| Metamath
Proof Explorer Theorem List (p. 222 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | coe1f2 22101 | Functionality of univariate power series coefficient vectors. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
| ⊢ 𝐴 = (coe1‘𝐹) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑃 = (PwSer1‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝐵 → 𝐴:ℕ0⟶𝐾) | ||
| Theorem | coe1fval2 22102* | Univariate polynomial coefficient vectors expressed as a function composition. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| ⊢ 𝐴 = (coe1‘𝐹) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐺 = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦})) ⇒ ⊢ (𝐹 ∈ 𝐵 → 𝐴 = (𝐹 ∘ 𝐺)) | ||
| Theorem | coe1f 22103 | Functionality of univariate polynomial coefficient vectors. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| ⊢ 𝐴 = (coe1‘𝐹) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝐵 → 𝐴:ℕ0⟶𝐾) | ||
| Theorem | coe1fvalcl 22104 | A coefficient of a univariate polynomial over a class/ring is an element of this class/ring. (Contributed by AV, 9-Oct-2019.) |
| ⊢ 𝐴 = (coe1‘𝐹) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0) → (𝐴‘𝑁) ∈ 𝐾) | ||
| Theorem | coe1sfi 22105 | Finite support of univariate polynomial coefficient vectors. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by AV, 19-Jul-2019.) |
| ⊢ 𝐴 = (coe1‘𝐹) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝐵 → 𝐴 finSupp 0 ) | ||
| Theorem | coe1fsupp 22106* | The coefficient vector of a univariate polynomial is a finitely supported mapping from the nonnegative integers to the elements of the coefficient class/ring for the polynomial. (Contributed by AV, 3-Oct-2019.) |
| ⊢ 𝐴 = (coe1‘𝐹) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝐵 → 𝐴 ∈ {𝑔 ∈ (𝐾 ↑m ℕ0) ∣ 𝑔 finSupp 0 }) | ||
| Theorem | mptcoe1fsupp 22107* | A mapping involving coefficients of polynomials is finitely supported. (Contributed by AV, 12-Oct-2019.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((coe1‘𝑀)‘𝑘)) finSupp 0 ) | ||
| Theorem | coe1ae0 22108* | The coefficient vector of a univariate polynomial is 0 almost everywhere. (Contributed by AV, 19-Oct-2019.) |
| ⊢ 𝐴 = (coe1‘𝐹) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝐵 → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴‘𝑛) = 0 )) | ||
| Theorem | vr1cl 22109 | The generator of a univariate polynomial algebra is contained in the base set. (Contributed by Stefan O'Rear, 19-Mar-2015.) |
| ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ (𝑅 ∈ Ring → 𝑋 ∈ 𝐵) | ||
| Theorem | opsr0 22110 | Zero in the ordered power series ring. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → (0g‘𝑆) = (0g‘𝑂)) | ||
| Theorem | opsr1 22111 | One in the ordered power series ring. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → (1r‘𝑆) = (1r‘𝑂)) | ||
| Theorem | psr1plusg 22112 | Value of addition in a univariate power series ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝑌 = (PwSer1‘𝑅) & ⊢ 𝑆 = (1o mPwSer 𝑅) & ⊢ + = (+g‘𝑌) ⇒ ⊢ + = (+g‘𝑆) | ||
| Theorem | psr1vsca 22113 | Value of scalar multiplication in a univariate power series ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝑌 = (PwSer1‘𝑅) & ⊢ 𝑆 = (1o mPwSer 𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) ⇒ ⊢ · = ( ·𝑠 ‘𝑆) | ||
| Theorem | psr1mulr 22114 | Value of multiplication in a univariate power series ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝑌 = (PwSer1‘𝑅) & ⊢ 𝑆 = (1o mPwSer 𝑅) & ⊢ · = (.r‘𝑌) ⇒ ⊢ · = (.r‘𝑆) | ||
| Theorem | ply1plusg 22115 | Value of addition in a univariate polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 4-Jul-2015.) |
| ⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝑆 = (1o mPoly 𝑅) & ⊢ + = (+g‘𝑌) ⇒ ⊢ + = (+g‘𝑆) | ||
| Theorem | ply1vsca 22116 | Value of scalar multiplication in a univariate polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 4-Jul-2015.) |
| ⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝑆 = (1o mPoly 𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) ⇒ ⊢ · = ( ·𝑠 ‘𝑆) | ||
| Theorem | ply1mulr 22117 | Value of multiplication in a univariate polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 4-Jul-2015.) |
| ⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝑆 = (1o mPoly 𝑅) & ⊢ · = (.r‘𝑌) ⇒ ⊢ · = (.r‘𝑆) | ||
| Theorem | ply1ass23l 22118 | Associative identity with scalar and ring multiplication for the polynomial ring. (Contributed by AV, 14-Aug-2019.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ × = (.r‘𝑃) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌))) | ||
| Theorem | ressply1bas2 22119 | The base set of a restricted polynomial algebra consists of power series in the subring which are also polynomials (in the parent ring). (Contributed by Mario Carneiro, 3-Jul-2015.) |
| ⊢ 𝑆 = (Poly1‘𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (Poly1‘𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝑊 = (PwSer1‘𝐻) & ⊢ 𝐶 = (Base‘𝑊) & ⊢ 𝐾 = (Base‘𝑆) ⇒ ⊢ (𝜑 → 𝐵 = (𝐶 ∩ 𝐾)) | ||
| Theorem | ressply1bas 22120 | A restricted polynomial algebra has the same base set. (Contributed by Mario Carneiro, 3-Jul-2015.) |
| ⊢ 𝑆 = (Poly1‘𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (Poly1‘𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝑃 = (𝑆 ↾s 𝐵) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑃)) | ||
| Theorem | ressply1add 22121 | A restricted polynomial algebra has the same addition operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
| ⊢ 𝑆 = (Poly1‘𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (Poly1‘𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝑃 = (𝑆 ↾s 𝐵) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(+g‘𝑈)𝑌) = (𝑋(+g‘𝑃)𝑌)) | ||
| Theorem | ressply1mul 22122 | A restricted polynomial algebra has the same multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
| ⊢ 𝑆 = (Poly1‘𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (Poly1‘𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝑃 = (𝑆 ↾s 𝐵) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(.r‘𝑈)𝑌) = (𝑋(.r‘𝑃)𝑌)) | ||
| Theorem | ressply1vsca 22123 | A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
| ⊢ 𝑆 = (Poly1‘𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (Poly1‘𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝑃 = (𝑆 ↾s 𝐵) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝑈)𝑌) = (𝑋( ·𝑠 ‘𝑃)𝑌)) | ||
| Theorem | subrgply1 22124 | A subring of the base ring induces a subring of polynomials. (Contributed by Mario Carneiro, 3-Jul-2015.) |
| ⊢ 𝑆 = (Poly1‘𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (Poly1‘𝐻) & ⊢ 𝐵 = (Base‘𝑈) ⇒ ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝐵 ∈ (SubRing‘𝑆)) | ||
| Theorem | gsumply1subr 22125 | Evaluate a group sum in a polynomial ring over a subring. (Contributed by AV, 22-Sep-2019.) (Proof shortened by AV, 31-Jan-2020.) |
| ⊢ 𝑆 = (Poly1‘𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (Poly1‘𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → (𝑆 Σg 𝐹) = (𝑈 Σg 𝐹)) | ||
| Theorem | psrbaspropd 22126 | Property deduction for power series base set. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
| ⊢ (𝜑 → (Base‘𝑅) = (Base‘𝑆)) ⇒ ⊢ (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆))) | ||
| Theorem | psrplusgpropd 22127* | Property deduction for power series addition. (Contributed by Stefan O'Rear, 27-Mar-2015.) (Revised by Mario Carneiro, 3-Oct-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐵 = (Base‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑆)𝑦)) ⇒ ⊢ (𝜑 → (+g‘(𝐼 mPwSer 𝑅)) = (+g‘(𝐼 mPwSer 𝑆))) | ||
| Theorem | mplbaspropd 22128* | Property deduction for polynomial base set. (Contributed by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 19-Jul-2019.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐵 = (Base‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑆)𝑦)) ⇒ ⊢ (𝜑 → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆))) | ||
