Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  matbas0 Structured version   Visualization version   GIF version

Theorem matbas0 21025
 Description: There is no matrix for a not finite dimension or a proper class as the underlying ring. (Contributed by AV, 28-Dec-2018.)
Assertion
Ref Expression
matbas0 (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘(𝑁 Mat 𝑅)) = ∅)

Proof of Theorem matbas0
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mat 21023 . . . 4 Mat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ ((𝑟 freeLMod (𝑛 × 𝑛)) sSet ⟨(.r‘ndx), (𝑟 maMul ⟨𝑛, 𝑛, 𝑛⟩)⟩))
21mpondm0 7368 . . 3 (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑁 Mat 𝑅) = ∅)
32fveq2d 6650 . 2 (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘(𝑁 Mat 𝑅)) = (Base‘∅))
4 base0 16531 . 2 ∅ = (Base‘∅)
53, 4eqtr4di 2851 1 (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘(𝑁 Mat 𝑅)) = ∅)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  Vcvv 3441  ∅c0 4243  ⟨cop 4531  ⟨cotp 4533   × cxp 5518  ‘cfv 6325  (class class class)co 7136  Fincfn 8495  ndxcnx 16475   sSet csts 16476  Basecbs 16478  .rcmulr 16561   freeLMod cfrlm 20440   maMul cmmul 21000   Mat cmat 21022 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5426  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-iota 6284  df-fun 6327  df-fv 6333  df-ov 7139  df-oprab 7140  df-mpo 7141  df-slot 16482  df-base 16484  df-mat 21023 This theorem is referenced by:  nfimdetndef  21204  mdetfval1  21205
 Copyright terms: Public domain W3C validator