| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > matbas0pc | Structured version Visualization version GIF version | ||
| Description: There is no matrix with a proper class either as dimension or as underlying ring. (Contributed by AV, 28-Dec-2018.) |
| Ref | Expression |
|---|---|
| matbas0pc | ⊢ (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (Base‘(𝑁 Mat 𝑅)) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mat 22346 | . . . . 5 ⊢ Mat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ ((𝑟 freeLMod (𝑛 × 𝑛)) sSet 〈(.r‘ndx), (𝑟 maMul 〈𝑛, 𝑛, 𝑛〉)〉)) | |
| 2 | 1 | reldmmpo 7541 | . . . 4 ⊢ Rel dom Mat |
| 3 | 2 | ovprc 7443 | . . 3 ⊢ (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 Mat 𝑅) = ∅) |
| 4 | 3 | fveq2d 6880 | . 2 ⊢ (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (Base‘(𝑁 Mat 𝑅)) = (Base‘∅)) |
| 5 | base0 17233 | . 2 ⊢ ∅ = (Base‘∅) | |
| 6 | 4, 5 | eqtr4di 2788 | 1 ⊢ (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (Base‘(𝑁 Mat 𝑅)) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∅c0 4308 〈cop 4607 〈cotp 4609 × cxp 5652 ‘cfv 6531 (class class class)co 7405 Fincfn 8959 sSet csts 17182 ndxcnx 17212 Basecbs 17228 .rcmulr 17272 freeLMod cfrlm 21706 maMul cmmul 22328 Mat cmat 22345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-1cn 11187 ax-addcl 11189 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-nn 12241 df-slot 17201 df-ndx 17213 df-base 17229 df-mat 22346 |
| This theorem is referenced by: marrepfval 22498 marepvfval 22503 submafval 22517 minmar1fval 22584 |
| Copyright terms: Public domain | W3C validator |