| Metamath
Proof Explorer Theorem List (p. 222 of 494) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30937) |
(30938-32460) |
(32461-49324) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | psrbagev1 22101* | A bag of multipliers provides the conditions for a valid sum. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 18-Jul-2019.) (Revised by AV, 11-Apr-2024.) Remove a sethood hypothesis. (Revised by SN, 7-Aug-2024.) |
| ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ 𝐶 = (Base‘𝑇) & ⊢ · = (.g‘𝑇) & ⊢ 0 = (0g‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ CMnd) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) ⇒ ⊢ (𝜑 → ((𝐵 ∘f · 𝐺):𝐼⟶𝐶 ∧ (𝐵 ∘f · 𝐺) finSupp 0 )) | ||
| Theorem | psrbagev2 22102* | Closure of a sum using a bag of multipliers. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Proof shortened by AV, 18-Jul-2019.) (Revised by AV, 11-Apr-2024.) Remove a sethood hypothesis. (Revised by SN, 7-Aug-2024.) |
| ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ 𝐶 = (Base‘𝑇) & ⊢ · = (.g‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ CMnd) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) ⇒ ⊢ (𝜑 → (𝑇 Σg (𝐵 ∘f · 𝐺)) ∈ 𝐶) | ||
| Theorem | evlslem2 22103* | A linear function on the polynomial ring which is multiplicative on scaled monomials is generally multiplicative. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 11-Apr-2024.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ · = (.r‘𝑆) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝐸 ∈ (𝑃 GrpHom 𝑆)) & ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷))) → (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = (𝑗 ∘f + 𝑖), ((𝑥‘𝑗)(.r‘𝑅)(𝑦‘𝑖)), 0 ))) = ((𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) · (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) ⇒ ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘(𝑥(.r‘𝑃)𝑦)) = ((𝐸‘𝑥) · (𝐸‘𝑦))) | ||
| Theorem | evlslem3 22104* | Lemma for evlseu 22107. Polynomial evaluation of a scaled monomial. (Contributed by Stefan O'Rear, 8-Mar-2015.) (Revised by AV, 11-Apr-2024.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ 𝑇 = (mulGrp‘𝑆) & ⊢ ↑ = (.g‘𝑇) & ⊢ · = (.r‘𝑆) & ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ 𝐸 = (𝑝 ∈ 𝐵 ↦ (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑝‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))))) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) & ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝐴 ∈ 𝐷) & ⊢ (𝜑 → 𝐻 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝐸‘(𝑥 ∈ 𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))) = ((𝐹‘𝐻) · (𝑇 Σg (𝐴 ∘f ↑ 𝐺)))) | ||
| Theorem | evlslem6 22105* | Lemma for evlseu 22107. Finiteness and consistency of the top-level sum. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 26-Jul-2019.) (Revised by AV, 11-Apr-2024.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ 𝑇 = (mulGrp‘𝑆) & ⊢ ↑ = (.g‘𝑇) & ⊢ · = (.r‘𝑆) & ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ 𝐸 = (𝑝 ∈ 𝐵 ↦ (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑝‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))))) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) & ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))):𝐷⟶𝐶 ∧ (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) finSupp (0g‘𝑆))) | ||
| Theorem | evlslem1 22106* | Lemma for evlseu 22107, give a formula for (the unique) polynomial evaluation homomorphism. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Proof shortened by AV, 26-Jul-2019.) (Revised by AV, 11-Apr-2024.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ 𝑇 = (mulGrp‘𝑆) & ⊢ ↑ = (.g‘𝑇) & ⊢ · = (.r‘𝑆) & ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ 𝐸 = (𝑝 ∈ 𝐵 ↦ (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑝‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))))) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) & ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) & ⊢ 𝐴 = (algSc‘𝑃) ⇒ ⊢ (𝜑 → (𝐸 ∈ (𝑃 RingHom 𝑆) ∧ (𝐸 ∘ 𝐴) = 𝐹 ∧ (𝐸 ∘ 𝑉) = 𝐺)) | ||
| Theorem | evlseu 22107* | For a given interpretation of the variables 𝐺 and of the scalars 𝐹, this extends to a homomorphic interpretation of the polynomial ring in exactly one way. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 11-Apr-2024.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) & ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) ⇒ ⊢ (𝜑 → ∃!𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚 ∘ 𝐴) = 𝐹 ∧ (𝑚 ∘ 𝑉) = 𝐺)) | ||
