| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mgcval | Structured version Visualization version GIF version | ||
| Description: Monotone Galois
connection between two functions 𝐹 and 𝐺. If
this relation is satisfied, 𝐹 is called the lower adjoint of 𝐺,
and 𝐺 is called the upper adjoint of 𝐹.
Technically, this is implemented as an operation taking a pair of structures 𝑉 and 𝑊, expected to be posets, which gives a relation between pairs of functions 𝐹 and 𝐺. If such a relation exists, it can be proven to be unique. Galois connections generalize the fundamental theorem of Galois theory about the correspondence between subgroups and subfields. (Contributed by Thierry Arnoux, 23-Apr-2024.) |
| Ref | Expression |
|---|---|
| mgcoval.1 | ⊢ 𝐴 = (Base‘𝑉) |
| mgcoval.2 | ⊢ 𝐵 = (Base‘𝑊) |
| mgcoval.3 | ⊢ ≤ = (le‘𝑉) |
| mgcoval.4 | ⊢ ≲ = (le‘𝑊) |
| mgcval.1 | ⊢ 𝐻 = (𝑉MGalConn𝑊) |
| mgcval.2 | ⊢ (𝜑 → 𝑉 ∈ Proset ) |
| mgcval.3 | ⊢ (𝜑 → 𝑊 ∈ Proset ) |
| Ref | Expression |
|---|---|
| mgcval | ⊢ (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgcval.1 | . . . 4 ⊢ 𝐻 = (𝑉MGalConn𝑊) | |
| 2 | mgcval.2 | . . . . 5 ⊢ (𝜑 → 𝑉 ∈ Proset ) | |
| 3 | mgcval.3 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ Proset ) | |
| 4 | mgcoval.1 | . . . . . 6 ⊢ 𝐴 = (Base‘𝑉) | |
| 5 | mgcoval.2 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑊) | |
| 6 | mgcoval.3 | . . . . . 6 ⊢ ≤ = (le‘𝑉) | |
| 7 | mgcoval.4 | . . . . . 6 ⊢ ≲ = (le‘𝑊) | |
| 8 | 4, 5, 6, 7 | mgcoval 32928 | . . . . 5 ⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝑉MGalConn𝑊) = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))}) |
| 9 | 2, 3, 8 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑉MGalConn𝑊) = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))}) |
| 10 | 1, 9 | eqtrid 2776 | . . 3 ⊢ (𝜑 → 𝐻 = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))}) |
| 11 | 10 | breqd 5103 | . 2 ⊢ (𝜑 → (𝐹𝐻𝐺 ↔ 𝐹{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))}𝐺)) |
| 12 | fveq1 6821 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
| 13 | 12 | adantr 480 | . . . . . . 7 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑓‘𝑥) = (𝐹‘𝑥)) |
| 14 | 13 | breq1d 5102 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((𝑓‘𝑥) ≲ 𝑦 ↔ (𝐹‘𝑥) ≲ 𝑦)) |
| 15 | fveq1 6821 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (𝑔‘𝑦) = (𝐺‘𝑦)) | |
| 16 | 15 | adantl 481 | . . . . . . 7 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑔‘𝑦) = (𝐺‘𝑦)) |
| 17 | 16 | breq2d 5104 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑥 ≤ (𝑔‘𝑦) ↔ 𝑥 ≤ (𝐺‘𝑦))) |
| 18 | 14, 17 | bibi12d 345 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)) ↔ ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦)))) |
| 19 | 18 | 2ralbidv 3193 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦)))) |
| 20 | eqid 2729 | . . . 4 ⊢ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))} = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))} | |
| 21 | 19, 20 | brab2a 5712 | . . 3 ⊢ (𝐹{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))}𝐺 ↔ ((𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦)))) |
| 22 | 5 | fvexi 6836 | . . . . . 6 ⊢ 𝐵 ∈ V |
| 23 | 4 | fvexi 6836 | . . . . . 6 ⊢ 𝐴 ∈ V |
| 24 | 22, 23 | elmap 8798 | . . . . 5 ⊢ (𝐹 ∈ (𝐵 ↑m 𝐴) ↔ 𝐹:𝐴⟶𝐵) |
| 25 | 23, 22 | elmap 8798 | . . . . 5 ⊢ (𝐺 ∈ (𝐴 ↑m 𝐵) ↔ 𝐺:𝐵⟶𝐴) |
| 26 | 24, 25 | anbi12i 628 | . . . 4 ⊢ ((𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐴 ↑m 𝐵)) ↔ (𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴)) |
| 27 | 26 | anbi1i 624 | . . 3 ⊢ (((𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦))) ↔ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦)))) |
| 28 | 21, 27 | bitr2i 276 | . 2 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦))) ↔ 𝐹{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))}𝐺) |
| 29 | 11, 28 | bitr4di 289 | 1 ⊢ (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 class class class wbr 5092 {copab 5154 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ↑m cmap 8753 Basecbs 17120 lecple 17168 Proset cproset 18198 MGalConncmgc 32921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-map 8755 df-mgc 32923 |
| This theorem is referenced by: mgcf1 32930 mgcf2 32931 mgccole1 32932 mgccole2 32933 mgcmnt1 32934 mgcmnt2 32935 dfmgc2lem 32937 dfmgc2 32938 mgccnv 32941 pwrssmgc 32942 nsgmgc 33349 |
| Copyright terms: Public domain | W3C validator |