MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madufval Structured version   Visualization version   GIF version

Theorem madufval 21694
Description: First substitution for the adjunct (cofactor) matrix. (Contributed by SO, 11-Jul-2018.)
Hypotheses
Ref Expression
madufval.a 𝐴 = (𝑁 Mat 𝑅)
madufval.d 𝐷 = (𝑁 maDet 𝑅)
madufval.j 𝐽 = (𝑁 maAdju 𝑅)
madufval.b 𝐵 = (Base‘𝐴)
madufval.o 1 = (1r𝑅)
madufval.z 0 = (0g𝑅)
Assertion
Ref Expression
madufval 𝐽 = (𝑚𝐵 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙))))))
Distinct variable groups:   𝑚,𝑁,𝑖,𝑗,𝑘,𝑙   𝑅,𝑚,𝑖,𝑗,𝑘,𝑙   𝐵,𝑚
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐵(𝑖,𝑗,𝑘,𝑙)   𝐷(𝑖,𝑗,𝑘,𝑚,𝑙)   1 (𝑖,𝑗,𝑘,𝑚,𝑙)   𝐽(𝑖,𝑗,𝑘,𝑚,𝑙)   0 (𝑖,𝑗,𝑘,𝑚,𝑙)

Proof of Theorem madufval
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 madufval.j . 2 𝐽 = (𝑁 maAdju 𝑅)
2 fvoveq1 7278 . . . . . 6 (𝑛 = 𝑁 → (Base‘(𝑛 Mat 𝑟)) = (Base‘(𝑁 Mat 𝑟)))
3 id 22 . . . . . . 7 (𝑛 = 𝑁𝑛 = 𝑁)
4 oveq1 7262 . . . . . . . 8 (𝑛 = 𝑁 → (𝑛 maDet 𝑟) = (𝑁 maDet 𝑟))
5 eqidd 2739 . . . . . . . . 9 (𝑛 = 𝑁 → if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)) = if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)))
63, 3, 5mpoeq123dv 7328 . . . . . . . 8 (𝑛 = 𝑁 → (𝑘𝑛, 𝑙𝑛 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙))) = (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙))))
74, 6fveq12d 6763 . . . . . . 7 (𝑛 = 𝑁 → ((𝑛 maDet 𝑟)‘(𝑘𝑛, 𝑙𝑛 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)))) = ((𝑁 maDet 𝑟)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)))))
83, 3, 7mpoeq123dv 7328 . . . . . 6 (𝑛 = 𝑁 → (𝑖𝑛, 𝑗𝑛 ↦ ((𝑛 maDet 𝑟)‘(𝑘𝑛, 𝑙𝑛 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙))))) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑟)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙))))))
92, 8mpteq12dv 5161 . . . . 5 (𝑛 = 𝑁 → (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑖𝑛, 𝑗𝑛 ↦ ((𝑛 maDet 𝑟)‘(𝑘𝑛, 𝑙𝑛 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)))))) = (𝑚 ∈ (Base‘(𝑁 Mat 𝑟)) ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑟)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)))))))
10 oveq2 7263 . . . . . . 7 (𝑟 = 𝑅 → (𝑁 Mat 𝑟) = (𝑁 Mat 𝑅))
1110fveq2d 6760 . . . . . 6 (𝑟 = 𝑅 → (Base‘(𝑁 Mat 𝑟)) = (Base‘(𝑁 Mat 𝑅)))
12 oveq2 7263 . . . . . . . 8 (𝑟 = 𝑅 → (𝑁 maDet 𝑟) = (𝑁 maDet 𝑅))
13 fveq2 6756 . . . . . . . . . . 11 (𝑟 = 𝑅 → (1r𝑟) = (1r𝑅))
14 fveq2 6756 . . . . . . . . . . 11 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
1513, 14ifeq12d 4477 . . . . . . . . . 10 (𝑟 = 𝑅 → if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)) = if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)))
1615ifeq1d 4475 . . . . . . . . 9 (𝑟 = 𝑅 → if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)) = if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙)))
1716mpoeq3dv 7332 . . . . . . . 8 (𝑟 = 𝑅 → (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙))) = (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙))))
1812, 17fveq12d 6763 . . . . . . 7 (𝑟 = 𝑅 → ((𝑁 maDet 𝑟)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)))) = ((𝑁 maDet 𝑅)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙)))))
1918mpoeq3dv 7332 . . . . . 6 (𝑟 = 𝑅 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑟)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙))))) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑅)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙))))))
2011, 19mpteq12dv 5161 . . . . 5 (𝑟 = 𝑅 → (𝑚 ∈ (Base‘(𝑁 Mat 𝑟)) ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑟)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)))))) = (𝑚 ∈ (Base‘(𝑁 Mat 𝑅)) ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑅)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙)))))))
21 df-madu 21691 . . . . 5 maAdju = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑖𝑛, 𝑗𝑛 ↦ ((𝑛 maDet 𝑟)‘(𝑘𝑛, 𝑙𝑛 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)))))))
22 fvex 6769 . . . . . 6 (Base‘(𝑁 Mat 𝑅)) ∈ V
2322mptex 7081 . . . . 5 (𝑚 ∈ (Base‘(𝑁 Mat 𝑅)) ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑅)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙)))))) ∈ V
