MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madufval Structured version   Visualization version   GIF version

Theorem madufval 22138
Description: First substitution for the adjunct (cofactor) matrix. (Contributed by SO, 11-Jul-2018.)
Hypotheses
Ref Expression
madufval.a 𝐴 = (𝑁 Mat 𝑅)
madufval.d 𝐷 = (𝑁 maDet 𝑅)
madufval.j 𝐽 = (𝑁 maAdju 𝑅)
madufval.b 𝐡 = (Baseβ€˜π΄)
madufval.o 1 = (1rβ€˜π‘…)
madufval.z 0 = (0gβ€˜π‘…)
Assertion
Ref Expression
madufval 𝐽 = (π‘š ∈ 𝐡 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (π·β€˜(π‘˜ ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (π‘˜π‘šπ‘™))))))
Distinct variable groups:   π‘š,𝑁,𝑖,𝑗,π‘˜,𝑙   𝑅,π‘š,𝑖,𝑗,π‘˜,𝑙   𝐡,π‘š
Allowed substitution hints:   𝐴(𝑖,𝑗,π‘˜,π‘š,𝑙)   𝐡(𝑖,𝑗,π‘˜,𝑙)   𝐷(𝑖,𝑗,π‘˜,π‘š,𝑙)   1 (𝑖,𝑗,π‘˜,π‘š,𝑙)   𝐽(𝑖,𝑗,π‘˜,π‘š,𝑙)   0 (𝑖,𝑗,π‘˜,π‘š,𝑙)

Proof of Theorem madufval
Dummy variables 𝑛 π‘Ÿ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 madufval.j . 2 𝐽 = (𝑁 maAdju 𝑅)
2 fvoveq1 7431 . . . . . 6 (𝑛 = 𝑁 β†’ (Baseβ€˜(𝑛 Mat π‘Ÿ)) = (Baseβ€˜(𝑁 Mat π‘Ÿ)))
3 id 22 . . . . . . 7 (𝑛 = 𝑁 β†’ 𝑛 = 𝑁)
4 oveq1 7415 . . . . . . . 8 (𝑛 = 𝑁 β†’ (𝑛 maDet π‘Ÿ) = (𝑁 maDet π‘Ÿ))
5 eqidd 2733 . . . . . . . . 9 (𝑛 = 𝑁 β†’ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, (1rβ€˜π‘Ÿ), (0gβ€˜π‘Ÿ)), (π‘˜π‘šπ‘™)) = if(π‘˜ = 𝑗, if(𝑙 = 𝑖, (1rβ€˜π‘Ÿ), (0gβ€˜π‘Ÿ)), (π‘˜π‘šπ‘™)))
63, 3, 5mpoeq123dv 7483 . . . . . . . 8 (𝑛 = 𝑁 β†’ (π‘˜ ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, (1rβ€˜π‘Ÿ), (0gβ€˜π‘Ÿ)), (π‘˜π‘šπ‘™))) = (π‘˜ ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, (1rβ€˜π‘Ÿ), (0gβ€˜π‘Ÿ)), (π‘˜π‘šπ‘™))))
74, 6fveq12d 6898 . . . . . . 7 (𝑛 = 𝑁 β†’ ((𝑛 maDet π‘Ÿ)β€˜(π‘˜ ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, (1rβ€˜π‘Ÿ), (0gβ€˜π‘Ÿ)), (π‘˜π‘šπ‘™)))) = ((𝑁 maDet π‘Ÿ)β€˜(π‘˜ ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, (1rβ€˜π‘Ÿ), (0gβ€˜π‘Ÿ)), (π‘˜π‘šπ‘™)))))
83, 3, 7mpoeq123dv 7483 . . . . . 6 (𝑛 = 𝑁 β†’ (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ ((𝑛 maDet π‘Ÿ)β€˜(π‘˜ ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, (1rβ€˜π‘Ÿ), (0gβ€˜π‘Ÿ)), (π‘˜π‘šπ‘™))))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑁 maDet π‘Ÿ)β€˜(π‘˜ ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, (1rβ€˜π‘Ÿ), (0gβ€˜π‘Ÿ)), (π‘˜π‘šπ‘™))))))
92, 8mpteq12dv 5239 . . . . 5 (𝑛 = 𝑁 β†’ (π‘š ∈ (Baseβ€˜(𝑛 Mat π‘Ÿ)) ↦ (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ ((𝑛 maDet π‘Ÿ)β€˜(π‘˜ ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, (1rβ€˜π‘Ÿ), (0gβ€˜π‘Ÿ)), (π‘˜π‘šπ‘™)))))) = (π‘š ∈ (Baseβ€˜(𝑁 Mat π‘Ÿ)) ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑁 maDet π‘Ÿ)β€˜(π‘˜ ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, (1rβ€˜π‘Ÿ), (0gβ€˜π‘Ÿ)), (π‘˜π‘šπ‘™)))))))
10 oveq2 7416 . . . . . . 7 (π‘Ÿ = 𝑅 β†’ (𝑁 Mat π‘Ÿ) = (𝑁 Mat 𝑅))
