| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > matrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the matrix algebra. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| matrcl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| matrcl.b | ⊢ 𝐵 = (Base‘𝐴) |
| Ref | Expression |
|---|---|
| matrcl | ⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4315 | . 2 ⊢ (𝑋 ∈ 𝐵 → ¬ 𝐵 = ∅) | |
| 2 | matrcl.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 3 | df-mat 22346 | . . . . . 6 ⊢ Mat = (𝑎 ∈ Fin, 𝑏 ∈ V ↦ ((𝑏 freeLMod (𝑎 × 𝑎)) sSet 〈(.r‘ndx), (𝑏 maMul 〈𝑎, 𝑎, 𝑎〉)〉)) | |
| 4 | 3 | mpondm0 7647 | . . . . 5 ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑁 Mat 𝑅) = ∅) |
| 5 | 2, 4 | eqtrid 2782 | . . . 4 ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → 𝐴 = ∅) |
| 6 | 5 | fveq2d 6880 | . . 3 ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘𝐴) = (Base‘∅)) |
| 7 | matrcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
| 8 | base0 17233 | . . 3 ⊢ ∅ = (Base‘∅) | |
| 9 | 6, 7, 8 | 3eqtr4g 2795 | . 2 ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → 𝐵 = ∅) |
| 10 | 1, 9 | nsyl2 141 | 1 ⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∅c0 4308 〈cop 4607 〈cotp 4609 × cxp 5652 ‘cfv 6531 (class class class)co 7405 Fincfn 8959 sSet csts 17182 ndxcnx 17212 Basecbs 17228 .rcmulr 17272 freeLMod cfrlm 21706 maMul cmmul 22328 Mat cmat 22345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-1cn 11187 ax-addcl 11189 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-nn 12241 df-slot 17201 df-ndx 17213 df-base 17229 df-mat 22346 |
| This theorem is referenced by: matbas2i 22360 matecl 22363 matplusg2 22365 matvsca2 22366 matplusgcell 22371 matsubgcell 22372 matinvgcell 22373 matvscacell 22374 matmulcell 22383 mattposcl 22391 mattposvs 22393 mattposm 22397 matgsumcl 22398 madetsumid 22399 madetsmelbas 22402 madetsmelbas2 22403 marrepval0 22499 marrepval 22500 marrepcl 22502 marepvval0 22504 marepvval 22505 marepvcl 22507 ma1repveval 22509 mulmarep1gsum1 22511 mulmarep1gsum2 22512 submabas 22516 submaval0 22518 submaval 22519 mdetleib2 22526 mdetf 22533 mdetrlin 22540 mdetrsca 22541 mdetralt 22546 mdetmul 22561 maduval 22576 maducoeval2 22578 maduf 22579 madutpos 22580 madugsum 22581 madurid 22582 madulid 22583 minmar1val0 22585 minmar1val 22586 marep01ma 22598 smadiadetlem0 22599 smadiadetlem1a 22601 smadiadetlem3 22606 smadiadetlem4 22607 smadiadet 22608 smadiadetglem2 22610 matinv 22615 matunit 22616 slesolvec 22617 slesolinv 22618 slesolinvbi 22619 slesolex 22620 cramerimplem2 22622 cramerimplem3 22623 cramerimp 22624 decpmatcl 22705 decpmataa0 22706 decpmatmul 22710 smatcl 33833 matunitlindflem2 37641 matunitlindf 37642 |
| Copyright terms: Public domain | W3C validator |