MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madufval Structured version   Visualization version   GIF version

Theorem madufval 22664
Description: First substitution for the adjunct (cofactor) matrix. (Contributed by SO, 11-Jul-2018.)
Hypotheses
Ref Expression
madufval.a 𝐴 = (𝑁 Mat 𝑅)
madufval.d 𝐷 = (𝑁 maDet 𝑅)
madufval.j 𝐽 = (𝑁 maAdju 𝑅)
madufval.b 𝐵 = (Base‘𝐴)
madufval.o 1 = (1r𝑅)
madufval.z 0 = (0g𝑅)
Assertion
Ref Expression
madufval 𝐽 = (𝑚𝐵 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙))))))
Distinct variable groups:   𝑚,𝑁,𝑖,𝑗,𝑘,𝑙   𝑅,𝑚,𝑖,𝑗,𝑘,𝑙   𝐵,𝑚
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐵(𝑖,𝑗,𝑘,𝑙)   𝐷(𝑖,𝑗,𝑘,𝑚,𝑙)   1 (𝑖,𝑗,𝑘,𝑚,𝑙)   𝐽(𝑖,𝑗,𝑘,𝑚,𝑙)   0 (𝑖,𝑗,𝑘,𝑚,𝑙)

Proof of Theorem madufval
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 madufval.j . 2 𝐽 = (𝑁 maAdju 𝑅)
2 fvoveq1 7471 . . . . . 6 (𝑛 = 𝑁 → (Base‘(𝑛 Mat 𝑟)) = (Base‘(𝑁 Mat 𝑟)))
3 id 22 . . . . . . 7 (𝑛 = 𝑁𝑛 = 𝑁)
4 oveq1 7455 . . . . . . . 8 (𝑛 = 𝑁 → (𝑛 maDet 𝑟) = (𝑁 maDet 𝑟))
5 eqidd 2741 . . . . . . . . 9 (𝑛 = 𝑁 → if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)) = if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)))
63, 3, 5mpoeq123dv 7525 . . . . . . . 8 (𝑛 = 𝑁 → (𝑘𝑛, 𝑙𝑛 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙))) = (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙))))
74, 6fveq12d 6927 . . . . . . 7 (𝑛 = 𝑁 → ((𝑛 maDet 𝑟)‘(𝑘𝑛, 𝑙𝑛 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)))) = ((𝑁 maDet 𝑟)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)))))
83, 3, 7mpoeq123dv 7525 . . . . . 6 (𝑛 = 𝑁 → (𝑖𝑛, 𝑗𝑛 ↦ ((𝑛 maDet 𝑟)‘(𝑘𝑛, 𝑙𝑛 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙))))) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑟)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙))))))
92, 8mpteq12dv 5257 . . . . 5 (𝑛 = 𝑁 → (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑖𝑛, 𝑗𝑛 ↦ ((𝑛 maDet 𝑟)‘(𝑘𝑛, 𝑙𝑛 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)))))) = (𝑚 ∈ (Base‘(𝑁 Mat 𝑟)) ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑟)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)))))))
10 oveq2 7456 . . . . . . 7 (𝑟 = 𝑅 → (𝑁 Mat 𝑟) = (𝑁 Mat 𝑅))
1110fveq2d 6924 . . . . . 6 (𝑟 = 𝑅 → (Base‘(𝑁 Mat 𝑟)) = (Base‘(𝑁 Mat 𝑅)))
12 oveq2 7456 . . . . . . . 8 (𝑟 = 𝑅 → (𝑁 maDet 𝑟) = (𝑁 maDet 𝑅))
13 fveq2 6920 . . . . . . . . . . 11 (𝑟 = 𝑅 → (1r𝑟) = (1r𝑅))
14 fveq2 6920 . . . . . . . . . . 11 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
1513, 14ifeq12d 4569 . . . . . . . . . 10 (𝑟 = 𝑅 → if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)) = if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)))
1615ifeq1d 4567 . . . . . . . . 9 (𝑟 = 𝑅 → if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)) = if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙)))
1716mpoeq3dv 7529 . . . . . . . 8 (𝑟 = 𝑅 → (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙))) = (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙))))
1812, 17fveq12d 6927 . . . . . . 7 (𝑟 = 𝑅 → ((𝑁 maDet 𝑟)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)))) = ((𝑁 maDet 𝑅)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙)))))
1918mpoeq3dv 7529 . . . . . 6 (𝑟 = 𝑅 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑟)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙))))) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑅)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙))))))
2011, 19mpteq12dv 5257 . . . . 5 (𝑟 = 𝑅 → (𝑚 ∈ (Base‘(𝑁 Mat 𝑟)) ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑟)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)))))) = (𝑚 ∈ (Base‘(𝑁 Mat 𝑅)) ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑅)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙)))))))
21 df-madu 22661 . . . . 5 maAdju = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑖𝑛, 𝑗𝑛 ↦ ((𝑛 maDet 𝑟)‘(𝑘𝑛, 𝑙𝑛 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)))))))
22 fvex 6933 . . . . . 6 (Base‘(𝑁 Mat 𝑅)) ∈ V
2322mptex 7260 . . . . 5 (𝑚 ∈ (Base‘(𝑁 Mat 𝑅)) ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑅)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙)))))) ∈ V