| Theorem | psropprmul 22129 | Reversing multiplication in a ring reverses multiplication in the power series ring. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
| ⊢ 𝑌 = (𝐼 mPwSer 𝑅) & ⊢ 𝑆 = (oppr‘𝑅) & ⊢ 𝑍 = (𝐼 mPwSer 𝑆) & ⊢ · = (.r‘𝑌) & ⊢ ∙ = (.r‘𝑍) & ⊢ 𝐵 = (Base‘𝑌) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 ∙ 𝐺) = (𝐺 · 𝐹)) | ||
| Theorem | ply1opprmul 22130 | Reversing multiplication in a ring reverses multiplication in the univariate polynomial ring. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
| ⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝑆 = (oppr‘𝑅) & ⊢ 𝑍 = (Poly1‘𝑆) & ⊢ · = (.r‘𝑌) & ⊢ ∙ = (.r‘𝑍) & ⊢ 𝐵 = (Base‘𝑌) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 ∙ 𝐺) = (𝐺 · 𝐹)) | ||
| Theorem | 00ply1bas 22131 | Lemma for ply1basfvi 22132 and deg1fvi 25997. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ ∅ = (Base‘(Poly1‘∅)) | ||
| Theorem | ply1basfvi 22132 | Protection compatibility of the univariate polynomial base set. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
| ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘( I ‘𝑅))) | ||
| Theorem | ply1plusgfvi 22133 | Protection compatibility of the univariate polynomial addition. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
| ⊢ (+g‘(Poly1‘𝑅)) = (+g‘(Poly1‘( I ‘𝑅))) | ||
| Theorem | ply1baspropd 22134* | Property deduction for univariate polynomial base set. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐵 = (Base‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑆)𝑦)) ⇒ ⊢ (𝜑 → (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘𝑆))) | ||
| Theorem | ply1plusgpropd 22135* | Property deduction for univariate polynomial addition. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐵 = (Base‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑆)𝑦)) ⇒ ⊢ (𝜑 → (+g‘(Poly1‘𝑅)) = (+g‘(Poly1‘𝑆))) | ||
| Theorem | opsrring 22136 | Ordered power series form a ring. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → 𝑂 ∈ Ring) | ||
| Theorem | opsrlmod 22137 | Ordered power series form a left module. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
| ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → 𝑂 ∈ LMod) | ||
| Theorem | psr1ring 22138 | Univariate power series form a ring. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| ⊢ 𝑆 = (PwSer1‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝑆 ∈ Ring) | ||
| Theorem | ply1ring 22139 | Univariate polynomials form a ring. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) | ||
| Theorem | psr1lmod 22140 | Univariate power series form a left module. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
| ⊢ 𝑃 = (PwSer1‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) | ||
| Theorem | psr1sca 22141 | Scalars of a univariate power series ring. (Contributed by Stefan O'Rear, 4-Jul-2015.) |
| ⊢ 𝑃 = (PwSer1‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → 𝑅 = (Scalar‘𝑃)) | ||
| Theorem | psr1sca2 22142 | Scalars of a univariate power series ring. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Revised by Mario Carneiro, 4-Jul-2015.) |
| ⊢ 𝑃 = (PwSer1‘𝑅) ⇒ ⊢ ( I ‘𝑅) = (Scalar‘𝑃) | ||
| Theorem | ply1lmod 22143 | Univariate polynomials form a left module. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) | ||
| Theorem | ply1sca 22144 | Scalars of a univariate polynomial ring. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → 𝑅 = (Scalar‘𝑃)) | ||
| Theorem | ply1sca2 22145 | Scalars of a univariate polynomial ring. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ ( I ‘𝑅) = (Scalar‘𝑃) | ||
| Theorem | ply1ascl0 22146 | The zero scalar as a polynomial. (Contributed by Thierry Arnoux, 20-Jan-2025.) |