1110fveq2d 6895 . . . . . 6 (π‘Ÿ = 𝑅 β†’ (Baseβ€˜(𝑁 Mat π‘Ÿ)) = (Baseβ€˜(𝑁 Mat 𝑅)))
12 oveq2 7416 . . . . . . . 8 (π‘Ÿ = 𝑅 β†’ (𝑁 maDet π‘Ÿ) = (𝑁 maDet 𝑅))
13 fveq2 6891 . . . . . . . . . . 11 (π‘Ÿ = 𝑅 β†’ (1rβ€˜π‘Ÿ) = (1rβ€˜π‘…))
14 fveq2 6891 . . . . . . . . . . 11 (π‘Ÿ = 𝑅 β†’ (0gβ€˜π‘Ÿ) = (0gβ€˜π‘…))
1513, 14ifeq12d 4549 . . . . . . . . . 10 (π‘Ÿ = 𝑅 β†’ if(𝑙 = 𝑖, (1rβ€˜π‘Ÿ), (0gβ€˜π‘Ÿ)) = if(𝑙 = 𝑖, (1rβ€˜π‘…), (0gβ€˜π‘…)))
1615ifeq1d 4547 . . . . . . . . 9 (π‘Ÿ = 𝑅 β†’ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, (1rβ€˜π‘Ÿ), (0gβ€˜π‘Ÿ)), (π‘˜π‘šπ‘™)) = if(π‘˜ = 𝑗, if(𝑙 = 𝑖, (1rβ€˜π‘…), (0gβ€˜π‘…)), (π‘˜π‘šπ‘™)))
1716mpoeq3dv 7487 . . . . . . . 8 (π‘Ÿ = 𝑅 β†’ (π‘˜ ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, (1rβ€˜π‘Ÿ), (0gβ€˜π‘Ÿ)), (π‘˜π‘šπ‘™))) = (π‘˜ ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, (1rβ€˜π‘…), (0gβ€˜π‘…)), (π‘˜π‘šπ‘™))))
1812, 17fveq12d 6898 . . . . . . 7 (π‘Ÿ = 𝑅 β†’ ((𝑁 maDet π‘Ÿ)β€˜(π‘˜ ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, (1rβ€˜π‘Ÿ), (0gβ€˜π‘Ÿ)), (π‘˜π‘šπ‘™)))) = ((𝑁 maDet 𝑅)β€˜(π‘˜ ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, (1rβ€˜π‘…), (0gβ€˜π‘…)), (π‘˜π‘šπ‘™)))))
1918mpoeq3dv 7487 . . . . . 6 (π‘Ÿ = 𝑅 β†’ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑁 maDet π‘Ÿ)β€˜(π‘˜ ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, (1rβ€˜π‘Ÿ), (0gβ€˜π‘Ÿ)), (π‘˜π‘šπ‘™))))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑁 maDet 𝑅)β€˜(π‘˜ ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, (1rβ€˜π‘…), (0gβ€˜π‘…)), (π‘˜π‘šπ‘™))))))
2011, 19mpteq12dv 5239 . . . . 5 (π‘Ÿ = 𝑅 β†’ (π‘š ∈ (Baseβ€˜(𝑁 Mat π‘Ÿ)) ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑁 maDet π‘Ÿ)β€˜(π‘˜ ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, (1rβ€˜π‘Ÿ), (0gβ€˜π‘Ÿ)), (π‘˜π‘šπ‘™)))))) = (π‘š ∈ (Baseβ€˜(𝑁 Mat 𝑅)) ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑁 maDet 𝑅)β€˜(π‘˜ ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, (1rβ€˜π‘…), (0gβ€˜π‘…)), (π‘˜π‘šπ‘™)))))))
21 df-madu 22135 . . . . 5 maAdju = (𝑛 ∈ V, π‘Ÿ ∈ V ↦ (π‘š ∈ (Baseβ€˜(𝑛 Mat π‘Ÿ)) ↦ (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ ((𝑛 maDet π‘Ÿ)β€˜(π‘˜ ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, (1rβ€˜π‘Ÿ), (0gβ€˜π‘Ÿ)), (π‘˜π‘šπ‘™)))))))
22 fvex 6904 . . . . . 6 (Baseβ€˜(𝑁 Mat 𝑅)) ∈ V
2322mptex 7224 . . . . 5 (π‘š ∈ (Baseβ€˜(𝑁 Mat 𝑅)) ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑁 maDet 𝑅)β€˜(π‘˜ ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, (1rβ€˜π‘…), (0gβ€˜π‘…)), (π‘˜π‘šπ‘™)))))) ∈ V
249, 20, 21, 23ovmpo 7567 . . . 4 ((𝑁 ∈ V ∧ 𝑅 ∈ V) β†’ (𝑁 maAdju 𝑅) = (π‘š ∈ (Baseβ€˜(𝑁 Mat 𝑅)) ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑁 maDet 𝑅)β€˜(π‘˜ ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, (1rβ€˜π‘…), (0gβ€˜π‘…)), (π‘˜π‘šπ‘™)))))))
25 madufval.b . . . . . 6 𝐡 = (Baseβ€˜π΄)