| Theorem | reldmevls 22108 | Well-behaved binary operation property of evalSub. (Contributed by Stefan O'Rear, 19-Mar-2015.) |
| ⊢ Rel dom evalSub | ||
| Theorem | mpfrcl 22109 | Reverse closure for the set of polynomial functions. (Contributed by Stefan O'Rear, 19-Mar-2015.) |
| ⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) ⇒ ⊢ (𝑋 ∈ 𝑄 → (𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆))) | ||
| Theorem | evlsval 22110* | Value of the polynomial evaluation map function. (Contributed by Stefan O'Rear, 11-Mar-2015.) (Revised by AV, 18-Sep-2021.) |
| ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ 𝑊 = (𝐼 mPoly 𝑈) & ⊢ 𝑉 = (𝐼 mVar 𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝑇 = (𝑆 ↑s (𝐵 ↑m 𝐼)) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝑋 = (𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) & ⊢ 𝑌 = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑥))) ⇒ ⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 = (℩𝑓 ∈ (𝑊 RingHom 𝑇)((𝑓 ∘ 𝐴) = 𝑋 ∧ (𝑓 ∘ 𝑉) = 𝑌))) | ||
| Theorem | evlsval2 22111* | Characterizing properties of the polynomial evaluation map function. (Contributed by Stefan O'Rear, 12-Mar-2015.) (Revised by AV, 18-Sep-2021.) |
| ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ 𝑊 = (𝐼 mPoly 𝑈) & ⊢ 𝑉 = (𝐼 mVar 𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝑇 = (𝑆 ↑s (𝐵 ↑m 𝐼)) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝑋 = (𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) & ⊢ 𝑌 = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑥))) ⇒ ⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑄 ∈ (𝑊 RingHom 𝑇) ∧ ((𝑄 ∘ 𝐴) = 𝑋 ∧ (𝑄 ∘ 𝑉) = 𝑌))) | ||
| Theorem | evlsrhm 22112 | Polynomial evaluation is a homomorphism (into the product ring). (Contributed by Stefan O'Rear, 12-Mar-2015.) |
| ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ 𝑊 = (𝐼 mPoly 𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝑇 = (𝑆 ↑s (𝐵 ↑m 𝐼)) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom 𝑇)) | ||
| Theorem | evlssca 22113 | Polynomial evaluation maps scalars to constant functions. (Contributed by Stefan O'Rear, 13-Mar-2015.) (Proof shortened by AV, 18-Sep-2021.) |
| ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ 𝑊 = (𝐼 mPoly 𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐴 = (algSc‘𝑊) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝑅) ⇒ ⊢ (𝜑 → (𝑄‘(𝐴‘𝑋)) = ((𝐵 ↑m 𝐼) × {𝑋})) | ||
| Theorem | evlsvar 22114* | Polynomial evaluation maps variables to projections. (Contributed by Stefan O'Rear, 12-Mar-2015.) (Proof shortened by AV, 18-Sep-2021.) |
| ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ 𝑉 = (𝐼 mVar 𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝑄‘(𝑉‘𝑋)) = (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑋))) | ||
| Theorem | evlsgsumadd 22115* | Polynomial evaluation maps (additive) group sums to group sums. (Contributed by SN, 13-Feb-2024.) |
| ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ 𝑊 = (𝐼 mPoly 𝑈) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝑃 = (𝑆 ↑s (𝐾 ↑m 𝐼)) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑁 ⊆ ℕ0) & ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ 𝑌) finSupp 0 ) ⇒ ⊢ (𝜑 → (𝑄‘(𝑊 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝑃 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌)))) | ||
| Theorem | evlsgsummul 22116* | Polynomial evaluation maps (multiplicative) group sums to group sums. (Contributed by SN, 13-Feb-2024.) |
| ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ 𝑊 = (𝐼 mPoly 𝑈) & ⊢ 𝐺 = (mulGrp‘𝑊) & ⊢ 1 = (1r‘𝑊) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝑃 = (𝑆 ↑s (𝐾 ↑m 𝐼)) & ⊢ 𝐻 = (mulGrp‘𝑃) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑁 ⊆ ℕ0) & ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ 𝑌) finSupp 1 ) ⇒ ⊢ (𝜑 → (𝑄‘(𝐺 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝐻 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌)))) | ||
| Theorem | evlspw 22117 | Polynomial evaluation for subrings maps the exponentiation of a polynomial to the exponentiation of the evaluated polynomial. (Contributed by SN, 29-Feb-2024.) |
| ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ 𝑊 = (𝐼 mPoly 𝑈) & ⊢ 𝐺 = (mulGrp‘𝑊) & ⊢ ↑ = (.g‘𝐺) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝑃 = (𝑆 ↑s (𝐾 ↑m 𝐼)) & ⊢ 𝐻 = (mulGrp‘𝑃) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑄‘(𝑁 ↑ 𝑋)) = (𝑁(.g‘𝐻)(𝑄‘𝑋))) | ||
| Theorem | evlsvarpw 22118 | Polynomial evaluation for subrings maps the exponentiation of a variable to the exponentiation of the evaluated variable. (Contributed by SN, 21-Feb-2024.) |
| ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ 𝑊 = (𝐼 mPoly 𝑈) & ⊢ 𝐺 = (mulGrp‘𝑊) & ⊢ ↑ = (.g‘𝐺) & ⊢ 𝑋 = ((𝐼 mVar 𝑈)‘𝑌) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝑃 = (𝑆 ↑s (𝐵 ↑m 𝐼)) & ⊢ 𝐻 = (mulGrp‘𝑃) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝐼) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑄‘(𝑁 ↑ 𝑋)) = (𝑁(.g‘𝐻)(𝑄‘𝑋))) | ||
| Theorem | evlval 22119 | Value of the simple/same ring evaluation map. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝑄 = (𝐼 eval 𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ 𝑄 = ((𝐼 evalSub 𝑅)‘𝐵) | ||
| Theorem | evlrhm 22120 | The simple evaluation map is a ring homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝑄 = (𝐼 eval 𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑊 = (𝐼 mPoly 𝑅) & ⊢ 𝑇 = (𝑅 ↑s (𝐵 ↑m 𝐼)) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) → 𝑄 ∈ (𝑊 RingHom 𝑇)) | ||
| Theorem | evlsscasrng 22121 | The evaluation of a scalar of a subring yields the same result as evaluated as a scalar over the ring itself. (Contributed by AV, 12-Sep-2019.) |
| ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ 𝑂 = (𝐼 eval 𝑆) & ⊢ 𝑊 = (𝐼 mPoly 𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑆) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝐶 = (algSc‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝑅) ⇒ ⊢ (𝜑 → (𝑄‘(𝐴‘𝑋)) = (𝑂‘(𝐶‘𝑋))) | ||
| Theorem | evlsca 22122 | Simple polynomial evaluation maps scalars to constant functions. (Contributed by AV, 12-Sep-2019.) |
| ⊢ 𝑄 = (𝐼 eval 𝑆) & ⊢ 𝑊 = (𝐼 mPoly 𝑆) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐴 = (algSc‘𝑊) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑄‘(𝐴‘𝑋)) = ((𝐵 ↑m 𝐼) × {𝑋})) | ||
| Theorem | evlsvarsrng 22123 | The evaluation of the variable of polynomials over subring yields the same result as evaluated as variable of the polynomials over the ring itself. (Contributed by AV, 12-Sep-2019.) |
| ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ 𝑂 = (𝐼 eval 𝑆) & ⊢ 𝑉 = (𝐼 mVar 𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝐼 ∈ 𝐴) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝑄‘(𝑉‘𝑋)) = (𝑂‘(𝑉‘𝑋))) | ||
| Theorem | evlvar 22124* | Simple polynomial evaluation maps variables to projections. (Contributed by AV, 12-Sep-2019.) |
| ⊢ 𝑄 = (𝐼 eval 𝑆) & ⊢ 𝑉 = (𝐼 mVar 𝑆) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝑄‘(𝑉‘𝑋)) = (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑋))) | ||
| Theorem | mpfconst 22125 | Constants are multivariate polynomial functions. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝑅) ⇒ ⊢ (𝜑 → ((𝐵 ↑m 𝐼) × {𝑋}) ∈ 𝑄) | ||
| Theorem | mpfproj 22126* | Projections are multivariate polynomial functions. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝐽 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝑓 ∈ (𝐵 ↑m 𝐼) ↦ (𝑓‘𝐽)) ∈ 𝑄) | ||
| Theorem | mpfsubrg 22127 | Polynomial functions are a subring. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.) (Revised by AV, 19-Sep-2021.) |
| ⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (SubRing‘(𝑆 ↑s ((Base‘𝑆) ↑m 𝐼)))) | ||
| Theorem | mpff 22128 | Polynomial functions are functions. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ 𝑄 → 𝐹:(𝐵 ↑m 𝐼)⟶𝐵) | ||
| Theorem | mpfaddcl 22129 | The sum of multivariate polynomial functions. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ + = (+g‘𝑆) ⇒ ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹 ∘f + 𝐺) ∈ 𝑄) | ||
| Theorem | mpfmulcl 22130 | The product of multivariate polynomial functions. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ · = (.r‘𝑆) ⇒ ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹 ∘f · 𝐺) ∈ 𝑄) | ||