| ⊢ 𝑊 = (Poly1‘𝑅) & ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝑂 = (0g‘𝑅) & ⊢ 0 = (0g‘𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → (𝐴‘𝑂) = 0 ) | ||
| Theorem | ply1ascl1 22147 | The multiplicative identity scalar as a univariate polynomial. (Contributed by Thierry Arnoux, 20-Jan-2025.) |
| ⊢ 𝑊 = (Poly1‘𝑅) & ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝐼 = (1r‘𝑅) & ⊢ 1 = (1r‘𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → (𝐴‘𝐼) = 1 ) | ||
| Theorem | ply1mpl0 22148 | The univariate polynomial ring has the same zero as the corresponding multivariate polynomial ring. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 3-Oct-2015.) |
| ⊢ 𝑀 = (1o mPoly 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑃) ⇒ ⊢ 0 = (0g‘𝑀) | ||
| Theorem | ply10s0 22149 | Zero times a univariate polynomial is the zero polynomial (lmod0vs 20808 analog.) (Contributed by AV, 2-Dec-2019.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ ∗ = ( ·𝑠 ‘𝑃) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ( 0 ∗ 𝑀) = (0g‘𝑃)) | ||
| Theorem | ply1mpl1 22150 | The univariate polynomial ring has the same one as the corresponding multivariate polynomial ring. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 3-Oct-2015.) |
| ⊢ 𝑀 = (1o mPoly 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 1 = (1r‘𝑃) ⇒ ⊢ 1 = (1r‘𝑀) | ||
| Theorem | ply1ascl 22151 | The univariate polynomial ring inherits the multivariate ring's scalar function. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by Fan Zheng, 26-Jun-2016.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) ⇒ ⊢ 𝐴 = (algSc‘(1o mPoly 𝑅)) | ||
| Theorem | subrg1ascl 22152 | The scalar injection function in a subring algebra is the same up to a restriction to the subring. (Contributed by Mario Carneiro, 4-Jul-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (Poly1‘𝐻) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝐶 = (algSc‘𝑈) ⇒ ⊢ (𝜑 → 𝐶 = (𝐴 ↾ 𝑇)) | ||
| Theorem | subrg1asclcl 22153 | The scalars in a polynomial algebra are in the subring algebra iff the scalar value is in the subring. (Contributed by Mario Carneiro, 4-Jul-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (Poly1‘𝐻) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) ⇒ ⊢ (𝜑 → ((𝐴‘𝑋) ∈ 𝐵 ↔ 𝑋 ∈ 𝑇)) | ||
| Theorem | subrgvr1 22154 | The variables in a subring polynomial algebra are the same as the original ring. (Contributed by Mario Carneiro, 5-Jul-2015.) |
| ⊢ 𝑋 = (var1‘𝑅) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) ⇒ ⊢ (𝜑 → 𝑋 = (var1‘𝐻)) | ||
| Theorem | subrgvr1cl 22155 | The variables in a polynomial algebra are contained in every subring algebra. (Contributed by Mario Carneiro, 5-Jul-2015.) |
| ⊢ 𝑋 = (var1‘𝑅) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (Poly1‘𝐻) & ⊢ 𝐵 = (Base‘𝑈) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝐵) | ||
| Theorem | coe1z 22156 | The coefficient vector of 0. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝑌 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (coe1‘ 0 ) = (ℕ0 × {𝑌})) | ||
| Theorem | coe1add 22157 | The coefficient vector of an addition. (Contributed by Stefan O'Rear, 24-Mar-2015.) |
| ⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ ✚ = (+g‘𝑌) & ⊢ + = (+g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘(𝐹 ✚ 𝐺)) = ((coe1‘𝐹) ∘f + (coe1‘𝐺))) | ||
| Theorem | coe1addfv 22158 | A particular coefficient of an addition. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| ⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ ✚ = (+g‘𝑌) & ⊢ + = (+g‘𝑅) ⇒ ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1‘(𝐹 ✚ 𝐺))‘𝑋) = (((coe1‘𝐹)‘𝑋) + ((coe1‘𝐺)‘𝑋))) | ||
| Theorem | coe1subfv 22159 | A particular coefficient of a subtraction. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| ⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 𝑁 = (-g‘𝑅) ⇒ ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1‘(𝐹 − 𝐺))‘𝑋) = (((coe1‘𝐹)‘𝑋)𝑁((coe1‘𝐺)‘𝑋))) | ||