249, 20, 21, 23ovmpo 7610 . . . 4 ((𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maAdju 𝑅) = (𝑚 ∈ (Base‘(𝑁 Mat 𝑅)) ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑅)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙)))))))
25 madufval.b . . . . . 6 𝐵 = (Base‘𝐴)
26 madufval.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
2726fveq2i 6923 . . . . . 6 (Base‘𝐴) = (Base‘(𝑁 Mat 𝑅))
2825, 27eqtri 2768 . . . . 5 𝐵 = (Base‘(𝑁 Mat 𝑅))
29 madufval.d . . . . . . . 8 𝐷 = (𝑁 maDet 𝑅)
30 madufval.o . . . . . . . . . . . 12 1 = (1r𝑅)
3130a1i 11 . . . . . . . . . . 11 ((𝑘𝑁𝑙𝑁) → 1 = (1r𝑅))
32 madufval.z . . . . . . . . . . . 12 0 = (0g𝑅)
3332a1i 11 . . . . . . . . . . 11 ((𝑘𝑁𝑙𝑁) → 0 = (0g𝑅))
3431, 33ifeq12d 4569 . . . . . . . . . 10 ((𝑘𝑁𝑙𝑁) → if(𝑙 = 𝑖, 1 , 0 ) = if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)))
3534ifeq1d 4567 . . . . . . . . 9 ((𝑘𝑁𝑙𝑁) → if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)) = if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙)))
3635mpoeq3ia 7528 . . . . . . . 8 (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙))) = (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙)))
3729, 36fveq12i 6926 . . . . . . 7 (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))) = ((𝑁 maDet 𝑅)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙))))
3837a1i 11 . . . . . 6 ((𝑖𝑁𝑗𝑁) → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))) = ((𝑁 maDet 𝑅)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙)))))
3938mpoeq3ia 7528 . . . . 5 (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙))))) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑅)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙)))))
4028, 39mpteq12i 5272 . . . 4 (𝑚𝐵 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))))) = (𝑚 ∈ (Base‘(𝑁 Mat 𝑅)) ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑅)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙))))))
4124, 40eqtr4di 2798 . . 3 ((𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maAdju 𝑅) = (𝑚𝐵 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))))))
4221reldmmpo 7584 . . . . 5 Rel dom maAdju
4342ovprc 7486 . . . 4 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maAdju 𝑅) = ∅)
44 df-mat 22433 . . . . . . . . . . 11 Mat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ ((𝑟 freeLMod (𝑛 × 𝑛)) sSet ⟨(.r‘ndx), (𝑟 maMul ⟨𝑛, 𝑛, 𝑛⟩)⟩))
4544reldmmpo 7584 . . . . . . . . . 10 Rel dom Mat
4645ovprc 7486 . . . . . . . . 9 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 Mat 𝑅) = ∅)
4726, 46eqtrid 2792 . . . . . . . 8 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → 𝐴 = ∅)
4847fveq2d 6924 . . . . . . 7 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (Base‘𝐴) = (Base‘∅))
49 base0 17263 . . . . . . 7 ∅ = (Base‘∅)
5048, 25, 493eqtr4g 2805 . . . . . 6 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ∅)
5150mpteq1d 5261 . . . . 5 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑚𝐵 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))))) = (𝑚 ∈ ∅ ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))))))
52 mpt0 6722 . . . . 5 (𝑚 ∈ ∅ ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))))) = ∅
5351, 52eqtrdi 2796 . . . 4 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑚𝐵 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))))) = ∅)
5443, 53eqtr4d 2783 . . 3 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maAdju 𝑅) = (𝑚𝐵 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))))))
5541, 54pm2.61i 182 . 2 (𝑁 maAdju 𝑅) = (𝑚𝐵 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙))))))
561, 55eqtri 2768 1 𝐽 = (𝑚𝐵 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  c0 4352  ifcif 4548  cop 4654  cotp 4656  cmpt 5249   × cxp 5698  cfv 6573  (class class class)co 7448  cmpo 7450  Fincfn 9003   sSet csts 17210  ndxcnx 17240  Basecbs 17258  .rcmulr 17312  0gc0g 17499  1rcur 20208   freeLMod cfrlm 21789   maMul cmmul 22415   Mat cmat 22432   maDet cmdat 22611   maAdju cmadu 22659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-1cn 11242  ax-addcl 11244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-nn 12294  df-slot 17229  df-ndx 17241  df-base 17259  df-mat 22433  df-madu 22661
This theorem is referenced by:  maduval  22665  maduf  22668
  Copyright terms: Public domain W3C validator