| Theorem | mpfind 22131* | Prove a property of polynomials by "structural" induction, under a simplified model of structure which loses the sum of products structure. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ 𝐵 = (Base‘𝑆) & ⊢ + = (+g‘𝑆) & ⊢ · = (.r‘𝑆) & ⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ ((𝜑 ∧ ((𝑓 ∈ 𝑄 ∧ 𝜏) ∧ (𝑔 ∈ 𝑄 ∧ 𝜂))) → 𝜁) & ⊢ ((𝜑 ∧ ((𝑓 ∈ 𝑄 ∧ 𝜏) ∧ (𝑔 ∈ 𝑄 ∧ 𝜂))) → 𝜎) & ⊢ (𝑥 = ((𝐵 ↑m 𝐼) × {𝑓}) → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑓)) → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = 𝑓 → (𝜓 ↔ 𝜏)) & ⊢ (𝑥 = 𝑔 → (𝜓 ↔ 𝜂)) & ⊢ (𝑥 = (𝑓 ∘f + 𝑔) → (𝜓 ↔ 𝜁)) & ⊢ (𝑥 = (𝑓 ∘f · 𝑔) → (𝜓 ↔ 𝜎)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜌)) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑅) → 𝜒) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐼) → 𝜃) & ⊢ (𝜑 → 𝐴 ∈ 𝑄) ⇒ ⊢ (𝜑 → 𝜌) | ||
| Syntax | cslv 22132 | Select a subset of variables in a multivariate polynomial. |
| class selectVars | ||
| Syntax | cmhp 22133 | Multivariate polynomials. |
| class mHomP | ||
| Syntax | cpsd 22134 | Power series partial derivative function. |
| class mPSDer | ||
| Syntax | cai 22135 | Algebraically independent. |
| class AlgInd | ||
| Definition | df-selv 22136* | Define the "variable selection" function. The function ((𝐼 selectVars 𝑅)‘𝐽) maps elements of (𝐼 mPoly 𝑅) bijectively onto (𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)) in the natural way, for example if 𝐼 = {𝑥, 𝑦} and 𝐽 = {𝑦} it would map 1 + 𝑥 + 𝑦 + 𝑥𝑦 ∈ ({𝑥, 𝑦} mPoly ℤ) to (1 + 𝑥) + (1 + 𝑥)𝑦 ∈ ({𝑦} mPoly ({𝑥} mPoly ℤ)). This, for example, allows one to treat a multivariate polynomial as a univariate polynomial with coefficients in a polynomial ring with one less variable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ selectVars = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ ⦋((𝑖 ∖ 𝑗) mPoly 𝑟) / 𝑢⦌⦋(𝑗 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝑖 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥)))))))) | ||
| Theorem | selvffval 22137* | Value of the "variable selection" function. (Contributed by SN, 4-Nov-2023.) |
| ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐼 selectVars 𝑅) = (𝑗 ∈ 𝒫 𝐼 ↦ (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ⦋((𝐼 ∖ 𝑗) mPoly 𝑅) / 𝑢⦌⦋(𝑗 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝑗) mVar 𝑅)‘𝑥)))))))) | ||
| Theorem | selvfval 22138* | Value of the "variable selection" function. (Contributed by SN, 4-Nov-2023.) |
| ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ (𝜑 → 𝐽 ⊆ 𝐼) ⇒ ⊢ (𝜑 → ((𝐼 selectVars 𝑅)‘𝐽) = (𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ↦ ⦋((𝐼 ∖ 𝐽) mPoly 𝑅) / 𝑢⦌⦋(𝐽 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝐼 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑢)‘𝑥), (𝑐‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))))) | ||
| Theorem | selvval 22139* | Value of the "variable selection" function. (Contributed by SN, 4-Nov-2023.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑈 = ((𝐼 ∖ 𝐽) mPoly 𝑅) & ⊢ 𝑇 = (𝐽 mPoly 𝑈) & ⊢ 𝐶 = (algSc‘𝑇) & ⊢ 𝐷 = (𝐶 ∘ (algSc‘𝑈)) & ⊢ (𝜑 → 𝐽 ⊆ 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) | ||
| Definition | df-mhp 22140* | Define the subspaces of order- 𝑛 homogeneous polynomials. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ mHomP = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g‘𝑟)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛}})) | ||
| Theorem | reldmmhp 22141 | The domain of the homogeneous polynomial operator is a relation. (Contributed by SN, 18-May-2025.) |
| ⊢ Rel dom mHomP | ||
| Theorem | mhpfval 22142* | Value of the "homogeneous polynomial" operator. (Contributed by Steven Nguyen, 25-Aug-2023.) |
| ⊢ 𝐻 = (𝐼 mHomP 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐻 = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛}})) | ||
| Theorem | mhpval 22143* | Value of the "homogeneous polynomial" function. (Contributed by Steven Nguyen, 25-Aug-2023.) |
| ⊢ 𝐻 = (𝐼 mHomP 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐻‘𝑁) = {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}}) | ||
| Theorem | ismhp 22144* | Property of being a homogeneous polynomial. (Contributed by Steven Nguyen, 25-Aug-2023.) |
| ⊢ 𝐻 = (𝐼 mHomP 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝐻‘𝑁) ↔ (𝑋 ∈ 𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}))) | ||