26 madufval.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
2726fveq2i 6894 . . . . . 6 (Baseβ€˜π΄) = (Baseβ€˜(𝑁 Mat 𝑅))
2825, 27eqtri 2760 . . . . 5 𝐡 = (Baseβ€˜(𝑁 Mat 𝑅))
29 madufval.d . . . . . . . 8 𝐷 = (𝑁 maDet 𝑅)
30 madufval.o . . . . . . . . . . . 12 1 = (1rβ€˜π‘…)
3130a1i 11 . . . . . . . . . . 11 ((π‘˜ ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) β†’ 1 = (1rβ€˜π‘…))
32 madufval.z . . . . . . . . . . . 12 0 = (0gβ€˜π‘…)
3332a1i 11 . . . . . . . . . . 11 ((π‘˜ ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) β†’ 0 = (0gβ€˜π‘…))
3431, 33ifeq12d 4549 . . . . . . . . . 10 ((π‘˜ ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) β†’ if(𝑙 = 𝑖, 1 , 0 ) = if(𝑙 = 𝑖, (1rβ€˜π‘…), (0gβ€˜π‘…)))
3534ifeq1d 4547 . . . . . . . . 9 ((π‘˜ ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) β†’ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (π‘˜π‘šπ‘™)) = if(π‘˜ = 𝑗, if(𝑙 = 𝑖, (1rβ€˜π‘…), (0gβ€˜π‘…)), (π‘˜π‘šπ‘™)))
3635mpoeq3ia 7486 . . . . . . . 8 (π‘˜ ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (π‘˜π‘šπ‘™))) = (π‘˜ ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, (1rβ€˜π‘…), (0gβ€˜π‘…)), (π‘˜π‘šπ‘™)))
3729, 36fveq12i 6897 . . . . . . 7 (π·β€˜(π‘˜ ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (π‘˜π‘šπ‘™)))) = ((𝑁 maDet 𝑅)β€˜(π‘˜ ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, (1rβ€˜π‘…), (0gβ€˜π‘…)), (π‘˜π‘šπ‘™))))
3837a1i 11 . . . . . 6 ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) β†’ (π·β€˜(π‘˜ ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (π‘˜π‘šπ‘™)))) = ((𝑁 maDet 𝑅)β€˜(π‘˜ ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, (1rβ€˜π‘…), (0gβ€˜π‘…)), (π‘˜π‘šπ‘™)))))
3938mpoeq3ia 7486 . . . . 5 (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (π·β€˜(π‘˜ ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (π‘˜π‘šπ‘™))))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑁 maDet 𝑅)β€˜(π‘˜ ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, (1rβ€˜π‘…), (0gβ€˜π‘…)), (π‘˜π‘šπ‘™)))))
4028, 39mpteq12i 5254 . . . 4 (π‘š ∈ 𝐡 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (π·β€˜(π‘˜ ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (π‘˜π‘šπ‘™)))))) = (π‘š ∈ (Baseβ€˜(𝑁 Mat 𝑅)) ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑁 maDet 𝑅)β€˜(π‘˜ ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, (1rβ€˜π‘…), (0gβ€˜π‘…)), (π‘˜π‘šπ‘™))))))
4124, 40eqtr4di 2790 . . 3 ((𝑁 ∈ V ∧ 𝑅 ∈ V) β†’ (𝑁 maAdju 𝑅) = (π‘š ∈ 𝐡 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (π·β€˜(π‘˜ ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (π‘˜π‘šπ‘™)))))))
4221reldmmpo 7542 . . . . 5 Rel dom maAdju
4342ovprc 7446 . . . 4 (Β¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) β†’ (𝑁 maAdju 𝑅) = βˆ…)
