Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > matrcl | Structured version Visualization version GIF version |
Description: Reverse closure for the matrix algebra. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
matrcl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
matrcl.b | ⊢ 𝐵 = (Base‘𝐴) |
Ref | Expression |
---|---|
matrcl | ⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4264 | . 2 ⊢ (𝑋 ∈ 𝐵 → ¬ 𝐵 = ∅) | |
2 | matrcl.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
3 | df-mat 21465 | . . . . . 6 ⊢ Mat = (𝑎 ∈ Fin, 𝑏 ∈ V ↦ ((𝑏 freeLMod (𝑎 × 𝑎)) sSet 〈(.r‘ndx), (𝑏 maMul 〈𝑎, 𝑎, 𝑎〉)〉)) | |
4 | 3 | mpondm0 7488 | . . . . 5 ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑁 Mat 𝑅) = ∅) |
5 | 2, 4 | eqtrid 2790 | . . . 4 ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → 𝐴 = ∅) |
6 | 5 | fveq2d 6760 | . . 3 ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘𝐴) = (Base‘∅)) |
7 | matrcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
8 | base0 16845 | . . 3 ⊢ ∅ = (Base‘∅) | |
9 | 6, 7, 8 | 3eqtr4g 2804 | . 2 ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → 𝐵 = ∅) |
10 | 1, 9 | nsyl2 141 | 1 ⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 〈cop 4564 〈cotp 4566 × cxp 5578 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 sSet csts 16792 ndxcnx 16822 Basecbs 16840 .rcmulr 16889 freeLMod cfrlm 20863 maMul cmmul 21442 Mat cmat 21464 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-1cn 10860 ax-addcl 10862 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-nn 11904 df-slot 16811 df-ndx 16823 df-base 16841 df-mat 21465 |
This theorem is referenced by: matbas2i 21479 matecl 21482 matplusg2 21484 matvsca2 21485 matplusgcell 21490 matsubgcell 21491 matinvgcell 21492 matvscacell 21493 matmulcell 21502 mattposcl 21510 mattposvs 21512 mattposm 21516 matgsumcl 21517 madetsumid 21518 madetsmelbas 21521 madetsmelbas2 21522 marrepval0 21618 marrepval 21619 marrepcl 21621 marepvval0 21623 marepvval 21624 marepvcl 21626 ma1repveval 21628 mulmarep1gsum1 21630 mulmarep1gsum2 21631 submabas 21635 submaval0 21637 submaval 21638 mdetleib2 21645 mdetf 21652 mdetrlin 21659 mdetrsca 21660 mdetralt 21665 mdetmul 21680 maduval 21695 maducoeval2 21697 maduf 21698 madutpos 21699 madugsum 21700 madurid 21701 madulid 21702 minmar1val0 21704 minmar1val 21705 marep01ma 21717 smadiadetlem0 21718 smadiadetlem1a 21720 smadiadetlem3 21725 smadiadetlem4 21726 smadiadet 21727 smadiadetglem2 21729 matinv 21734 matunit 21735 slesolvec 21736 slesolinv 21737 slesolinvbi 21738 slesolex 21739 cramerimplem2 21741 cramerimplem3 21742 cramerimp 21743 decpmatcl 21824 decpmataa0 21825 decpmatmul 21829 smatcl 31654 matunitlindflem2 35701 matunitlindf 35702 |
Copyright terms: Public domain | W3C validator |