MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madufval Structured version   Visualization version   GIF version

Theorem madufval 22531
Description: First substitution for the adjunct (cofactor) matrix. (Contributed by SO, 11-Jul-2018.)
Hypotheses
Ref Expression
madufval.a 𝐴 = (𝑁 Mat 𝑅)
madufval.d 𝐷 = (𝑁 maDet 𝑅)
madufval.j 𝐽 = (𝑁 maAdju 𝑅)
madufval.b 𝐵 = (Base‘𝐴)
madufval.o 1 = (1r𝑅)
madufval.z 0 = (0g𝑅)
Assertion
Ref Expression
madufval 𝐽 = (𝑚𝐵 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙))))))
Distinct variable groups:   𝑚,𝑁,𝑖,𝑗,𝑘,𝑙   𝑅,𝑚,𝑖,𝑗,𝑘,𝑙   𝐵,𝑚
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐵(𝑖,𝑗,𝑘,𝑙)   𝐷(𝑖,𝑗,𝑘,𝑚,𝑙)   1 (𝑖,𝑗,𝑘,𝑚,𝑙)   𝐽(𝑖,𝑗,𝑘,𝑚,𝑙)   0 (𝑖,𝑗,𝑘,𝑚,𝑙)

Proof of Theorem madufval
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 madufval.j . 2 𝐽 = (𝑁 maAdju 𝑅)
2 fvoveq1 7413 . . . . . 6 (𝑛 = 𝑁 → (Base‘(𝑛 Mat 𝑟)) = (Base‘(𝑁 Mat 𝑟)))
3 id 22 . . . . . . 7 (𝑛 = 𝑁𝑛 = 𝑁)
4 oveq1 7397 . . . . . . . 8 (𝑛 = 𝑁 → (𝑛 maDet 𝑟) = (𝑁 maDet 𝑟))
5 eqidd 2731 . . . . . . . . 9 (𝑛 = 𝑁 → if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)) = if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)))
63, 3, 5mpoeq123dv 7467 . . . . . . . 8 (𝑛 = 𝑁 → (𝑘𝑛, 𝑙𝑛 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙))) = (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙))))
74, 6fveq12d 6868 . . . . . . 7 (𝑛 = 𝑁 → ((𝑛 maDet 𝑟)‘(𝑘𝑛, 𝑙𝑛 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)))) = ((𝑁 maDet 𝑟)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)))))
83, 3, 7mpoeq123dv 7467 . . . . . 6 (𝑛 = 𝑁 → (𝑖𝑛, 𝑗𝑛 ↦ ((𝑛 maDet 𝑟)‘(𝑘𝑛, 𝑙𝑛 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙))))) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑟)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙))))))
92, 8mpteq12dv 5197 . . . . 5 (𝑛 = 𝑁 → (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑖𝑛, 𝑗𝑛 ↦ ((𝑛 maDet 𝑟)‘(𝑘𝑛, 𝑙𝑛 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)))))) = (𝑚 ∈ (Base‘(𝑁 Mat 𝑟)) ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑟)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)))))))
10 oveq2 7398 . . . . . . 7 (𝑟 = 𝑅 → (𝑁 Mat 𝑟) = (𝑁 Mat 𝑅))
1110fveq2d 6865 . . . . . 6 (𝑟 = 𝑅 → (Base‘(𝑁 Mat 𝑟)) = (Base‘(𝑁 Mat 𝑅)))
12 oveq2 7398 . . . . . . . 8 (𝑟 = 𝑅 → (𝑁 maDet 𝑟) = (𝑁 maDet 𝑅))
13 fveq2 6861 . . . . . . . . . . 11 (𝑟 = 𝑅 → (1r𝑟) = (1r𝑅))
14 fveq2 6861 . . . . . . . . . . 11 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
1513, 14ifeq12d 4513 . . . . . . . . . 10 (𝑟 = 𝑅 → if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)) = if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)))
1615ifeq1d 4511 . . . . . . . . 9 (𝑟 = 𝑅 → if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)) = if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙)))
1716mpoeq3dv 7471 . . . . . . . 8 (𝑟 = 𝑅 → (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙))) = (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙))))
1812, 17fveq12d 6868 . . . . . . 7 (𝑟 = 𝑅 → ((𝑁 maDet 𝑟)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)))) = ((𝑁 maDet 𝑅)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙)))))
1918mpoeq3dv 7471 . . . . . 6 (𝑟 = 𝑅 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑟)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙))))) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑅)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙))))))
2011, 19mpteq12dv 5197 . . . . 5 (𝑟 = 𝑅 → (𝑚 ∈ (Base‘(𝑁 Mat 𝑟)) ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑟)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)))))) = (𝑚 ∈ (Base‘(𝑁 Mat 𝑅)) ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑅)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙)))))))
21 df-madu 22528 . . . . 5 maAdju = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑖𝑛, 𝑗𝑛 ↦ ((𝑛 maDet 𝑟)‘(𝑘𝑛, 𝑙𝑛 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)))))))
22 fvex 6874 . . . . . 6 (Base‘(𝑁 Mat 𝑅)) ∈ V
2322mptex 7200 . . . . 5 (𝑚 ∈ (Base‘(𝑁 Mat 𝑅)) ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑅)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙)))))) ∈ V
