| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > matrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the matrix algebra. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| matrcl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| matrcl.b | ⊢ 𝐵 = (Base‘𝐴) |
| Ref | Expression |
|---|---|
| matrcl | ⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4299 | . 2 ⊢ (𝑋 ∈ 𝐵 → ¬ 𝐵 = ∅) | |
| 2 | matrcl.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 3 | df-mat 22328 | . . . . . 6 ⊢ Mat = (𝑎 ∈ Fin, 𝑏 ∈ V ↦ ((𝑏 freeLMod (𝑎 × 𝑎)) sSet 〈(.r‘ndx), (𝑏 maMul 〈𝑎, 𝑎, 𝑎〉)〉)) | |
| 4 | 3 | mpondm0 7609 | . . . . 5 ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑁 Mat 𝑅) = ∅) |
| 5 | 2, 4 | eqtrid 2776 | . . . 4 ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → 𝐴 = ∅) |
| 6 | 5 | fveq2d 6844 | . . 3 ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘𝐴) = (Base‘∅)) |
| 7 | matrcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
| 8 | base0 17160 | . . 3 ⊢ ∅ = (Base‘∅) | |
| 9 | 6, 7, 8 | 3eqtr4g 2789 | . 2 ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → 𝐵 = ∅) |
| 10 | 1, 9 | nsyl2 141 | 1 ⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∅c0 4292 〈cop 4591 〈cotp 4593 × cxp 5629 ‘cfv 6499 (class class class)co 7369 Fincfn 8895 sSet csts 17109 ndxcnx 17139 Basecbs 17155 .rcmulr 17197 freeLMod cfrlm 21688 maMul cmmul 22310 Mat cmat 22327 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-1cn 11102 ax-addcl 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-nn 12163 df-slot 17128 df-ndx 17140 df-base 17156 df-mat 22328 |
| This theorem is referenced by: matbas2i 22342 matecl 22345 matplusg2 22347 matvsca2 22348 matplusgcell 22353 matsubgcell 22354 matinvgcell 22355 matvscacell 22356 matmulcell 22365 mattposcl 22373 mattposvs 22375 mattposm 22379 matgsumcl 22380 madetsumid 22381 madetsmelbas 22384 madetsmelbas2 22385 marrepval0 22481 marrepval 22482 marrepcl 22484 marepvval0 22486 marepvval 22487 marepvcl 22489 ma1repveval 22491 mulmarep1gsum1 22493 mulmarep1gsum2 22494 submabas 22498 submaval0 22500 submaval 22501 mdetleib2 22508 mdetf 22515 mdetrlin 22522 mdetrsca 22523 mdetralt 22528 mdetmul 22543 maduval 22558 maducoeval2 22560 maduf 22561 madutpos 22562 madugsum 22563 madurid 22564 madulid 22565 minmar1val0 22567 minmar1val 22568 marep01ma 22580 smadiadetlem0 22581 smadiadetlem1a 22583 smadiadetlem3 22588 smadiadetlem4 22589 smadiadet 22590 smadiadetglem2 22592 matinv 22597 matunit 22598 slesolvec 22599 slesolinv 22600 slesolinvbi 22601 slesolex 22602 cramerimplem2 22604 cramerimplem3 22605 cramerimp 22606 decpmatcl 22687 decpmataa0 22688 decpmatmul 22692 smatcl 33785 matunitlindflem2 37604 matunitlindf 37605 |
| Copyright terms: Public domain | W3C validator |