Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > matrcl | Structured version Visualization version GIF version |
Description: Reverse closure for the matrix algebra. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
matrcl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
matrcl.b | ⊢ 𝐵 = (Base‘𝐴) |
Ref | Expression |
---|---|
matrcl | ⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4228 | . 2 ⊢ (𝑋 ∈ 𝐵 → ¬ 𝐵 = ∅) | |
2 | matrcl.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
3 | df-mat 21093 | . . . . . 6 ⊢ Mat = (𝑎 ∈ Fin, 𝑏 ∈ V ↦ ((𝑏 freeLMod (𝑎 × 𝑎)) sSet 〈(.r‘ndx), (𝑏 maMul 〈𝑎, 𝑎, 𝑎〉)〉)) | |
4 | 3 | mpondm0 7375 | . . . . 5 ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑁 Mat 𝑅) = ∅) |
5 | 2, 4 | syl5eq 2806 | . . . 4 ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → 𝐴 = ∅) |
6 | 5 | fveq2d 6655 | . . 3 ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘𝐴) = (Base‘∅)) |
7 | matrcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
8 | base0 16579 | . . 3 ⊢ ∅ = (Base‘∅) | |
9 | 6, 7, 8 | 3eqtr4g 2819 | . 2 ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → 𝐵 = ∅) |
10 | 1, 9 | nsyl2 143 | 1 ⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 Vcvv 3407 ∅c0 4221 〈cop 4521 〈cotp 4523 × cxp 5515 ‘cfv 6328 (class class class)co 7143 Fincfn 8520 ndxcnx 16523 sSet csts 16524 Basecbs 16526 .rcmulr 16609 freeLMod cfrlm 20496 maMul cmmul 21070 Mat cmat 21092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5162 ax-nul 5169 ax-pr 5291 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2899 df-ne 2950 df-ral 3073 df-rex 3074 df-v 3409 df-sbc 3694 df-dif 3857 df-un 3859 df-in 3861 df-ss 3871 df-nul 4222 df-if 4414 df-sn 4516 df-pr 4518 df-op 4522 df-uni 4792 df-br 5026 df-opab 5088 df-mpt 5106 df-id 5423 df-xp 5523 df-rel 5524 df-cnv 5525 df-co 5526 df-dm 5527 df-iota 6287 df-fun 6330 df-fv 6336 df-ov 7146 df-oprab 7147 df-mpo 7148 df-slot 16530 df-base 16532 df-mat 21093 |
This theorem is referenced by: matbas2i 21107 matecl 21110 matplusg2 21112 matvsca2 21113 matplusgcell 21118 matsubgcell 21119 matinvgcell 21120 matvscacell 21121 matmulcell 21130 mattposcl 21138 mattposvs 21140 mattposm 21144 matgsumcl 21145 madetsumid 21146 madetsmelbas 21149 madetsmelbas2 21150 marrepval0 21246 marrepval 21247 marrepcl 21249 marepvval0 21251 marepvval 21252 marepvcl 21254 ma1repveval 21256 mulmarep1gsum1 21258 mulmarep1gsum2 21259 submabas 21263 submaval0 21265 submaval 21266 mdetleib2 21273 mdetf 21280 mdetrlin 21287 mdetrsca 21288 mdetralt 21293 mdetmul 21308 maduval 21323 maducoeval2 21325 maduf 21326 madutpos 21327 madugsum 21328 madurid 21329 madulid 21330 minmar1val0 21332 minmar1val 21333 marep01ma 21345 smadiadetlem0 21346 smadiadetlem1a 21348 smadiadetlem3 21353 smadiadetlem4 21354 smadiadet 21355 smadiadetglem2 21357 matinv 21362 matunit 21363 slesolvec 21364 slesolinv 21365 slesolinvbi 21366 slesolex 21367 cramerimplem2 21369 cramerimplem3 21370 cramerimp 21371 decpmatcl 21452 decpmataa0 21453 decpmatmul 21457 smatcl 31258 matunitlindflem2 35319 matunitlindf 35320 |
Copyright terms: Public domain | W3C validator |