Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgcval Structured version   Visualization version   GIF version

Theorem mgcval 30984
Description: Monotone Galois connection between two functions 𝐹 and 𝐺. If this relation is satisfied, 𝐹 is called the lower adjoint of 𝐺, and 𝐺 is called the upper adjoint of 𝐹.

Technically, this is implemented as an operation taking a pair of structures 𝑉 and 𝑊, expected to be posets, which gives a relation between pairs of functions 𝐹 and 𝐺.

If such a relation exists, it can be proven to be unique.

Galois connections generalize the fundamental theorem of Galois theory about the correspondence between subgroups and subfields. (Contributed by Thierry Arnoux, 23-Apr-2024.)

Hypotheses
Ref Expression
mgcoval.1 𝐴 = (Base‘𝑉)
mgcoval.2 𝐵 = (Base‘𝑊)
mgcoval.3 = (le‘𝑉)
mgcoval.4 = (le‘𝑊)
mgcval.1 𝐻 = (𝑉MGalConn𝑊)
mgcval.2 (𝜑𝑉 ∈ Proset )
mgcval.3 (𝜑𝑊 ∈ Proset )
Assertion
Ref Expression
mgcval (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)))))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐻(𝑥,𝑦)   (𝑥,𝑦)   (𝑥,𝑦)

Proof of Theorem mgcval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgcval.1 . . . 4 𝐻 = (𝑉MGalConn𝑊)
2 mgcval.2 . . . . 5 (𝜑𝑉 ∈ Proset )
3 mgcval.3 . . . . 5 (𝜑𝑊 ∈ Proset )
4 mgcoval.1 . . . . . 6 𝐴 = (Base‘𝑉)
5 mgcoval.2 . . . . . 6 𝐵 = (Base‘𝑊)
6 mgcoval.3 . . . . . 6 = (le‘𝑉)
7 mgcoval.4 . . . . . 6 = (le‘𝑊)
84, 5, 6, 7mgcoval 30983 . . . . 5 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝑉MGalConn𝑊) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝐵m 𝐴) ∧ 𝑔 ∈ (𝐴m 𝐵)) ∧ ∀𝑥𝐴𝑦𝐵 ((𝑓𝑥) 𝑦𝑥 (𝑔𝑦)))})
92, 3, 8syl2anc 587 . . . 4 (𝜑 → (𝑉MGalConn𝑊) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝐵m 𝐴) ∧ 𝑔 ∈ (𝐴m 𝐵)) ∧ ∀𝑥𝐴𝑦𝐵 ((𝑓𝑥) 𝑦𝑥 (𝑔𝑦)))})
101, 9syl5eq 2790 . . 3 (𝜑𝐻 = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝐵m 𝐴) ∧ 𝑔 ∈ (𝐴m 𝐵)) ∧ ∀𝑥𝐴𝑦𝐵 ((𝑓𝑥) 𝑦𝑥 (𝑔𝑦)))})
1110breqd 5064 . 2 (𝜑 → (𝐹𝐻𝐺𝐹{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝐵m 𝐴) ∧ 𝑔 ∈ (𝐴m 𝐵)) ∧ ∀𝑥𝐴𝑦𝐵 ((𝑓𝑥) 𝑦𝑥 (𝑔𝑦)))}𝐺))
12 fveq1 6716 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
1312adantr 484 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓𝑥) = (𝐹𝑥))
1413breq1d 5063 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓𝑥) 𝑦 ↔ (𝐹𝑥) 𝑦))
15 fveq1 6716 . . . . . . . 8 (𝑔 = 𝐺 → (𝑔𝑦) = (𝐺𝑦))
1615adantl 485 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑔𝑦) = (𝐺𝑦))
1716breq2d 5065 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑥 (𝑔𝑦) ↔ 𝑥 (𝐺𝑦)))
1814, 17bibi12d 349 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → (((𝑓𝑥) 𝑦𝑥 (𝑔𝑦)) ↔ ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦))))
19182ralbidv 3120 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (∀𝑥𝐴𝑦𝐵 ((𝑓𝑥) 𝑦𝑥 (𝑔𝑦)) ↔ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦))))
20 eqid 2737 . . . 4 {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝐵m 𝐴) ∧ 𝑔 ∈ (𝐴m 𝐵)) ∧ ∀𝑥𝐴𝑦𝐵 ((𝑓𝑥) 𝑦𝑥 (𝑔𝑦)))} = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝐵m 𝐴) ∧ 𝑔 ∈ (𝐴m 𝐵)) ∧ ∀𝑥𝐴𝑦𝐵 ((𝑓𝑥) 𝑦𝑥 (𝑔𝑦)))}
2119, 20brab2a 5641 . . 3 (𝐹{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝐵m 𝐴) ∧ 𝑔 ∈ (𝐴m 𝐵)) ∧ ∀𝑥𝐴𝑦𝐵 ((𝑓𝑥) 𝑦𝑥 (𝑔𝑦)))}𝐺 ↔ ((𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐴m 𝐵)) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦))))
225fvexi 6731 . . . . . 6 𝐵 ∈ V
234fvexi 6731 . . . . . 6 𝐴 ∈ V
2422, 23elmap 8552 . . . . 5 (𝐹 ∈ (𝐵m 𝐴) ↔ 𝐹:𝐴𝐵)
2523, 22elmap 8552 . . . . 5 (𝐺 ∈ (𝐴m 𝐵) ↔ 𝐺:𝐵𝐴)
2624, 25anbi12i 630 . . . 4 ((𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐴m 𝐵)) ↔ (𝐹:𝐴𝐵𝐺:𝐵𝐴))
2726anbi1i 627 . . 3 (((𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐴m 𝐵)) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦))) ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦))))
2821, 27bitr2i 279 . 2 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦))) ↔ 𝐹{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝐵m 𝐴) ∧ 𝑔 ∈ (𝐴m 𝐵)) ∧ ∀𝑥𝐴𝑦𝐵 ((𝑓𝑥) 𝑦𝑥 (𝑔𝑦)))}𝐺)
2911, 28bitr4di 292 1 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3061   class class class wbr 5053  {copab 5115  wf 6376  cfv 6380  (class class class)co 7213  m cmap 8508  Basecbs 16760  lecple 16809   Proset cproset 17800  MGalConncmgc 30976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-map 8510  df-mgc 30978
This theorem is referenced by:  mgcf1  30985  mgcf2  30986  mgccole1  30987  mgccole2  30988  mgcmnt1  30989  mgcmnt2  30990  dfmgc2lem  30992  dfmgc2  30993  mgccnv  30996  pwrssmgc  30997  nsgmgc  31311
  Copyright terms: Public domain W3C validator