249, 20, 21, 23ovmpo 7552 . . . 4 ((𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maAdju 𝑅) = (𝑚 ∈ (Base‘(𝑁 Mat 𝑅)) ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑅)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙)))))))
25 madufval.b . . . . . 6 𝐵 = (Base‘𝐴)
26 madufval.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
2726fveq2i 6864 . . . . . 6 (Base‘𝐴) = (Base‘(𝑁 Mat 𝑅))
2825, 27eqtri 2753 . . . . 5 𝐵 = (Base‘(𝑁 Mat 𝑅))
29 madufval.d . . . . . . . 8 𝐷 = (𝑁 maDet 𝑅)
30 madufval.o . . . . . . . . . . . 12 1 = (1r𝑅)
3130a1i 11 . . . . . . . . . . 11 ((𝑘𝑁𝑙𝑁) → 1 = (1r𝑅))
32 madufval.z . . . . . . . . . . . 12 0 = (0g𝑅)
3332a1i 11 . . . . . . . . . . 11 ((𝑘𝑁𝑙𝑁) → 0 = (0g𝑅))
3431, 33ifeq12d 4513 . . . . . . . . . 10 ((𝑘𝑁𝑙𝑁) → if(𝑙 = 𝑖, 1 , 0 ) = if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)))
3534ifeq1d 4511 . . . . . . . . 9 ((𝑘𝑁𝑙𝑁) → if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)) = if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙)))
3635mpoeq3ia 7470 . . . . . . . 8 (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙))) = (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙)))
3729, 36fveq12i 6867 . . . . . . 7 (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))) = ((𝑁 maDet 𝑅)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙))))
3837a1i 11 . . . . . 6 ((𝑖𝑁𝑗𝑁) → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))) = ((𝑁 maDet 𝑅)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙)))))
3938mpoeq3ia 7470 . . . . 5 (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙))))) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑅)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙)))))
4028, 39mpteq12i 5207 . . . 4 (𝑚𝐵 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))))) = (𝑚 ∈ (Base‘(𝑁 Mat 𝑅)) ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑅)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙))))))
4124, 40eqtr4di 2783 . . 3 ((𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maAdju 𝑅) = (𝑚𝐵 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))))))
4221reldmmpo 7526 . . . . 5 Rel dom maAdju
4342ovprc 7428 . . . 4 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maAdju 𝑅) = ∅)
44 df-mat 22302 . . . . . . . . . . 11 Mat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ ((𝑟 freeLMod (𝑛 × 𝑛)) sSet ⟨(.r‘ndx), (𝑟 maMul ⟨𝑛, 𝑛, 𝑛⟩)⟩))
4544reldmmpo 7526 . . . . . . . . . 10 Rel dom Mat
4645ovprc 7428 . . . . . . . . 9 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 Mat 𝑅) = ∅)
4726, 46eqtrid 2777 . . . . . . . 8 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → 𝐴 = ∅)
4847fveq2d 6865 . . . . . . 7 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (Base‘𝐴) = (Base‘∅))
49 base0 17191 . . . . . . 7 ∅ = (Base‘∅)
5048, 25, 493eqtr4g 2790 . . . . . 6 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ∅)
5150mpteq1d 5200 . . . . 5 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑚𝐵 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))))) = (𝑚 ∈ ∅ ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))))))
52 mpt0 6663 . . . . 5 (𝑚 ∈ ∅ ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))))) = ∅
5351, 52eqtrdi 2781 . . . 4 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑚𝐵 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))))) = ∅)
5443, 53eqtr4d 2768 . . 3 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maAdju 𝑅) = (𝑚𝐵 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))))))
5541, 54pm2.61i 182 . 2 (𝑁 maAdju 𝑅) = (𝑚𝐵 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙))))))
561, 55eqtri 2753 1 𝐽 = (𝑚𝐵 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  c0 4299  ifcif 4491  cop 4598  cotp 4600  cmpt 5191   × cxp 5639  cfv 6514  (class class class)co 7390  cmpo 7392  Fincfn 8921   sSet csts 17140  ndxcnx 17170  Basecbs 17186  .rcmulr 17228  0gc0g 17409  1rcur 20097   freeLMod cfrlm 21662   maMul cmmul 22284   Mat cmat 22301   maDet cmdat 22478   maAdju cmadu 22526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-1cn 11133  ax-addcl 11135
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-nn 12194  df-slot 17159  df-ndx 17171  df-base 17187  df-mat 22302  df-madu 22528
This theorem is referenced by:  maduval  22532  maduf  22535
  Copyright terms: Public domain W3C validator