn‘𝑁)
2422, 23eqtr4di 2784 . . . . . . . . . 10 ((𝑛 = 𝑁𝑟 = 𝑅) → (pmSgn‘𝑛) = 𝑆)
2520, 24coeq12d 5803 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → ((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛)) = (𝑌𝑆))
2625fveq1d 6824 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝) = ((𝑌𝑆)‘𝑝))
27 fveq2 6822 . . . . . . . . . . 11 (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅))
2827adantl 481 . . . . . . . . . 10 ((𝑛 = 𝑁𝑟 = 𝑅) → (mulGrp‘𝑟) = (mulGrp‘𝑅))
29 mdetfval.u . . . . . . . . . 10 𝑈 = (mulGrp‘𝑅)
3028, 29eqtr4di 2784 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → (mulGrp‘𝑟) = 𝑈)
319mpteq1d 5179 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥)) = (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))
3230, 31oveq12d 7364 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → ((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))) = (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))
3317, 26, 32oveq123d 7367 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥)))) = (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))))
3413, 33mpteq12dv 5176 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))) = (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))
358, 34oveq12d 7364 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥)))))) = (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))))))
367, 35mpteq12dv 5176 . . . 4 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))))) = (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))))
37 df-mdet 22500 . . . 4 maDet = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))))))
386fvexi 6836 . . . . 5 𝐵 ∈ V
3938mptex 7157 . . . 4 (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))) ∈ V
4036, 37, 39ovmpoa 7501 . . 3 ((𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maDet 𝑅) = (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))))
4137reldmmpo 7480 . . . . . 6 Rel dom maDet
4241ovprc 7384 . . . . 5 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maDet 𝑅) = ∅)
43 mpt0 6623 . . . . 5 (𝑚 ∈ ∅ ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))) = ∅
4442, 43eqtr4di 2784 . . . 4 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maDet 𝑅) = (𝑚 ∈ ∅ ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))))
45 df-mat 22323 . . . . . . . . . 10 Mat = (𝑦 ∈ Fin, 𝑧 ∈ V ↦ ((𝑧 freeLMod (𝑦 × 𝑦)) sSet ⟨(.r‘ndx), (𝑧 maMul ⟨𝑦, 𝑦, 𝑦⟩)⟩))
4645reldmmpo 7480 . . . . . . . . 9 Rel dom Mat
4746ovprc 7384 . . . . . . . 8 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 Mat 𝑅) = ∅)
483, 47eqtrid 2778 . . . . . . 7 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → 𝐴 = ∅)
4948fveq2d 6826 . . . . . 6 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (Base‘𝐴) = (Base‘∅))
50 base0 17125 . . . . . 6 ∅ = (Base‘∅)
5149, 6, 503eqtr4g 2791 . . . . 5 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ∅)
5251mpteq1d 5179 . . . 4 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))) = (𝑚 ∈ ∅ ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))))
5344, 52eqtr4d 2769 . . 3 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maDet 𝑅) = (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))))
5440, 53pm2.61i 182 . 2 (𝑁 maDet 𝑅) = (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))))))
551, 54eqtri 2754 1 𝐷 = (𝑚𝐵 ↦ (𝑅 Σg (𝑝𝑃 ↦ (((𝑌𝑆)‘𝑝) · (𝑈 Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  c0 4280  cop 4579  cotp 4581  cmpt 5170   × cxp 5612  ccom 5618  cfv 6481  (class class class)co 7346  Fincfn 8869   sSet csts 17074  ndxcnx 17104  Basecbs 17120  .rcmulr 17162   Σg cgsu 17344  SymGrpcsymg 19281  pmSgncpsgn 19401  mulGrpcmgp 20058  ℤRHomczrh 21436   freeLMod cfrlm 21683   maMul cmmul 22305   Mat cmat 22322   maDet cmdat 22499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-1cn 11064  ax-addcl 11066
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-nn 12126  df-slot 17093  df-ndx 17105  df-base 17121  df-mat 22323  df-mdet 22500
This theorem is referenced by:  mdetleib  22502  nfimdetndef  22504  mdetfval1  22505  mdet0pr  22507  mdetf  22510
  Copyright terms: Public domain W3C validator