| Step | Hyp | Ref
| Expression |
| 1 | | madufval.j |
. 2
⊢ 𝐽 = (𝑁 maAdju 𝑅) |
| 2 | | fvoveq1 7454 |
. . . . . 6
⊢ (𝑛 = 𝑁 → (Base‘(𝑛 Mat 𝑟)) = (Base‘(𝑁 Mat 𝑟))) |
| 3 | | id 22 |
. . . . . . 7
⊢ (𝑛 = 𝑁 → 𝑛 = 𝑁) |
| 4 | | oveq1 7438 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → (𝑛 maDet 𝑟) = (𝑁 maDet 𝑟)) |
| 5 | | eqidd 2738 |
. . . . . . . . 9
⊢ (𝑛 = 𝑁 → if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑟), (0g‘𝑟)), (𝑘𝑚𝑙)) = if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑟), (0g‘𝑟)), (𝑘𝑚𝑙))) |
| 6 | 3, 3, 5 | mpoeq123dv 7508 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → (𝑘 ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑟), (0g‘𝑟)), (𝑘𝑚𝑙))) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑟), (0g‘𝑟)), (𝑘𝑚𝑙)))) |
| 7 | 4, 6 | fveq12d 6913 |
. . . . . . 7
⊢ (𝑛 = 𝑁 → ((𝑛 maDet 𝑟)‘(𝑘 ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑟), (0g‘𝑟)), (𝑘𝑚𝑙)))) = ((𝑁 maDet 𝑟)‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑟), (0g‘𝑟)), (𝑘𝑚𝑙))))) |
| 8 | 3, 3, 7 | mpoeq123dv 7508 |
. . . . . 6
⊢ (𝑛 = 𝑁 → (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ ((𝑛 maDet 𝑟)‘(𝑘 ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑟), (0g‘𝑟)), (𝑘𝑚𝑙))))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑁 maDet 𝑟)‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑟), (0g‘𝑟)), (𝑘𝑚𝑙)))))) |
| 9 | 2, 8 | mpteq12dv 5233 |
. . . . 5
⊢ (𝑛 = 𝑁 → (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ ((𝑛 maDet 𝑟)‘(𝑘 ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑟), (0g‘𝑟)), (𝑘𝑚𝑙)))))) = (𝑚 ∈ (Base‘(𝑁 Mat 𝑟)) ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑁 maDet 𝑟)‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑟), (0g‘𝑟)), (𝑘𝑚𝑙))))))) |
| 10 | | oveq2 7439 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (𝑁 Mat 𝑟) = (𝑁 Mat 𝑅)) |
| 11 | 10 | fveq2d 6910 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (Base‘(𝑁 Mat 𝑟)) = (Base‘(𝑁 Mat 𝑅))) |
| 12 | | oveq2 7439 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (𝑁 maDet 𝑟) = (𝑁 maDet 𝑅)) |
| 13 | | fveq2 6906 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → (1r‘𝑟) = (1r‘𝑅)) |
| 14 | | fveq2 6906 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) |
| 15 | 13, 14 | ifeq12d 4547 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → if(𝑙 = 𝑖, (1r‘𝑟), (0g‘𝑟)) = if(𝑙 = 𝑖, (1r‘𝑅), (0g‘𝑅))) |
| 16 | 15 | ifeq1d 4545 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑟), (0g‘𝑟)), (𝑘𝑚𝑙)) = if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑅), (0g‘𝑅)), (𝑘𝑚𝑙))) |
| 17 | 16 | mpoeq3dv 7512 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑟), (0g‘𝑟)), (𝑘𝑚𝑙))) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑅), (0g‘𝑅)), (𝑘𝑚𝑙)))) |
| 18 | 12, 17 | fveq12d 6913 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → ((𝑁 maDet 𝑟)‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑟), (0g‘𝑟)), (𝑘𝑚𝑙)))) = ((𝑁 maDet 𝑅)‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑅), (0g‘𝑅)), (𝑘𝑚𝑙))))) |
| 19 | 18 | mpoeq3dv 7512 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑁 maDet 𝑟)‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑟), (0g‘𝑟)), (𝑘𝑚𝑙))))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑁 maDet 𝑅)‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑅), (0g‘𝑅)), (𝑘𝑚𝑙)))))) |
| 20 | 11, 19 | mpteq12dv 5233 |
. . . . 5
⊢ (𝑟 = 𝑅 → (𝑚 ∈ (Base‘(𝑁 Mat 𝑟)) ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑁 maDet 𝑟)‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑟), (0g‘𝑟)), (𝑘𝑚𝑙)))))) = (𝑚 ∈ (Base‘(𝑁 Mat 𝑅)) ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑁 maDet 𝑅)‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑅), (0g‘𝑅)), (𝑘𝑚𝑙))))))) |
| 21 | | df-madu 22640 |
. . . . 5
⊢ maAdju =
(𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ ((𝑛 maDet 𝑟)‘(𝑘 ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑟), (0g‘𝑟)), (𝑘𝑚𝑙))))))) |
| 22 | | fvex 6919 |
. . . . . 6
⊢
(Base‘(𝑁 Mat
𝑅)) ∈
V |
| 23 | 22 | mptex 7243 |
. . . . 5
⊢ (𝑚 ∈ (Base‘(𝑁 Mat 𝑅)) ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑁 maDet 𝑅)‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑅), (0g‘𝑅)), (𝑘𝑚𝑙)))))) ∈ V |
| 24 | 9, 20, 21, 23 | ovmpo 7593 |
. . . 4