| Theorem | ismhp2 22145* | Deduce a homogeneous polynomial from its properties. (Contributed by SN, 25-May-2024.) |
| ⊢ 𝐻 = (𝐼 mHomP 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) ⇒ ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) | ||
| Theorem | ismhp3 22146* | A polynomial is homogeneous iff the degree of every nonzero term is the same. (Contributed by SN, 22-Jul-2024.) |
| ⊢ 𝐻 = (𝐼 mHomP 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝐻‘𝑁) ↔ ∀𝑑 ∈ 𝐷 ((𝑋‘𝑑) ≠ 0 → ((ℂfld ↾s ℕ0) Σg 𝑑) = 𝑁))) | ||
| Theorem | mhprcl 22147 | Reverse closure for homogeneous polynomials, use elfvov1 7473 and elfvov2 7474 with reldmmhp 22141 for the reverse closure of 𝐼 and 𝑅. (Contributed by SN, 4-Aug-2025.) |
| ⊢ 𝐻 = (𝐼 mHomP 𝑅) & ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) ⇒ ⊢ (𝜑 → 𝑁 ∈ ℕ0) | ||
| Theorem | mhpmpl 22148 | A homogeneous polynomial is a polynomial. (Contributed by Steven Nguyen, 25-Aug-2023.) |
| ⊢ 𝐻 = (𝐼 mHomP 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝐵) | ||
| Theorem | mhpdeg 22149* | All nonzero terms of a homogeneous polynomial have degree 𝑁. (Contributed by Steven Nguyen, 25-Aug-2023.) |
| ⊢ 𝐻 = (𝐼 mHomP 𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) ⇒ ⊢ (𝜑 → (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) | ||
| Theorem | mhp0cl 22150* | The zero polynomial is homogeneous. Under df-mhp 22140, it has any (nonnegative integer) degree which loosely corresponds to the value "undefined". The values -∞ and 0 are also used in Metamath (by df-mdeg 26094 and df-dgr 26230 respectively) and the literature: https://math.stackexchange.com/a/1796314/593843 26230. (Contributed by SN, 12-Sep-2023.) |
| ⊢ 𝐻 = (𝐼 mHomP 𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Grp) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐷 × { 0 }) ∈ (𝐻‘𝑁)) | ||
| Theorem | mhpsclcl 22151 | A scalar (or constant) polynomial has degree 0. Compare deg1scl 26152. In other contexts, there may be an exception for the zero polynomial, but under df-mhp 22140 the zero polynomial can be any degree (see mhp0cl 22150) so there is no exception. (Contributed by SN, 25-May-2024.) |
| ⊢ 𝐻 = (𝐼 mHomP 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝐴‘𝐶) ∈ (𝐻‘0)) | ||
| Theorem | mhpvarcl 22152 | A power series variable is a polynomial of degree 1. (Contributed by SN, 25-May-2024.) |
| ⊢ 𝐻 = (𝐼 mHomP 𝑅) & ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝑉‘𝑋) ∈ (𝐻‘1)) | ||
| Theorem | mhpmulcl 22153 | A product of homogeneous polynomials is a homogeneous polynomial whose degree is the sum of the degrees of the factors. Compare mdegmulle2 26118 (which shows less-than-or-equal instead of equal). (Contributed by SN, 22-Jul-2024.) Remove closure hypotheses. (Revised by SN, 4-Sep-2025.) |
| ⊢ 𝐻 = (𝐼 mHomP 𝑅) & ⊢ 𝑌 = (𝐼 mPoly 𝑅) & ⊢ · = (.r‘𝑌) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑃 ∈ (𝐻‘𝑀)) & ⊢ (𝜑 → 𝑄 ∈ (𝐻‘𝑁)) ⇒ ⊢ (𝜑 → (𝑃 · 𝑄) ∈ (𝐻‘(𝑀 + 𝑁))) | ||
| Theorem | mhppwdeg 22154 | Degree of a homogeneous polynomial raised to a power. General version of deg1pw 26160. (Contributed by SN, 26-Jul-2024.) Remove closure hypotheses. (Revised by SN, 4-Sep-2025.) |
| ⊢ 𝐻 = (𝐼 mHomP 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑇 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑇) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑀)) ⇒ ⊢ (𝜑 → (𝑁 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑁))) | ||
| Theorem | mhpaddcl 22155 | Homogeneous polynomials are closed under addition. (Contributed by SN, 26-Aug-2023.) Remove closure hypotheses. (Revised by SN, 4-Sep-2025.) |
| ⊢ 𝐻 = (𝐼 mHomP 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ + = (+g‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) & ⊢ (𝜑 → 𝑌 ∈ (𝐻‘𝑁)) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝐻‘𝑁)) | ||
| Theorem | mhpinvcl 22156 | Homogeneous polynomials are closed under taking the opposite. (Contributed by SN, 12-Sep-2023.) Remove closure hypotheses. (Revised by SN, 4-Sep-2025.) |
| ⊢ 𝐻 = (𝐼 mHomP 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑀 = (invg‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) ⇒ ⊢ (𝜑 → (𝑀‘𝑋) ∈ (𝐻‘𝑁)) | ||
| Theorem | mhpsubg 22157 | Homogeneous polynomials form a subgroup of the polynomials. (Contributed by SN, 25-Sep-2023.) |
