| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > matrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the matrix algebra. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| matrcl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| matrcl.b | ⊢ 𝐵 = (Base‘𝐴) |
| Ref | Expression |
|---|---|
| matrcl | ⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4303 | . 2 ⊢ (𝑋 ∈ 𝐵 → ¬ 𝐵 = ∅) | |
| 2 | matrcl.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 3 | df-mat 22295 | . . . . . 6 ⊢ Mat = (𝑎 ∈ Fin, 𝑏 ∈ V ↦ ((𝑏 freeLMod (𝑎 × 𝑎)) sSet 〈(.r‘ndx), (𝑏 maMul 〈𝑎, 𝑎, 𝑎〉)〉)) | |
| 4 | 3 | mpondm0 7629 | . . . . 5 ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑁 Mat 𝑅) = ∅) |
| 5 | 2, 4 | eqtrid 2776 | . . . 4 ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → 𝐴 = ∅) |
| 6 | 5 | fveq2d 6862 | . . 3 ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘𝐴) = (Base‘∅)) |
| 7 | matrcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
| 8 | base0 17184 | . . 3 ⊢ ∅ = (Base‘∅) | |
| 9 | 6, 7, 8 | 3eqtr4g 2789 | . 2 ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → 𝐵 = ∅) |
| 10 | 1, 9 | nsyl2 141 | 1 ⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 〈cop 4595 〈cotp 4597 × cxp 5636 ‘cfv 6511 (class class class)co 7387 Fincfn 8918 sSet csts 17133 ndxcnx 17163 Basecbs 17179 .rcmulr 17221 freeLMod cfrlm 21655 maMul cmmul 22277 Mat cmat 22294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-1cn 11126 ax-addcl 11128 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 df-slot 17152 df-ndx 17164 df-base 17180 df-mat 22295 |
| This theorem is referenced by: matbas2i 22309 matecl 22312 matplusg2 22314 matvsca2 22315 matplusgcell 22320 matsubgcell 22321 matinvgcell 22322 matvscacell 22323 matmulcell 22332 mattposcl 22340 mattposvs 22342 mattposm 22346 matgsumcl 22347 madetsumid 22348 madetsmelbas 22351 madetsmelbas2 22352 marrepval0 22448 marrepval 22449 marrepcl 22451 marepvval0 22453 marepvval 22454 marepvcl 22456 ma1repveval 22458 mulmarep1gsum1 22460 mulmarep1gsum2 22461 submabas 22465 submaval0 22467 submaval 22468 mdetleib2 22475 mdetf 22482 mdetrlin 22489 mdetrsca 22490 mdetralt 22495 mdetmul 22510 maduval 22525 maducoeval2 22527 maduf 22528 madutpos 22529 madugsum 22530 madurid 22531 madulid 22532 minmar1val0 22534 minmar1val 22535 marep01ma 22547 smadiadetlem0 22548 smadiadetlem1a 22550 smadiadetlem3 22555 smadiadetlem4 22556 smadiadet 22557 smadiadetglem2 22559 matinv 22564 matunit 22565 slesolvec 22566 slesolinv 22567 slesolinvbi 22568 slesolex 22569 cramerimplem2 22571 cramerimplem3 22572 cramerimp 22573 decpmatcl 22654 decpmataa0 22655 decpmatmul 22659 smatcl 33792 matunitlindflem2 37611 matunitlindf 37612 |
| Copyright terms: Public domain | W3C validator |