| Theorem | coe1mul2lem1 22160 | An equivalence for coe1mul2 22162. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → (𝑋 ∘r ≤ (1o × {𝐴}) ↔ (𝑋‘∅) ∈ (0...𝐴))) | ||
| Theorem | coe1mul2lem2 22161* | An equivalence for coe1mul2 22162. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
| ⊢ 𝐻 = {𝑑 ∈ (ℕ0 ↑m 1o) ∣ 𝑑 ∘r ≤ (1o × {𝑘})} ⇒ ⊢ (𝑘 ∈ ℕ0 → (𝑐 ∈ 𝐻 ↦ (𝑐‘∅)):𝐻–1-1-onto→(0...𝑘)) | ||
| Theorem | coe1mul2 22162* | The coefficient vector of multiplication in the univariate power series ring. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
| ⊢ 𝑆 = (PwSer1‘𝑅) & ⊢ ∙ = (.r‘𝑆) & ⊢ · = (.r‘𝑅) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘(𝐹 ∙ 𝐺)) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑥 ∈ (0...𝑘) ↦ (((coe1‘𝐹)‘𝑥) · ((coe1‘𝐺)‘(𝑘 − 𝑥))))))) | ||
| Theorem | coe1mul 22163* | The coefficient vector of multiplication in the univariate polynomial ring. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
| ⊢ 𝑌 = (Poly1‘𝑅) & ⊢ ∙ = (.r‘𝑌) & ⊢ · = (.r‘𝑅) & ⊢ 𝐵 = (Base‘𝑌) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘(𝐹 ∙ 𝐺)) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑥 ∈ (0...𝑘) ↦ (((coe1‘𝐹)‘𝑥) · ((coe1‘𝐺)‘(𝑘 − 𝑥))))))) | ||
| Theorem | ply1moncl 22164 | Closure of the expression for a univariate primitive monomial. (Contributed by AV, 14-Aug-2019.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐷 ∈ ℕ0) → (𝐷 ↑ 𝑋) ∈ 𝐵) | ||
| Theorem | ply1tmcl 22165 | Closure of the expression for a univariate polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 25-Nov-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝐶 · (𝐷 ↑ 𝑋)) ∈ 𝐵) | ||
| Theorem | coe1tm 22166* | Coefficient vector of a polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
| ⊢ 0 = (0g‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (coe1‘(𝐶 · (𝐷 ↑ 𝑋))) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 𝐷, 𝐶, 0 ))) | ||
| Theorem | coe1tmfv1 22167 | Nonzero coefficient of a polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
| ⊢ 0 = (0g‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → ((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝐷) = 𝐶) | ||
| Theorem | coe1tmfv2 22168 | Zero coefficient of a polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
| ⊢ 0 = (0g‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → 𝐹 ∈ ℕ0) & ⊢ (𝜑 → 𝐷 ≠ 𝐹) ⇒ ⊢ (𝜑 → ((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝐹) = 0 ) | ||
| Theorem | coe1tmmul2 22169* | Coefficient vector of a polynomial multiplied on the right by a term. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
| ⊢ 0 = (0g‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ ∙ = (.r‘𝑃) & ⊢ × = (.r‘𝑅) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) ⇒ ⊢ (𝜑 → (coe1‘(𝐴 ∙ (𝐶 · (𝐷 ↑ 𝑋)))) = (𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 ))) | ||
| Theorem | coe1tmmul 22170* | Coefficient vector of a polynomial multiplied on the left by a term. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| ⊢ 0 = (0g‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ ∙ = (.r‘𝑃) & ⊢ × = (.r‘𝑅) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) ⇒ ⊢ (𝜑 → (coe1‘((𝐶 · (𝐷 ↑ 𝑋)) ∙ 𝐴)) = (𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (𝐶 × ((coe1‘𝐴)‘(𝑥 − 𝐷))), 0 ))) | ||
| Theorem | coe1tmmul2fv 22171 | Function value of a right-multiplication by a term in the shifted domain. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
| ⊢ 0 = (0g‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ ∙ = (.r‘𝑃) & ⊢ × = (.r‘𝑅) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → 𝑌 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((coe1‘(𝐴 ∙ (𝐶 · (𝐷 ↑ 𝑋))))‘(𝐷 + 𝑌)) = (((coe1‘𝐴)‘𝑌) × 𝐶)) | ||
| Theorem | coe1pwmul 22172* | Coefficient vector of a polynomial multiplied on the left by a variable power. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