⊢ ((𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maAdju 𝑅) = (𝑚 ∈ (Base‘(𝑁 Mat 𝑅)) ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑁 maDet 𝑅)‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑅), (0g‘𝑅)), (𝑘𝑚𝑙))))))) |
| 25 | | madufval.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐴) |
| 26 | | madufval.a |
. . . . . . 7
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 27 | 26 | fveq2i 6909 |
. . . . . 6
⊢
(Base‘𝐴) =
(Base‘(𝑁 Mat 𝑅)) |
| 28 | 25, 27 | eqtri 2765 |
. . . . 5
⊢ 𝐵 = (Base‘(𝑁 Mat 𝑅)) |
| 29 | | madufval.d |
. . . . . . . 8
⊢ 𝐷 = (𝑁 maDet 𝑅) |
| 30 | | madufval.o |
. . . . . . . . . . . 12
⊢ 1 =
(1r‘𝑅) |
| 31 | 30 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → 1 =
(1r‘𝑅)) |
| 32 | | madufval.z |
. . . . . . . . . . . 12
⊢ 0 =
(0g‘𝑅) |
| 33 | 32 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → 0 =
(0g‘𝑅)) |
| 34 | 31, 33 | ifeq12d 4547 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → if(𝑙 = 𝑖, 1 , 0 ) = if(𝑙 = 𝑖, (1r‘𝑅), (0g‘𝑅))) |
| 35 | 34 | ifeq1d 4545 |
. . . . . . . . 9
⊢ ((𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)) = if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑅), (0g‘𝑅)), (𝑘𝑚𝑙))) |
| 36 | 35 | mpoeq3ia 7511 |
. . . . . . . 8
⊢ (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙))) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑅), (0g‘𝑅)), (𝑘𝑚𝑙))) |
| 37 | 29, 36 | fveq12i 6912 |
. . . . . . 7
⊢ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))) = ((𝑁 maDet 𝑅)‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑅), (0g‘𝑅)), (𝑘𝑚𝑙)))) |
| 38 | 37 | a1i 11 |
. . . . . 6
⊢ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))) = ((𝑁 maDet 𝑅)‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑅), (0g‘𝑅)), (𝑘𝑚𝑙))))) |
| 39 | 38 | mpoeq3ia 7511 |
. . . . 5
⊢ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙))))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑁 maDet 𝑅)‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑅), (0g‘𝑅)), (𝑘𝑚𝑙))))) |
| 40 | 28, 39 | mpteq12i 5248 |
. . . 4
⊢ (𝑚 ∈ 𝐵 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))))) = (𝑚 ∈ (Base‘(𝑁 Mat 𝑅)) ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑁 maDet 𝑅)‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑅), (0g‘𝑅)), (𝑘𝑚𝑙)))))) |
| 41 | 24, 40 | eqtr4di 2795 |
. . 3
⊢ ((𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maAdju 𝑅) = (𝑚 ∈ 𝐵 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙))))))) |
| 42 | 21 | reldmmpo 7567 |
. . . . 5
⊢ Rel dom
maAdju |
| 43 | 42 | ovprc 7469 |
. . . 4
⊢ (¬
(𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maAdju 𝑅) = ∅) |
| 44 | | df-mat 22412 |
. . . . . . . . . . 11
⊢ Mat =
(𝑛 ∈ Fin, 𝑟 ∈ V ↦ ((𝑟 freeLMod (𝑛 × 𝑛)) sSet 〈(.r‘ndx),
(𝑟 maMul 〈𝑛, 𝑛, 𝑛〉)〉)) |
| 45 | 44 | reldmmpo 7567 |
. . . . . . . . . 10
⊢ Rel dom
Mat |
| 46 | 45 | ovprc 7469 |
. . . . . . . . 9
⊢ (¬
(𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 Mat 𝑅) = ∅) |
| 47 | 26, 46 | eqtrid 2789 |
. . . . . . . 8
⊢ (¬
(𝑁 ∈ V ∧ 𝑅 ∈ V) → 𝐴 = ∅) |
| 48 | 47 | fveq2d 6910 |
. . . . . . 7
⊢ (¬
(𝑁 ∈ V ∧ 𝑅 ∈ V) →
(Base‘𝐴) =
(Base‘∅)) |
| 49 | | base0 17252 |
. . . . . . 7
⊢ ∅ =
(Base‘∅) |
| 50 | 48, 25, 49 | 3eqtr4g 2802 |
. . . . . 6
⊢ (¬
(𝑁 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ∅) |
| 51 | 50 | mpteq1d 5237 |
. . . . 5
⊢ (¬
(𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑚 ∈ 𝐵 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))))) = (𝑚 ∈ ∅ ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙))))))) |
| 52 | | mpt0 6710 |
. . . . 5
⊢ (𝑚 ∈ ∅ ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))))) = ∅ |
| 53 | 51, 52 | eqtrdi 2793 |
. . . 4
⊢ (¬
(𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑚 ∈ 𝐵 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))))) = ∅) |
| 54 | 43, 53 | eqtr4d 2780 |
. . 3
⊢ (¬
(𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maAdju 𝑅) = (𝑚 ∈ 𝐵 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙))))))) |
| 55 | 41, 54 | pm2.61i 182 |
. 2
⊢ (𝑁 maAdju 𝑅) = (𝑚 ∈ 𝐵 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))))) |
| 56 | 1, 55 | eqtri 2765 |
1
⊢ 𝐽 = (𝑚 ∈ 𝐵 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))))) |