![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > matrcl | Structured version Visualization version GIF version |
Description: Reverse closure for the matrix algebra. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
matrcl.a | β’ π΄ = (π Mat π ) |
matrcl.b | β’ π΅ = (Baseβπ΄) |
Ref | Expression |
---|---|
matrcl | β’ (π β π΅ β (π β Fin β§ π β V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4333 | . 2 β’ (π β π΅ β Β¬ π΅ = β ) | |
2 | matrcl.a | . . . . 5 β’ π΄ = (π Mat π ) | |
3 | df-mat 22128 | . . . . . 6 β’ Mat = (π β Fin, π β V β¦ ((π freeLMod (π Γ π)) sSet β¨(.rβndx), (π maMul β¨π, π, πβ©)β©)) | |
4 | 3 | mpondm0 7649 | . . . . 5 β’ (Β¬ (π β Fin β§ π β V) β (π Mat π ) = β ) |
5 | 2, 4 | eqtrid 2784 | . . . 4 β’ (Β¬ (π β Fin β§ π β V) β π΄ = β ) |
6 | 5 | fveq2d 6895 | . . 3 β’ (Β¬ (π β Fin β§ π β V) β (Baseβπ΄) = (Baseββ )) |
7 | matrcl.b | . . 3 β’ π΅ = (Baseβπ΄) | |
8 | base0 17153 | . . 3 β’ β = (Baseββ ) | |
9 | 6, 7, 8 | 3eqtr4g 2797 | . 2 β’ (Β¬ (π β Fin β§ π β V) β π΅ = β ) |
10 | 1, 9 | nsyl2 141 | 1 β’ (π β π΅ β (π β Fin β§ π β V)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 Vcvv 3474 β c0 4322 β¨cop 4634 β¨cotp 4636 Γ cxp 5674 βcfv 6543 (class class class)co 7411 Fincfn 8941 sSet csts 17100 ndxcnx 17130 Basecbs 17148 .rcmulr 17202 freeLMod cfrlm 21520 maMul cmmul 22105 Mat cmat 22127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-1cn 11170 ax-addcl 11172 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-nn 12217 df-slot 17119 df-ndx 17131 df-base 17149 df-mat 22128 |
This theorem is referenced by: matbas2i 22144 matecl 22147 matplusg2 22149 matvsca2 22150 matplusgcell 22155 matsubgcell 22156 matinvgcell 22157 matvscacell 22158 matmulcell 22167 mattposcl 22175 mattposvs 22177 mattposm 22181 matgsumcl 22182 madetsumid 22183 madetsmelbas 22186 madetsmelbas2 22187 marrepval0 22283 marrepval 22284 marrepcl 22286 marepvval0 22288 marepvval 22289 marepvcl 22291 ma1repveval 22293 mulmarep1gsum1 22295 mulmarep1gsum2 22296 submabas 22300 submaval0 22302 submaval 22303 mdetleib2 22310 mdetf 22317 mdetrlin 22324 mdetrsca 22325 mdetralt 22330 mdetmul 22345 maduval 22360 maducoeval2 22362 maduf 22363 madutpos 22364 madugsum 22365 madurid 22366 madulid 22367 minmar1val0 22369 minmar1val 22370 marep01ma 22382 smadiadetlem0 22383 smadiadetlem1a 22385 smadiadetlem3 22390 smadiadetlem4 22391 smadiadet 22392 smadiadetglem2 22394 matinv 22399 matunit 22400 slesolvec 22401 slesolinv 22402 slesolinvbi 22403 slesolex 22404 cramerimplem2 22406 cramerimplem3 22407 cramerimp 22408 decpmatcl 22489 decpmataa0 22490 decpmatmul 22494 smatcl 33068 matunitlindflem2 36788 matunitlindf 36789 |
Copyright terms: Public domain | W3C validator |