| ⊢ 𝐻 = (𝐼 mHomP 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Grp) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐻‘𝑁) ∈ (SubGrp‘𝑃)) | ||
| Theorem | mhpvscacl 22158 | Homogeneous polynomials are closed under scalar multiplication. (Contributed by SN, 25-Sep-2023.) Remove closure hypotheses. (Revised by SN, 4-Sep-2025.) |
| ⊢ 𝐻 = (𝐼 mHomP 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝐹 ∈ (𝐻‘𝑁)) ⇒ ⊢ (𝜑 → (𝑋 · 𝐹) ∈ (𝐻‘𝑁)) | ||
| Theorem | mhplss 22159 | Homogeneous polynomials form a linear subspace of the polynomials. (Contributed by SN, 25-Sep-2023.) |
| ⊢ 𝐻 = (𝐼 mHomP 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐻‘𝑁) ∈ (LSubSp‘𝑃)) | ||
| Definition | df-psd 22160* | Define the differentiation operation on multivariate polynomials. (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) is the partial derivative of the polynomial 𝐹 with respect to 𝑋. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ mPSDer = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥 ∈ 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ {ℎ ∈ (ℕ0 ↑m 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑘‘𝑥) + 1)(.g‘𝑟)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0))))))))) | ||
| Theorem | psdffval 22161* | Value of the power series differentiation operation. (Contributed by SN, 11-Apr-2025.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐼 mPSDer 𝑅) = (𝑥 ∈ 𝐼 ↦ (𝑓 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑥) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))))))) | ||
| Theorem | psdfval 22162* | Give a map between power series and their partial derivatives with respect to a given variable 𝑋. (Contributed by SN, 11-Apr-2025.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → ((𝐼 mPSDer 𝑅)‘𝑋) = (𝑓 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))) | ||
| Theorem | psdval 22163* | Evaluate the partial derivative of a power series 𝐹 with respect to 𝑋. (Contributed by SN, 11-Apr-2025.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) = (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) | ||
| Theorem | psdcoef 22164* | Coefficient of a term of the derivative of a power series. (Contributed by SN, 12-Apr-2025.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐾 ∈ 𝐷) ⇒ ⊢ (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝐾) = (((𝐾‘𝑋) + 1)(.g‘𝑅)(𝐹‘(𝐾 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) | ||
| Theorem | psdcl 22165 | The derivative of a power series is a power series. (Contributed by SN, 11-Apr-2025.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ Mgm) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵) | ||
| Theorem | psdmplcl 22166 | The derivative of a polynomial is a polynomial. (Contributed by SN, 12-Apr-2025.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵) | ||
| Theorem | psdadd 22167 | The derivative of a sum is the sum of the derivatives. (Contributed by SN, 12-Apr-2025.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ + = (+g‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ CMnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 + 𝐺)) = ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) + (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))) | ||
| Theorem | psdvsca 22168 | The derivative of a scaled power series is the scaled derivative. (Contributed by SN, 12-Apr-2025.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑆) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) ⇒ ⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐶 · 𝐹)) = (𝐶 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) | ||
| Theorem | psdmullem 22169 | Lemma for psdmul 22170. Transitive law for union of class difference. (Contributed by SN, 5-May-2025.) |
| ⊢ (𝜑 → 𝐶 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐶)) = (𝐴 ∖ 𝐶)) | ||
| Theorem | psdmul 22170 | Product rule for power series. An outline is available at https://github.com/icecream17/Stuff/blob/main/math/psdmul.pdf. (Contributed by SN, 25-Apr-2025.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ + = (+g‘𝑆) & ⊢ · = (.r‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 · 𝐺)) = (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) + (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)))) | ||
