![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > matrcl | Structured version Visualization version GIF version |
Description: Reverse closure for the matrix algebra. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
matrcl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
matrcl.b | ⊢ 𝐵 = (Base‘𝐴) |
Ref | Expression |
---|---|
matrcl | ⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4345 | . 2 ⊢ (𝑋 ∈ 𝐵 → ¬ 𝐵 = ∅) | |
2 | matrcl.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
3 | df-mat 22427 | . . . . . 6 ⊢ Mat = (𝑎 ∈ Fin, 𝑏 ∈ V ↦ ((𝑏 freeLMod (𝑎 × 𝑎)) sSet 〈(.r‘ndx), (𝑏 maMul 〈𝑎, 𝑎, 𝑎〉)〉)) | |
4 | 3 | mpondm0 7672 | . . . . 5 ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑁 Mat 𝑅) = ∅) |
5 | 2, 4 | eqtrid 2786 | . . . 4 ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → 𝐴 = ∅) |
6 | 5 | fveq2d 6910 | . . 3 ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘𝐴) = (Base‘∅)) |
7 | matrcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
8 | base0 17249 | . . 3 ⊢ ∅ = (Base‘∅) | |
9 | 6, 7, 8 | 3eqtr4g 2799 | . 2 ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → 𝐵 = ∅) |
10 | 1, 9 | nsyl2 141 | 1 ⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 Vcvv 3477 ∅c0 4338 〈cop 4636 〈cotp 4638 × cxp 5686 ‘cfv 6562 (class class class)co 7430 Fincfn 8983 sSet csts 17196 ndxcnx 17226 Basecbs 17244 .rcmulr 17298 freeLMod cfrlm 21783 maMul cmmul 22409 Mat cmat 22426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-1cn 11210 ax-addcl 11212 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-nn 12264 df-slot 17215 df-ndx 17227 df-base 17245 df-mat 22427 |
This theorem is referenced by: matbas2i 22443 matecl 22446 matplusg2 22448 matvsca2 22449 matplusgcell 22454 matsubgcell 22455 matinvgcell 22456 matvscacell 22457 matmulcell 22466 mattposcl 22474 mattposvs 22476 mattposm 22480 matgsumcl 22481 madetsumid 22482 madetsmelbas 22485 madetsmelbas2 22486 marrepval0 22582 marrepval 22583 marrepcl 22585 marepvval0 22587 marepvval 22588 marepvcl 22590 ma1repveval 22592 mulmarep1gsum1 22594 mulmarep1gsum2 22595 submabas 22599 submaval0 22601 submaval 22602 mdetleib2 22609 mdetf 22616 mdetrlin 22623 mdetrsca 22624 mdetralt 22629 mdetmul 22644 maduval 22659 maducoeval2 22661 maduf 22662 madutpos 22663 madugsum 22664 madurid 22665 madulid 22666 minmar1val0 22668 minmar1val 22669 marep01ma 22681 smadiadetlem0 22682 smadiadetlem1a 22684 smadiadetlem3 22689 smadiadetlem4 22690 smadiadet 22691 smadiadetglem2 22693 matinv 22698 matunit 22699 slesolvec 22700 slesolinv 22701 slesolinvbi 22702 slesolex 22703 cramerimplem2 22705 cramerimplem3 22706 cramerimp 22707 decpmatcl 22788 decpmataa0 22789 decpmatmul 22793 smatcl 33762 matunitlindflem2 37603 matunitlindf 37604 |
Copyright terms: Public domain | W3C validator |