![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mgcval | Structured version Visualization version GIF version |
Description: Monotone Galois
connection between two functions 𝐹 and 𝐺. If
this relation is satisfied, 𝐹 is called the lower adjoint of 𝐺,
and 𝐺 is called the upper adjoint of 𝐹.
Technically, this is implemented as an operation taking a pair of structures 𝑉 and 𝑊, expected to be posets, which gives a relation between pairs of functions 𝐹 and 𝐺. If such a relation exists, it can be proven to be unique. Galois connections generalize the fundamental theorem of Galois theory about the correspondence between subgroups and subfields. (Contributed by Thierry Arnoux, 23-Apr-2024.) |
Ref | Expression |
---|---|
mgcoval.1 | ⊢ 𝐴 = (Base‘𝑉) |
mgcoval.2 | ⊢ 𝐵 = (Base‘𝑊) |
mgcoval.3 | ⊢ ≤ = (le‘𝑉) |
mgcoval.4 | ⊢ ≲ = (le‘𝑊) |
mgcval.1 | ⊢ 𝐻 = (𝑉MGalConn𝑊) |
mgcval.2 | ⊢ (𝜑 → 𝑉 ∈ Proset ) |
mgcval.3 | ⊢ (𝜑 → 𝑊 ∈ Proset ) |
Ref | Expression |
---|---|
mgcval | ⊢ (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgcval.1 | . . . 4 ⊢ 𝐻 = (𝑉MGalConn𝑊) | |
2 | mgcval.2 | . . . . 5 ⊢ (𝜑 → 𝑉 ∈ Proset ) | |
3 | mgcval.3 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ Proset ) | |
4 | mgcoval.1 | . . . . . 6 ⊢ 𝐴 = (Base‘𝑉) | |
5 | mgcoval.2 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑊) | |
6 | mgcoval.3 | . . . . . 6 ⊢ ≤ = (le‘𝑉) | |
7 | mgcoval.4 | . . . . . 6 ⊢ ≲ = (le‘𝑊) | |
8 | 4, 5, 6, 7 | mgcoval 32961 | . . . . 5 ⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝑉MGalConn𝑊) = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))}) |
9 | 2, 3, 8 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑉MGalConn𝑊) = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))}) |
10 | 1, 9 | eqtrid 2787 | . . 3 ⊢ (𝜑 → 𝐻 = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))}) |
11 | 10 | breqd 5159 | . 2 ⊢ (𝜑 → (𝐹𝐻𝐺 ↔ 𝐹{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))}𝐺)) |
12 | fveq1 6906 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
13 | 12 | adantr 480 | . . . . . . 7 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑓‘𝑥) = (𝐹‘𝑥)) |
14 | 13 | breq1d 5158 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((𝑓‘𝑥) ≲ 𝑦 ↔ (𝐹‘𝑥) ≲ 𝑦)) |
15 | fveq1 6906 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (𝑔‘𝑦) = (𝐺‘𝑦)) | |
16 | 15 | adantl 481 | . . . . . . 7 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑔‘𝑦) = (𝐺‘𝑦)) |
17 | 16 | breq2d 5160 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑥 ≤ (𝑔‘𝑦) ↔ 𝑥 ≤ (𝐺‘𝑦))) |
18 | 14, 17 | bibi12d 345 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)) ↔ ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦)))) |
19 | 18 | 2ralbidv 3219 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦)))) |
20 | eqid 2735 | . . . 4 ⊢ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))} = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))} | |
21 | 19, 20 | brab2a 5782 | . . 3 ⊢ (𝐹{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))}𝐺 ↔ ((𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦)))) |
22 | 5 | fvexi 6921 | . . . . . 6 ⊢ 𝐵 ∈ V |
23 | 4 | fvexi 6921 | . . . . . 6 ⊢ 𝐴 ∈ V |
24 | 22, 23 | elmap 8910 | . . . . 5 ⊢ (𝐹 ∈ (𝐵 ↑m 𝐴) ↔ 𝐹:𝐴⟶𝐵) |
25 | 23, 22 | elmap 8910 | . . . . 5 ⊢ (𝐺 ∈ (𝐴 ↑m 𝐵) ↔ 𝐺:𝐵⟶𝐴) |
26 | 24, 25 | anbi12i 628 | . . . 4 ⊢ ((𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐴 ↑m 𝐵)) ↔ (𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴)) |
27 | 26 | anbi1i 624 | . . 3 ⊢ (((𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦))) ↔ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦)))) |
28 | 21, 27 | bitr2i 276 | . 2 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦))) ↔ 𝐹{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))}𝐺) |
29 | 11, 28 | bitr4di 289 | 1 ⊢ (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 class class class wbr 5148 {copab 5210 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ↑m cmap 8865 Basecbs 17245 lecple 17305 Proset cproset 18350 MGalConncmgc 32954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8867 df-mgc 32956 |
This theorem is referenced by: mgcf1 32963 mgcf2 32964 mgccole1 32965 mgccole2 32966 mgcmnt1 32967 mgcmnt2 32968 dfmgc2lem 32970 dfmgc2 32971 mgccnv 32974 pwrssmgc 32975 nsgmgc 33420 |
Copyright terms: Public domain | W3C validator |