MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matrcl Structured version   Visualization version   GIF version

Theorem matrcl 21559
Description: Reverse closure for the matrix algebra. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
matrcl.a 𝐴 = (𝑁 Mat 𝑅)
matrcl.b 𝐵 = (Base‘𝐴)
Assertion
Ref Expression
matrcl (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))

Proof of Theorem matrcl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 4267 . 2 (𝑋𝐵 → ¬ 𝐵 = ∅)
2 matrcl.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
3 df-mat 21555 . . . . . 6 Mat = (𝑎 ∈ Fin, 𝑏 ∈ V ↦ ((𝑏 freeLMod (𝑎 × 𝑎)) sSet ⟨(.r‘ndx), (𝑏 maMul ⟨𝑎, 𝑎, 𝑎⟩)⟩))
43mpondm0 7510 . . . . 5 (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑁 Mat 𝑅) = ∅)
52, 4eqtrid 2790 . . . 4 (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → 𝐴 = ∅)
65fveq2d 6778 . . 3 (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘𝐴) = (Base‘∅))
7 matrcl.b . . 3 𝐵 = (Base‘𝐴)
8 base0 16917 . . 3 ∅ = (Base‘∅)
96, 7, 83eqtr4g 2803 . 2 (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → 𝐵 = ∅)
101, 9nsyl2 141 1 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  c0 4256  cop 4567  cotp 4569   × cxp 5587  cfv 6433  (class class class)co 7275  Fincfn 8733   sSet csts 16864  ndxcnx 16894  Basecbs 16912  .rcmulr 16963   freeLMod cfrlm 20953   maMul cmmul 21532   Mat cmat 21554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-1cn 10929  ax-addcl 10931
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-nn 11974  df-slot 16883  df-ndx 16895  df-base 16913  df-mat 21555
This theorem is referenced by:  matbas2i  21571  matecl  21574  matplusg2  21576  matvsca2  21577  matplusgcell  21582  matsubgcell  21583  matinvgcell  21584  matvscacell  21585  matmulcell  21594  mattposcl  21602  mattposvs  21604  mattposm  21608  matgsumcl  21609  madetsumid  21610  madetsmelbas  21613  madetsmelbas2  21614  marrepval0  21710  marrepval  21711  marrepcl  21713  marepvval0  21715  marepvval  21716  marepvcl  21718  ma1repveval  21720  mulmarep1gsum1  21722  mulmarep1gsum2  21723  submabas  21727  submaval0  21729  submaval  21730  mdetleib2  21737  mdetf  21744  mdetrlin  21751  mdetrsca  21752  mdetralt  21757  mdetmul  21772  maduval  21787  maducoeval2  21789  maduf  21790  madutpos  21791  madugsum  21792  madurid  21793  madulid  21794  minmar1val0  21796  minmar1val  21797  marep01ma  21809  smadiadetlem0  21810  smadiadetlem1a  21812  smadiadetlem3  21817  smadiadetlem4  21818  smadiadet  21819  smadiadetglem2  21821  matinv  21826  matunit  21827  slesolvec  21828  slesolinv  21829  slesolinvbi  21830  slesolex  21831  cramerimplem2  21833  cramerimplem3  21834  cramerimp  21835  decpmatcl  21916  decpmataa0  21917  decpmatmul  21921  smatcl  31752  matunitlindflem2  35774  matunitlindf  35775
  Copyright terms: Public domain W3C validator