44 df-mat 21907 . . . . . . . . . . 11 Mat = (𝑛 ∈ Fin, π‘Ÿ ∈ V ↦ ((π‘Ÿ freeLMod (𝑛 Γ— 𝑛)) sSet ⟨(.rβ€˜ndx), (π‘Ÿ maMul βŸ¨π‘›, 𝑛, π‘›βŸ©)⟩))
4544reldmmpo 7542 . . . . . . . . . 10 Rel dom Mat
4645ovprc 7446 . . . . . . . . 9 (Β¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) β†’ (𝑁 Mat 𝑅) = βˆ…)
4726, 46eqtrid 2784 . . . . . . . 8 (Β¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) β†’ 𝐴 = βˆ…)
4847fveq2d 6895 . . . . . . 7 (Β¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) β†’ (Baseβ€˜π΄) = (Baseβ€˜βˆ…))
49 base0 17148 . . . . . . 7 βˆ… = (Baseβ€˜βˆ…)
5048, 25, 493eqtr4g 2797 . . . . . 6 (Β¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) β†’ 𝐡 = βˆ…)
5150mpteq1d 5243 . . . . 5 (Β¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) β†’ (π‘š ∈ 𝐡 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (π·β€˜(π‘˜ ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (π‘˜π‘šπ‘™)))))) = (π‘š ∈ βˆ… ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (π·β€˜(π‘˜ ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (π‘˜π‘šπ‘™)))))))
52 mpt0 6692 . . . . 5 (π‘š ∈ βˆ… ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (π·β€˜(π‘˜ ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (π‘˜π‘šπ‘™)))))) = βˆ…
5351, 52eqtrdi 2788 . . . 4 (Β¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) β†’ (π‘š ∈ 𝐡 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (π·β€˜(π‘˜ ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (π‘˜π‘šπ‘™)))))) = βˆ…)
5443, 53eqtr4d 2775 . . 3 (Β¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) β†’ (𝑁 maAdju 𝑅) = (π‘š ∈ 𝐡 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (π·β€˜(π‘˜ ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (π‘˜π‘šπ‘™)))))))
5541, 54pm2.61i 182 . 2 (𝑁 maAdju 𝑅) = (π‘š ∈ 𝐡 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (π·β€˜(π‘˜ ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (π‘˜π‘šπ‘™))))))
561, 55eqtri 2760 1 𝐽 = (π‘š ∈ 𝐡 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (π·β€˜(π‘˜ ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(π‘˜ = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (π‘˜π‘šπ‘™))))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3474  βˆ…c0 4322  ifcif 4528  βŸ¨cop 4634  βŸ¨cotp 4636   ↦ cmpt 5231   Γ— cxp 5674  β€˜cfv 6543  (class class class)co 7408   ∈ cmpo 7410  Fincfn 8938   sSet csts 17095  ndxcnx 17125  Basecbs 17143  .rcmulr 17197  0gc0g 17384  1rcur 20003   freeLMod cfrlm 21300   maMul cmmul 21884   Mat cmat 21906   maDet cmdat 22085   maAdju cmadu 22133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-1cn 11167  ax-addcl 11169
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-nn 12212  df-slot 17114  df-ndx 17126  df-base 17144  df-mat 21907  df-madu 22135
This theorem is referenced by:  maduval  22139  maduf  22142
  Copyright terms: Public domain W3C validator