![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > matrcl | Structured version Visualization version GIF version |
Description: Reverse closure for the matrix algebra. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
matrcl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
matrcl.b | ⊢ 𝐵 = (Base‘𝐴) |
Ref | Expression |
---|---|
matrcl | ⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4148 | . 2 ⊢ (𝑋 ∈ 𝐵 → ¬ 𝐵 = ∅) | |
2 | matrcl.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
3 | df-mat 20580 | . . . . . 6 ⊢ Mat = (𝑎 ∈ Fin, 𝑏 ∈ V ↦ ((𝑏 freeLMod (𝑎 × 𝑎)) sSet 〈(.r‘ndx), (𝑏 maMul 〈𝑎, 𝑎, 𝑎〉)〉)) | |
4 | 3 | mpt2ndm0 7134 | . . . . 5 ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑁 Mat 𝑅) = ∅) |
5 | 2, 4 | syl5eq 2872 | . . . 4 ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → 𝐴 = ∅) |
6 | 5 | fveq2d 6436 | . . 3 ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘𝐴) = (Base‘∅)) |
7 | matrcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
8 | base0 16274 | . . 3 ⊢ ∅ = (Base‘∅) | |
9 | 6, 7, 8 | 3eqtr4g 2885 | . 2 ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → 𝐵 = ∅) |
10 | 1, 9 | nsyl2 145 | 1 ⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 Vcvv 3413 ∅c0 4143 〈cop 4402 〈cotp 4404 × cxp 5339 ‘cfv 6122 (class class class)co 6904 Fincfn 8221 ndxcnx 16218 sSet csts 16219 Basecbs 16221 .rcmulr 16305 freeLMod cfrlm 20452 maMul cmmul 20555 Mat cmat 20579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ral 3121 df-rex 3122 df-rab 3125 df-v 3415 df-sbc 3662 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-nul 4144 df-if 4306 df-sn 4397 df-pr 4399 df-op 4403 df-uni 4658 df-br 4873 df-opab 4935 df-mpt 4952 df-id 5249 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-iota 6085 df-fun 6124 df-fv 6130 df-ov 6907 df-oprab 6908 df-mpt2 6909 df-slot 16225 df-base 16227 df-mat 20580 |
This theorem is referenced by: matbas2i 20594 matecl 20597 matplusg2 20599 matvsca2 20600 matplusgcell 20605 matsubgcell 20606 matinvgcell 20607 matvscacell 20608 matmulcell 20617 matmulcellOLD 20618 mattposcl 20626 mattposvs 20628 mattposm 20632 matgsumcl 20633 madetsumid 20634 madetsmelbas 20637 madetsmelbas2 20638 marrepval0 20734 marrepval 20735 marrepcl 20737 marepvval0 20739 marepvval 20740 marepvcl 20742 ma1repveval 20744 mulmarep1gsum1 20746 mulmarep1gsum2 20747 submabas 20751 submaval0 20753 submaval 20754 mdetleib2 20761 mdetf 20768 mdetrlin 20775 mdetrsca 20776 mdetralt 20781 mdetmul 20796 maduval 20811 maducoeval2 20813 maduf 20814 madutpos 20815 madugsum 20816 madurid 20817 madulid 20818 minmar1val0 20820 minmar1val 20821 marep01ma 20834 smadiadetlem0 20835 smadiadetlem1a 20837 smadiadetlem3 20842 smadiadetlem4 20843 smadiadet 20844 smadiadetglem2 20846 matinv 20851 matunit 20852 slesolvec 20853 slesolinv 20854 slesolinvbi 20855 slesolex 20856 cramerimplem2 20859 cramerimplem3 20860 cramerimp 20861 decpmatcl 20941 decpmataa0 20942 decpmatmul 20946 smatcl 30412 matunitlindflem2 33949 matunitlindf 33950 |
Copyright terms: Public domain | W3C validator |