249, 20, 21, 23ovmpo 7411 . . . 4 ((𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maAdju 𝑅) = (𝑚 ∈ (Base‘(𝑁 Mat 𝑅)) ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑅)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙)))))))
25 madufval.b . . . . . 6 𝐵 = (Base‘𝐴)
26 madufval.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
2726fveq2i 6759 . . . . . 6 (Base‘𝐴) = (Base‘(𝑁 Mat 𝑅))
2825, 27eqtri 2766 . . . . 5 𝐵 = (Base‘(𝑁 Mat 𝑅))
29 madufval.d . . . . . . . 8 𝐷 = (𝑁 maDet 𝑅)
30 madufval.o . . . . . . . . . . . 12 1 = (1r𝑅)
3130a1i 11 . . . . . . . . . . 11 ((𝑘𝑁𝑙𝑁) → 1 = (1r𝑅))
32 madufval.z . . . . . . . . . . . 12 0 = (0g𝑅)
3332a1i 11 . . . . . . . . . . 11 ((𝑘𝑁𝑙𝑁) → 0 = (0g𝑅))
3431, 33ifeq12d 4477 . . . . . . . . . 10 ((𝑘𝑁𝑙𝑁) → if(𝑙 = 𝑖, 1 , 0 ) = if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)))
3534ifeq1d 4475 . . . . . . . . 9 ((𝑘𝑁𝑙𝑁) → if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)) = if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙)))
3635mpoeq3ia 7331 . . . . . . . 8 (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙))) = (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙)))
3729, 36fveq12i 6762 . . . . . . 7 (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))) = ((𝑁 maDet 𝑅)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙))))
3837a1i 11 . . . . . 6 ((𝑖𝑁𝑗𝑁) → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))) = ((𝑁 maDet 𝑅)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙)))))
3938mpoeq3ia 7331 . . . . 5 (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙))))) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑅)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙)))))
4028, 39mpteq12i 5176 . . . 4 (𝑚𝐵 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))))) = (𝑚 ∈ (Base‘(𝑁 Mat 𝑅)) ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑅)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙))))))
4124, 40eqtr4di 2797 . . 3 ((𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maAdju 𝑅) = (𝑚𝐵 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))))))
4221reldmmpo 7386 . . . . 5 Rel dom maAdju
4342ovprc 7293 . . . 4 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maAdju 𝑅) = ∅)
44 df-mat 21465 . . . . . . . . . . 11 Mat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ ((𝑟 freeLMod (𝑛 × 𝑛)) sSet ⟨(.r‘ndx), (𝑟 maMul ⟨𝑛, 𝑛, 𝑛⟩)⟩))
4544reldmmpo 7386 . . . . . . . . . 10 Rel dom Mat
4645ovprc 7293 . . . . . . . . 9 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 Mat 𝑅) = ∅)
4726, 46eqtrid 2790 . . . . . . . 8 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → 𝐴 = ∅)
4847fveq2d 6760 . . . . . . 7 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (Base‘𝐴) = (Base‘∅))
49 base0 16845 . . . . . . 7 ∅ = (Base‘∅)
5048, 25, 493eqtr4g 2804 . . . . . 6 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ∅)
5150mpteq1d 5165 . . . . 5 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑚𝐵 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))))) = (𝑚 ∈ ∅ ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))))))
52 mpt0 6559 . . . . 5 (𝑚 ∈ ∅ ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))))) = ∅
5351, 52eqtrdi 2795 . . . 4 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑚𝐵 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))))) = ∅)
5443, 53eqtr4d 2781 . . 3 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maAdju 𝑅) = (𝑚𝐵 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))))))
5541, 54pm2.61i 182 . 2 (𝑁 maAdju 𝑅) = (𝑚𝐵 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙))))))
561, 55eqtri 2766 1 𝐽 = (𝑚𝐵 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253  ifcif 4456  cop 4564  cotp 4566  cmpt 5153   × cxp 5578  cfv 6418  (class class class)co 7255  cmpo 7257  Fincfn 8691   sSet csts 16792  ndxcnx 16822  Basecbs 16840  .rcmulr 16889  0gc0g 17067  1rcur 19652   freeLMod cfrlm 20863   maMul cmmul 21442   Mat cmat 21464   maDet cmdat 21641   maAdju cmadu 21689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-1cn 10860  ax-addcl 10862
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-nn 11904  df-slot 16811  df-ndx 16823  df-base 16841  df-mat 21465  df-madu 21691
This theorem is referenced by:  maduval  21695  maduf  21698
  Copyright terms: Public domain W3C validator