![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mgcval | Structured version Visualization version GIF version |
Description: Monotone Galois
connection between two functions 𝐹 and 𝐺. If
this relation is satisfied, 𝐹 is called the lower adjoint of 𝐺,
and 𝐺 is called the upper adjoint of 𝐹.
Technically, this is implemented as an operation taking a pair of structures 𝑉 and 𝑊, expected to be posets, which gives a relation between pairs of functions 𝐹 and 𝐺. If such a relation exists, it can be proven to be unique. Galois connections generalize the fundamental theorem of Galois theory about the correspondence between subgroups and subfields. (Contributed by Thierry Arnoux, 23-Apr-2024.) |
Ref | Expression |
---|---|
mgcoval.1 | ⊢ 𝐴 = (Base‘𝑉) |
mgcoval.2 | ⊢ 𝐵 = (Base‘𝑊) |
mgcoval.3 | ⊢ ≤ = (le‘𝑉) |
mgcoval.4 | ⊢ ≲ = (le‘𝑊) |
mgcval.1 | ⊢ 𝐻 = (𝑉MGalConn𝑊) |
mgcval.2 | ⊢ (𝜑 → 𝑉 ∈ Proset ) |
mgcval.3 | ⊢ (𝜑 → 𝑊 ∈ Proset ) |
Ref | Expression |
---|---|
mgcval | ⊢ (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgcval.1 | . . . 4 ⊢ 𝐻 = (𝑉MGalConn𝑊) | |
2 | mgcval.2 | . . . . 5 ⊢ (𝜑 → 𝑉 ∈ Proset ) | |
3 | mgcval.3 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ Proset ) | |
4 | mgcoval.1 | . . . . . 6 ⊢ 𝐴 = (Base‘𝑉) | |
5 | mgcoval.2 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑊) | |
6 | mgcoval.3 | . . . . . 6 ⊢ ≤ = (le‘𝑉) | |
7 | mgcoval.4 | . . . . . 6 ⊢ ≲ = (le‘𝑊) | |
8 | 4, 5, 6, 7 | mgcoval 31846 | . . . . 5 ⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝑉MGalConn𝑊) = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))}) |
9 | 2, 3, 8 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑉MGalConn𝑊) = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))}) |
10 | 1, 9 | eqtrid 2788 | . . 3 ⊢ (𝜑 → 𝐻 = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))}) |
11 | 10 | breqd 5116 | . 2 ⊢ (𝜑 → (𝐹𝐻𝐺 ↔ 𝐹{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))}𝐺)) |
12 | fveq1 6841 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
13 | 12 | adantr 481 | . . . . . . 7 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑓‘𝑥) = (𝐹‘𝑥)) |
14 | 13 | breq1d 5115 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((𝑓‘𝑥) ≲ 𝑦 ↔ (𝐹‘𝑥) ≲ 𝑦)) |
15 | fveq1 6841 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (𝑔‘𝑦) = (𝐺‘𝑦)) | |
16 | 15 | adantl 482 | . . . . . . 7 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑔‘𝑦) = (𝐺‘𝑦)) |
17 | 16 | breq2d 5117 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑥 ≤ (𝑔‘𝑦) ↔ 𝑥 ≤ (𝐺‘𝑦))) |
18 | 14, 17 | bibi12d 345 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)) ↔ ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦)))) |
19 | 18 | 2ralbidv 3212 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦)))) |
20 | eqid 2736 | . . . 4 ⊢ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))} = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))} | |
21 | 19, 20 | brab2a 5725 | . . 3 ⊢ (𝐹{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))}𝐺 ↔ ((𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦)))) |
22 | 5 | fvexi 6856 | . . . . . 6 ⊢ 𝐵 ∈ V |
23 | 4 | fvexi 6856 | . . . . . 6 ⊢ 𝐴 ∈ V |
24 | 22, 23 | elmap 8809 | . . . . 5 ⊢ (𝐹 ∈ (𝐵 ↑m 𝐴) ↔ 𝐹:𝐴⟶𝐵) |
25 | 23, 22 | elmap 8809 | . . . . 5 ⊢ (𝐺 ∈ (𝐴 ↑m 𝐵) ↔ 𝐺:𝐵⟶𝐴) |
26 | 24, 25 | anbi12i 627 | . . . 4 ⊢ ((𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐴 ↑m 𝐵)) ↔ (𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴)) |
27 | 26 | anbi1i 624 | . . 3 ⊢ (((𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦))) ↔ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦)))) |
28 | 21, 27 | bitr2i 275 | . 2 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦))) ↔ 𝐹{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))}𝐺) |
29 | 11, 28 | bitr4di 288 | 1 ⊢ (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3064 class class class wbr 5105 {copab 5167 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 ↑m cmap 8765 Basecbs 17083 lecple 17140 Proset cproset 18182 MGalConncmgc 31839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-ral 3065 df-rex 3074 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-br 5106 df-opab 5168 df-id 5531 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-fv 6504 df-ov 7360 df-oprab 7361 df-mpo 7362 df-map 8767 df-mgc 31841 |
This theorem is referenced by: mgcf1 31848 mgcf2 31849 mgccole1 31850 mgccole2 31851 mgcmnt1 31852 mgcmnt2 31853 dfmgc2lem 31855 dfmgc2 31856 mgccnv 31859 pwrssmgc 31860 nsgmgc 32190 |
Copyright terms: Public domain | W3C validator |