| ⊢ 0 = (0g‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ · = (.r‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) ⇒ ⊢ (𝜑 → (coe1‘((𝐷 ↑ 𝑋) · 𝐴)) = (𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, ((coe1‘𝐴)‘(𝑥 − 𝐷)), 0 ))) | ||
| Theorem | coe1pwmulfv 22173 | Function value of a right-multiplication by a variable power in the shifted domain. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
| ⊢ 0 = (0g‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ · = (.r‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → 𝑌 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((coe1‘((𝐷 ↑ 𝑋) · 𝐴))‘(𝐷 + 𝑌)) = ((coe1‘𝐴)‘𝑌)) | ||
| Theorem | ply1scltm 22174 | A scalar is a term with zero exponent. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) & ⊢ 𝐴 = (algSc‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾) → (𝐴‘𝐹) = (𝐹 · (0 ↑ 𝑋))) | ||
| Theorem | coe1sclmul 22175 | Coefficient vector of a polynomial multiplied on the left by a scalar. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ ∙ = (.r‘𝑃) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘((𝐴‘𝑋) ∙ 𝑌)) = ((ℕ0 × {𝑋}) ∘f · (coe1‘𝑌))) | ||
| Theorem | coe1sclmulfv 22176 | A single coefficient of a polynomial multiplied on the left by a scalar. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ ∙ = (.r‘𝑃) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 0 ∈ ℕ0) → ((coe1‘((𝐴‘𝑋) ∙ 𝑌))‘ 0 ) = (𝑋 · ((coe1‘𝑌)‘ 0 ))) | ||
| Theorem | coe1sclmul2 22177 | Coefficient vector of a polynomial multiplied on the right by a scalar. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ ∙ = (.r‘𝑃) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘(𝑌 ∙ (𝐴‘𝑋))) = ((coe1‘𝑌) ∘f · (ℕ0 × {𝑋}))) | ||
| Theorem | ply1sclf 22178 | A scalar polynomial is a polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ (𝑅 ∈ Ring → 𝐴:𝐾⟶𝐵) | ||
| Theorem | ply1sclcl 22179 | The value of the algebra scalar lifting function for (univariate) polynomials applied to a scalar results in a constant polynomial. (Contributed by AV, 27-Nov-2019.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐾) → (𝐴‘𝑆) ∈ 𝐵) | ||
| Theorem | coe1scl 22180* | Coefficient vector of a scalar. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → (coe1‘(𝐴‘𝑋)) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑋, 0 ))) | ||
| Theorem | ply1sclid 22181 | Recover the base scalar from a scalar polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → 𝑋 = ((coe1‘(𝐴‘𝑋))‘0)) | ||
| Theorem | ply1sclf1 22182 | The polynomial scalar function is injective. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ (𝑅 ∈ Ring → 𝐴:𝐾–1-1→𝐵) | ||
| Theorem | ply1scl0 22183 | The zero scalar is zero. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑌 = (0g‘𝑃) ⇒ ⊢ (𝑅 ∈ Ring → (𝐴‘ 0 ) = 𝑌) | ||
| Theorem | ply1scl0OLD 22184 | Obsolete version of ply1scl1 22186 as of 12-Mar-2025. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑌 = (0g‘𝑃) ⇒ ⊢ (𝑅 ∈ Ring → (𝐴‘ 0 ) = 𝑌) | ||
| Theorem | ply1scln0 22185 | Nonzero scalars create nonzero polynomials. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑌 = (0g‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → (𝐴‘𝑋) ≠ 𝑌) | ||
| Theorem | ply1scl1 22186 | The one scalar is the unit polynomial. (Contributed by Stefan O'Rear, 1-Apr-2015.) (Proof shortened by SN, 12-Mar-2025.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (1r‘𝑃) ⇒ ⊢ (𝑅 ∈ Ring → (𝐴‘ 1 ) = 𝑁) | ||
| Theorem | ply1scl1OLD 22187 | Obsolete version of ply1scl1 22186 as of 12-Mar-2025. (Contributed by Stefan O'Rear, 1-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (1r‘𝑃) ⇒ ⊢ (𝑅 ∈ Ring → (𝐴‘ 1 ) = 𝑁) | ||
| Theorem | ply1idvr1 22188 | The identity of a polynomial ring expressed as power of the polynomial variable. (Contributed by AV, 14-Aug-2019.) (Proof shortened by SN, 3-Jul-2025.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) ⇒ ⊢ (𝑅 ∈ Ring → (0 ↑ 𝑋) = (1r‘𝑃)) | ||
| Theorem | ply1idvr1OLD 22189 | Obsolete version of ply1idvr1 22188 as of 3-Jul-2025. (Contributed by AV, 14-Aug-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) ⇒ ⊢ (𝑅 ∈ Ring → (0 ↑ 𝑋) = (1r‘𝑃)) | ||
| Theorem | cply1mul 22190* | The product of two constant polynomials is a constant polynomial. (Contributed by AV, 18-Nov-2019.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ × = (.r‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (∀𝑐 ∈ ℕ (((coe1‘𝐹)‘𝑐) = 0 ∧ ((coe1‘𝐺)‘𝑐) = 0 ) → ∀𝑐 ∈ ℕ ((coe1‘(𝐹 × 𝐺))‘𝑐) = 0 )) | ||
| Theorem | ply1coefsupp 22191* | The decomposition of a univariate polynomial is finitely supported. Formerly part of proof for ply1coe 22192. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by AV, 8-Aug-2019.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑀 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑀) & ⊢ 𝐴 = (coe1‘𝐾) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋))) finSupp (0g‘𝑃)) | ||
| Theorem | ply1coe 22192* | Decompose a univariate polynomial as a sum of powers. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by AV, 7-Oct-2019.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑀 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑀) & ⊢ 𝐴 = (coe1‘𝐾) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → 𝐾 = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋))))) | ||
| Theorem | eqcoe1ply1eq 22193* | Two polynomials over the same ring are equal if they have identical coefficients. (Contributed by AV, 7-Oct-2019.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐴 = (coe1‘𝐾) & ⊢ 𝐶 = (coe1‘𝐿) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘) → 𝐾 = 𝐿)) | ||
| Theorem | ply1coe1eq 22194* | Two polynomials over the same ring are equal iff they have identical coefficients. (Contributed by AV, 13-Oct-2019.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐴 = (coe1‘𝐾) & ⊢ 𝐶 = (coe1‘𝐿) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘) ↔ 𝐾 = 𝐿)) | ||
| Theorem | cply1coe0 22195* | All but the first coefficient of a constant polynomial ( i.e. a "lifted scalar") are zero. (Contributed by AV, 16-Nov-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐴 = (algSc‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐾) → ∀𝑛 ∈ ℕ ((coe1‘(𝐴‘𝑆))‘𝑛) = 0 ) | ||
| Theorem | cply1coe0bi 22196* | A polynomial is constant (i.e. a "lifted scalar") iff all but the first coefficient are zero. (Contributed by AV, 16-Nov-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐴 = (algSc‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (∃𝑠 ∈ 𝐾 𝑀 = (𝐴‘𝑠) ↔ ∀𝑛 ∈ ℕ ((coe1‘𝑀)‘𝑛) = 0 )) | ||
| Theorem | coe1fzgsumdlem 22197* | Lemma for coe1fzgsumd 22198 (induction step). (Contributed by AV, 8-Oct-2019.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) ⇒ ⊢ ((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) → ((∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ 𝑚 ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((coe1‘𝑀)‘𝐾)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀 ∈ 𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1‘𝑀)‘𝐾)))))) | ||
| Theorem | coe1fzgsumd 22198* | Value of an evaluated coefficient in a finite group sum of polynomials. (Contributed by AV, 8-Oct-2019.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑁 𝑀 ∈ 𝐵) & ⊢ (𝜑 → 𝑁 ∈ Fin) ⇒ ⊢ (𝜑 → ((coe1‘(𝑃 Σg (𝑥 ∈ 𝑁 ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ 𝑁 ↦ ((coe1‘𝑀)‘𝐾)))) | ||
| Theorem | ply1scleq 22199 | Equality of a constant polynomial is the same as equality of the constant term. (Contributed by Thierry Arnoux, 24-Jul-2024.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐸 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝐴‘𝐸) = (𝐴‘𝐹) ↔ 𝐸 = 𝐹)) | ||
| Theorem | ply1chr 22200 | The characteristic of a polynomial ring is the characteristic of the underlying ring. (Contributed by Thierry Arnoux, 24-Jul-2024.) |
| ⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → (chr‘𝑃) = (chr‘𝑅)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |