| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > matrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the matrix algebra. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| matrcl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| matrcl.b | ⊢ 𝐵 = (Base‘𝐴) |
| Ref | Expression |
|---|---|
| matrcl | ⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4306 | . 2 ⊢ (𝑋 ∈ 𝐵 → ¬ 𝐵 = ∅) | |
| 2 | matrcl.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 3 | df-mat 22302 | . . . . . 6 ⊢ Mat = (𝑎 ∈ Fin, 𝑏 ∈ V ↦ ((𝑏 freeLMod (𝑎 × 𝑎)) sSet 〈(.r‘ndx), (𝑏 maMul 〈𝑎, 𝑎, 𝑎〉)〉)) | |
| 4 | 3 | mpondm0 7632 | . . . . 5 ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑁 Mat 𝑅) = ∅) |
| 5 | 2, 4 | eqtrid 2777 | . . . 4 ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → 𝐴 = ∅) |
| 6 | 5 | fveq2d 6865 | . . 3 ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘𝐴) = (Base‘∅)) |
| 7 | matrcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
| 8 | base0 17191 | . . 3 ⊢ ∅ = (Base‘∅) | |
| 9 | 6, 7, 8 | 3eqtr4g 2790 | . 2 ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → 𝐵 = ∅) |
| 10 | 1, 9 | nsyl2 141 | 1 ⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4299 〈cop 4598 〈cotp 4600 × cxp 5639 ‘cfv 6514 (class class class)co 7390 Fincfn 8921 sSet csts 17140 ndxcnx 17170 Basecbs 17186 .rcmulr 17228 freeLMod cfrlm 21662 maMul cmmul 22284 Mat cmat 22301 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-1cn 11133 ax-addcl 11135 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-nn 12194 df-slot 17159 df-ndx 17171 df-base 17187 df-mat 22302 |
| This theorem is referenced by: matbas2i 22316 matecl 22319 matplusg2 22321 matvsca2 22322 matplusgcell 22327 matsubgcell 22328 matinvgcell 22329 matvscacell 22330 matmulcell 22339 mattposcl 22347 mattposvs 22349 mattposm 22353 matgsumcl 22354 madetsumid 22355 madetsmelbas 22358 madetsmelbas2 22359 marrepval0 22455 marrepval 22456 marrepcl 22458 marepvval0 22460 marepvval 22461 marepvcl 22463 ma1repveval 22465 mulmarep1gsum1 22467 mulmarep1gsum2 22468 submabas 22472 submaval0 22474 submaval 22475 mdetleib2 22482 mdetf 22489 mdetrlin 22496 mdetrsca 22497 mdetralt 22502 mdetmul 22517 maduval 22532 maducoeval2 22534 maduf 22535 madutpos 22536 madugsum 22537 madurid 22538 madulid 22539 minmar1val0 22541 minmar1val 22542 marep01ma 22554 smadiadetlem0 22555 smadiadetlem1a 22557 smadiadetlem3 22562 smadiadetlem4 22563 smadiadet 22564 smadiadetglem2 22566 matinv 22571 matunit 22572 slesolvec 22573 slesolinv 22574 slesolinvbi 22575 slesolex 22576 cramerimplem2 22578 cramerimplem3 22579 cramerimp 22580 decpmatcl 22661 decpmataa0 22662 decpmatmul 22666 smatcl 33799 matunitlindflem2 37618 matunitlindf 37619 |
| Copyright terms: Public domain | W3C validator |