| Theorem | psd1 22171 | The derivative of one is zero. (Contributed by SN, 25-Apr-2025.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 1 = (1r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘ 1 ) = 0 ) | ||
| Theorem | psdascl 22172 | The derivative of a constant polynomial is zero. (Contributed by SN, 25-Apr-2025.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐴 = (algSc‘𝑆) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐴‘𝐶)) = 0 ) | ||
| Theorem | psdmvr 22173 | The partial derivative of a variable is the Kronecker delta if(𝑋 = 𝑌, 1 , 0 ). (Contributed by SN, 16-Oct-2025.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 0 = (0g‘𝑆) & ⊢ 1 = (1r‘𝑆) & ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ (𝜑 → 𝑌 ∈ 𝐼) ⇒ ⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑉‘𝑌)) = if(𝑋 = 𝑌, 1 , 0 )) | ||
| Theorem | psdpw 22174 | Power rule for partial derivative of power series. (Contributed by SN, 25-Apr-2025.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ · = (.g‘𝑆) & ⊢ ∙ = (.r‘𝑆) & ⊢ 𝑀 = (mulGrp‘𝑆) & ⊢ ↑ = (.g‘𝑀) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑁 ↑ 𝐹)) = ((𝑁 · ((𝑁 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) | ||
| Definition | df-algind 22175* | Define the predicate "the set 𝑣 is algebraically independent in the algebra 𝑤". A collection of vectors is algebraically independent if no nontrivial polynomial with elements from the subset evaluates to zero. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ AlgInd = (𝑤 ∈ V, 𝑘 ∈ 𝒫 (Base‘𝑤) ↦ {𝑣 ∈ 𝒫 (Base‘𝑤) ∣ Fun ◡(𝑓 ∈ (Base‘(𝑣 mPoly (𝑤 ↾s 𝑘))) ↦ ((((𝑣 evalSub 𝑤)‘𝑘)‘𝑓)‘( I ↾ 𝑣)))}) | ||
According to Wikipedia ("Polynomial", 23-Dec-2019, https://en.wikipedia.org/wiki/Polynomial) "A polynomial in one indeterminate is called a univariate polynomial, a polynomial in more than one indeterminate is called a multivariate polynomial." In this sense univariate polynomials are defined as multivariate polynomials restricted to one indeterminate/polynomial variable in the following, see ply1bascl2 22206. According to the definition in Wikipedia "a polynomial can either be zero or can be written as the sum of a finite number of nonzero terms. Each term consists of the product of a number - called the coefficient of the term - and a finite number of indeterminates, raised to nonnegative integer powers.". By this, a term of a univariate polynomial (often also called "polynomial term") is the product of a coefficient (usually a member of the underlying ring) and the variable, raised to a nonnegative integer power. A (univariate) polynomial which has only one term is called (univariate) monomial - therefore, the notions "term" and "monomial" are often used synonymously, see also the definition in [Lang] p. 102. Sometimes, however, a monomial is defined as power product, "a product of powers of variables with nonnegative integer exponents", see Wikipedia ("Monomial", 23-Dec-2019, https://en.wikipedia.org/wiki/Mononomial 22206). In [Lang] p. 101, such terms are called "primitive monomials". To avoid any ambiguity, the notion "primitive monomial" is used for such power products ("x^i") in the following, whereas the synonym for "term" ("ai x^i") will be "scaled monomial". | ||
| Syntax | cps1 22176 | Univariate power series. |
| class PwSer1 | ||
| Syntax | cv1 22177 | The base variable of a univariate power series. |
| class var1 | ||
| Syntax | cpl1 22178 | Univariate polynomials. |
| class Poly1 | ||
| Syntax | cco1 22179 | Coefficient function for a univariate polynomial. |
| class coe1 | ||
| Syntax | ctp1 22180 | Convert a univariate polynomial representation to multivariate. |
| class toPoly1 | ||
| Definition | df-psr1 22181 | Define the algebra of univariate power series. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| ⊢ PwSer1 = (𝑟 ∈ V ↦ ((1o ordPwSer 𝑟)‘∅)) | ||
| Definition | df-vr1 22182 | Define the base element of a univariate power series (the 𝑋 element of the set 𝑅[𝑋] of polynomials and also the 𝑋 in the set 𝑅[[𝑋]] of power series). (Contributed by Mario Carneiro, 8-Feb-2015.) |
| ⊢ var1 = (𝑟 ∈ V ↦ ((1o mVar 𝑟)‘∅)) | ||
| Definition | df-ply1 22183 | Define the algebra of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015.) |
| ⊢ Poly1 = (𝑟 ∈ V ↦ ((PwSer1‘𝑟) ↾s (Base‘(1o mPoly 𝑟)))) | ||
