![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > matbas0pc | Structured version Visualization version GIF version |
Description: There is no matrix with a proper class either as dimension or as underlying ring. (Contributed by AV, 28-Dec-2018.) |
Ref | Expression |
---|---|
matbas0pc | β’ (Β¬ (π β V β§ π β V) β (Baseβ(π Mat π )) = β ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mat 22129 | . . . . 5 β’ Mat = (π β Fin, π β V β¦ ((π freeLMod (π Γ π)) sSet β¨(.rβndx), (π maMul β¨π, π, πβ©)β©)) | |
2 | 1 | reldmmpo 7546 | . . . 4 β’ Rel dom Mat |
3 | 2 | ovprc 7450 | . . 3 β’ (Β¬ (π β V β§ π β V) β (π Mat π ) = β ) |
4 | 3 | fveq2d 6895 | . 2 β’ (Β¬ (π β V β§ π β V) β (Baseβ(π Mat π )) = (Baseββ )) |
5 | base0 17154 | . 2 β’ β = (Baseββ ) | |
6 | 4, 5 | eqtr4di 2789 | 1 β’ (Β¬ (π β V β§ π β V) β (Baseβ(π Mat π )) = β ) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 Vcvv 3473 β c0 4322 β¨cop 4634 β¨cotp 4636 Γ cxp 5674 βcfv 6543 (class class class)co 7412 Fincfn 8943 sSet csts 17101 ndxcnx 17131 Basecbs 17149 .rcmulr 17203 freeLMod cfrlm 21521 maMul cmmul 22106 Mat cmat 22128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-1cn 11172 ax-addcl 11174 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-nn 12218 df-slot 17120 df-ndx 17132 df-base 17150 df-mat 22129 |
This theorem is referenced by: marrepfval 22283 marepvfval 22288 submafval 22302 minmar1fval 22369 |
Copyright terms: Public domain | W3C validator |