![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > matrcl | Structured version Visualization version GIF version |
Description: Reverse closure for the matrix algebra. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
matrcl.a | β’ π΄ = (π Mat π ) |
matrcl.b | β’ π΅ = (Baseβπ΄) |
Ref | Expression |
---|---|
matrcl | β’ (π β π΅ β (π β Fin β§ π β V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4334 | . 2 β’ (π β π΅ β Β¬ π΅ = β ) | |
2 | matrcl.a | . . . . 5 β’ π΄ = (π Mat π ) | |
3 | df-mat 21908 | . . . . . 6 β’ Mat = (π β Fin, π β V β¦ ((π freeLMod (π Γ π)) sSet β¨(.rβndx), (π maMul β¨π, π, πβ©)β©)) | |
4 | 3 | mpondm0 7647 | . . . . 5 β’ (Β¬ (π β Fin β§ π β V) β (π Mat π ) = β ) |
5 | 2, 4 | eqtrid 2785 | . . . 4 β’ (Β¬ (π β Fin β§ π β V) β π΄ = β ) |
6 | 5 | fveq2d 6896 | . . 3 β’ (Β¬ (π β Fin β§ π β V) β (Baseβπ΄) = (Baseββ )) |
7 | matrcl.b | . . 3 β’ π΅ = (Baseβπ΄) | |
8 | base0 17149 | . . 3 β’ β = (Baseββ ) | |
9 | 6, 7, 8 | 3eqtr4g 2798 | . 2 β’ (Β¬ (π β Fin β§ π β V) β π΅ = β ) |
10 | 1, 9 | nsyl2 141 | 1 β’ (π β π΅ β (π β Fin β§ π β V)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 Vcvv 3475 β c0 4323 β¨cop 4635 β¨cotp 4637 Γ cxp 5675 βcfv 6544 (class class class)co 7409 Fincfn 8939 sSet csts 17096 ndxcnx 17126 Basecbs 17144 .rcmulr 17198 freeLMod cfrlm 21301 maMul cmmul 21885 Mat cmat 21907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-1cn 11168 ax-addcl 11170 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-nn 12213 df-slot 17115 df-ndx 17127 df-base 17145 df-mat 21908 |
This theorem is referenced by: matbas2i 21924 matecl 21927 matplusg2 21929 matvsca2 21930 matplusgcell 21935 matsubgcell 21936 matinvgcell 21937 matvscacell 21938 matmulcell 21947 mattposcl 21955 mattposvs 21957 mattposm 21961 matgsumcl 21962 madetsumid 21963 madetsmelbas 21966 madetsmelbas2 21967 marrepval0 22063 marrepval 22064 marrepcl 22066 marepvval0 22068 marepvval 22069 marepvcl 22071 ma1repveval 22073 mulmarep1gsum1 22075 mulmarep1gsum2 22076 submabas 22080 submaval0 22082 submaval 22083 mdetleib2 22090 mdetf 22097 mdetrlin 22104 mdetrsca 22105 mdetralt 22110 mdetmul 22125 maduval 22140 maducoeval2 22142 maduf 22143 madutpos 22144 madugsum 22145 madurid 22146 madulid 22147 minmar1val0 22149 minmar1val 22150 marep01ma 22162 smadiadetlem0 22163 smadiadetlem1a 22165 smadiadetlem3 22170 smadiadetlem4 22171 smadiadet 22172 smadiadetglem2 22174 matinv 22179 matunit 22180 slesolvec 22181 slesolinv 22182 slesolinvbi 22183 slesolex 22184 cramerimplem2 22186 cramerimplem3 22187 cramerimp 22188 decpmatcl 22269 decpmataa0 22270 decpmatmul 22274 smatcl 32813 matunitlindflem2 36533 matunitlindf 36534 |
Copyright terms: Public domain | W3C validator |