Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > matrcl | Structured version Visualization version GIF version |
Description: Reverse closure for the matrix algebra. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
matrcl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
matrcl.b | ⊢ 𝐵 = (Base‘𝐴) |
Ref | Expression |
---|---|
matrcl | ⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4267 | . 2 ⊢ (𝑋 ∈ 𝐵 → ¬ 𝐵 = ∅) | |
2 | matrcl.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
3 | df-mat 21555 | . . . . . 6 ⊢ Mat = (𝑎 ∈ Fin, 𝑏 ∈ V ↦ ((𝑏 freeLMod (𝑎 × 𝑎)) sSet 〈(.r‘ndx), (𝑏 maMul 〈𝑎, 𝑎, 𝑎〉)〉)) | |
4 | 3 | mpondm0 7510 | . . . . 5 ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑁 Mat 𝑅) = ∅) |
5 | 2, 4 | eqtrid 2790 | . . . 4 ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → 𝐴 = ∅) |
6 | 5 | fveq2d 6778 | . . 3 ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘𝐴) = (Base‘∅)) |
7 | matrcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
8 | base0 16917 | . . 3 ⊢ ∅ = (Base‘∅) | |
9 | 6, 7, 8 | 3eqtr4g 2803 | . 2 ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → 𝐵 = ∅) |
10 | 1, 9 | nsyl2 141 | 1 ⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 〈cop 4567 〈cotp 4569 × cxp 5587 ‘cfv 6433 (class class class)co 7275 Fincfn 8733 sSet csts 16864 ndxcnx 16894 Basecbs 16912 .rcmulr 16963 freeLMod cfrlm 20953 maMul cmmul 21532 Mat cmat 21554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-1cn 10929 ax-addcl 10931 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-nn 11974 df-slot 16883 df-ndx 16895 df-base 16913 df-mat 21555 |
This theorem is referenced by: matbas2i 21571 matecl 21574 matplusg2 21576 matvsca2 21577 matplusgcell 21582 matsubgcell 21583 matinvgcell 21584 matvscacell 21585 matmulcell 21594 mattposcl 21602 mattposvs 21604 mattposm 21608 matgsumcl 21609 madetsumid 21610 madetsmelbas 21613 madetsmelbas2 21614 marrepval0 21710 marrepval 21711 marrepcl 21713 marepvval0 21715 marepvval 21716 marepvcl 21718 ma1repveval 21720 mulmarep1gsum1 21722 mulmarep1gsum2 21723 submabas 21727 submaval0 21729 submaval 21730 mdetleib2 21737 mdetf 21744 mdetrlin 21751 mdetrsca 21752 mdetralt 21757 mdetmul 21772 maduval 21787 maducoeval2 21789 maduf 21790 madutpos 21791 madugsum 21792 madurid 21793 madulid 21794 minmar1val0 21796 minmar1val 21797 marep01ma 21809 smadiadetlem0 21810 smadiadetlem1a 21812 smadiadetlem3 21817 smadiadetlem4 21818 smadiadet 21819 smadiadetglem2 21821 matinv 21826 matunit 21827 slesolvec 21828 slesolinv 21829 slesolinvbi 21830 slesolex 21831 cramerimplem2 21833 cramerimplem3 21834 cramerimp 21835 decpmatcl 21916 decpmataa0 21917 decpmatmul 21921 smatcl 31752 matunitlindflem2 35774 matunitlindf 35775 |
Copyright terms: Public domain | W3C validator |