| Definition | df-coe1 22184* | Define the coefficient function for a univariate polynomial. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| ⊢ coe1 = (𝑓 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (𝑓‘(1o × {𝑛})))) | ||
| Definition | df-toply1 22185* | Define a function which maps a coefficient function for a univariate polynomial to the corresponding polynomial object. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ toPoly1 = (𝑓 ∈ V ↦ (𝑛 ∈ (ℕ0 ↑m 1o) ↦ (𝑓‘(𝑛‘∅)))) | ||
| Theorem | psr1baslem 22186 | The set of finite bags on 1o is just the set of all functions from 1o to ℕ0. (Contributed by Mario Carneiro, 9-Feb-2015.) |
| ⊢ (ℕ0 ↑m 1o) = {𝑓 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑓 “ ℕ) ∈ Fin} | ||
| Theorem | psr1val 22187 | Value of the ring of univariate power series. (Contributed by Mario Carneiro, 8-Feb-2015.) |
| ⊢ 𝑆 = (PwSer1‘𝑅) ⇒ ⊢ 𝑆 = ((1o ordPwSer 𝑅)‘∅) | ||
| Theorem | psr1crng 22188 | The ring of univariate power series is a commutative ring. (Contributed by Mario Carneiro, 8-Feb-2015.) |
| ⊢ 𝑆 = (PwSer1‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → 𝑆 ∈ CRing) | ||
| Theorem | psr1assa 22189 | The ring of univariate power series is an associative algebra. (Contributed by Mario Carneiro, 8-Feb-2015.) |
| ⊢ 𝑆 = (PwSer1‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → 𝑆 ∈ AssAlg) | ||
| Theorem | psr1tos 22190 | The ordered power series structure is a totally ordered set. (Contributed by Mario Carneiro, 2-Jun-2015.) |
| ⊢ 𝑆 = (PwSer1‘𝑅) ⇒ ⊢ (𝑅 ∈ Toset → 𝑆 ∈ Toset) | ||
| Theorem | psr1bas2 22191 | The base set of the ring of univariate power series. (Contributed by Mario Carneiro, 3-Jul-2015.) |
| ⊢ 𝑆 = (PwSer1‘𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑂 = (1o mPwSer 𝑅) ⇒ ⊢ 𝐵 = (Base‘𝑂) | ||
| Theorem | psr1bas 22192 | The base set of the ring of univariate power series. (Contributed by Mario Carneiro, 8-Feb-2015.) |
| ⊢ 𝑆 = (PwSer1‘𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐾 = (Base‘𝑅) ⇒ ⊢ 𝐵 = (𝐾 ↑m (ℕ0 ↑m 1o)) | ||
| Theorem | vr1val 22193 | The value of the generator of the power series algebra (the 𝑋 in 𝑅[[𝑋]]). Since all univariate polynomial rings over a fixed base ring 𝑅 are isomorphic, we don't bother to pass this in as a parameter; internally we are actually using the empty set as this generator and 1o = {∅} is the index set (but for most purposes this choice should not be visible anyway). (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝑋 = (var1‘𝑅) ⇒ ⊢ 𝑋 = ((1o mVar 𝑅)‘∅) | ||
| Theorem | vr1cl2 22194 | The variable 𝑋 is a member of the power series algebra 𝑅[[𝑋]]. (Contributed by Mario Carneiro, 8-Feb-2015.) |
| ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑆 = (PwSer1‘𝑅) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ (𝑅 ∈ Ring → 𝑋 ∈ 𝐵) | ||
| Theorem | ply1val 22195 | The value of the set of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑆 = (PwSer1‘𝑅) ⇒ ⊢ 𝑃 = (𝑆 ↾s (Base‘(1o mPoly 𝑅))) | ||
| Theorem | ply1bas 22196 | The value of the base set of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015.) Remove hypothesis. (Revised by SN, 20-May-2025.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) ⇒ ⊢ 𝑈 = (Base‘(1o mPoly 𝑅)) | ||
| Theorem | ply1basOLD 22197 | Obsolete version of ply1bas 22196 as of 20-May-2025. (Contributed by Mario Carneiro, 9-Feb-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑆 = (PwSer1‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) ⇒ ⊢ 𝑈 = (Base‘(1o mPoly 𝑅)) | ||
| Theorem | ply1lss 22198 | Univariate polynomials form a linear subspace of the set of univariate power series. (Contributed by Mario Carneiro, 9-Feb-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑆 = (PwSer1‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) ⇒ ⊢ (𝑅 ∈ Ring → 𝑈 ∈ (LSubSp‘𝑆)) | ||
| Theorem | ply1subrg 22199 | Univariate polynomials form a subring of the set of univariate power series. (Contributed by Mario Carneiro, 9-Feb-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑆 = (PwSer1‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) ⇒ ⊢ (𝑅 ∈ Ring → 𝑈 ∈ (SubRing‘𝑆)) | ||
| Theorem | ply1crng 22200 | The ring of univariate polynomials is a commutative ring. (Contributed by Mario Carneiro, 9-Feb-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → 𝑃 ∈ CRing) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |