![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mgcval | Structured version Visualization version GIF version |
Description: Monotone Galois
connection between two functions 𝐹 and 𝐺. If
this relation is satisfied, 𝐹 is called the lower adjoint of 𝐺,
and 𝐺 is called the upper adjoint of 𝐹.
Technically, this is implemented as an operation taking a pair of structures 𝑉 and 𝑊, expected to be posets, which gives a relation between pairs of functions 𝐹 and 𝐺. If such a relation exists, it can be proven to be unique. Galois connections generalize the fundamental theorem of Galois theory about the correspondence between subgroups and subfields. (Contributed by Thierry Arnoux, 23-Apr-2024.) |
Ref | Expression |
---|---|
mgcoval.1 | ⊢ 𝐴 = (Base‘𝑉) |
mgcoval.2 | ⊢ 𝐵 = (Base‘𝑊) |
mgcoval.3 | ⊢ ≤ = (le‘𝑉) |
mgcoval.4 | ⊢ ≲ = (le‘𝑊) |
mgcval.1 | ⊢ 𝐻 = (𝑉MGalConn𝑊) |
mgcval.2 | ⊢ (𝜑 → 𝑉 ∈ Proset ) |
mgcval.3 | ⊢ (𝜑 → 𝑊 ∈ Proset ) |
Ref | Expression |
---|---|
mgcval | ⊢ (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgcval.1 | . . . 4 ⊢ 𝐻 = (𝑉MGalConn𝑊) | |
2 | mgcval.2 | . . . . 5 ⊢ (𝜑 → 𝑉 ∈ Proset ) | |
3 | mgcval.3 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ Proset ) | |
4 | mgcoval.1 | . . . . . 6 ⊢ 𝐴 = (Base‘𝑉) | |
5 | mgcoval.2 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑊) | |
6 | mgcoval.3 | . . . . . 6 ⊢ ≤ = (le‘𝑉) | |
7 | mgcoval.4 | . . . . . 6 ⊢ ≲ = (le‘𝑊) | |
8 | 4, 5, 6, 7 | mgcoval 32959 | . . . . 5 ⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝑉MGalConn𝑊) = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))}) |
9 | 2, 3, 8 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝑉MGalConn𝑊) = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))}) |
10 | 1, 9 | eqtrid 2792 | . . 3 ⊢ (𝜑 → 𝐻 = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))}) |
11 | 10 | breqd 5177 | . 2 ⊢ (𝜑 → (𝐹𝐻𝐺 ↔ 𝐹{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))}𝐺)) |
12 | fveq1 6919 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
13 | 12 | adantr 480 | . . . . . . 7 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑓‘𝑥) = (𝐹‘𝑥)) |
14 | 13 | breq1d 5176 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((𝑓‘𝑥) ≲ 𝑦 ↔ (𝐹‘𝑥) ≲ 𝑦)) |
15 | fveq1 6919 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (𝑔‘𝑦) = (𝐺‘𝑦)) | |
16 | 15 | adantl 481 | . . . . . . 7 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑔‘𝑦) = (𝐺‘𝑦)) |
17 | 16 | breq2d 5178 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑥 ≤ (𝑔‘𝑦) ↔ 𝑥 ≤ (𝐺‘𝑦))) |
18 | 14, 17 | bibi12d 345 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)) ↔ ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦)))) |
19 | 18 | 2ralbidv 3227 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦)))) |
20 | eqid 2740 | . . . 4 ⊢ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))} = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))} | |
21 | 19, 20 | brab2a 5793 | . . 3 ⊢ (𝐹{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))}𝐺 ↔ ((𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦)))) |
22 | 5 | fvexi 6934 | . . . . . 6 ⊢ 𝐵 ∈ V |
23 | 4 | fvexi 6934 | . . . . . 6 ⊢ 𝐴 ∈ V |
24 | 22, 23 | elmap 8929 | . . . . 5 ⊢ (𝐹 ∈ (𝐵 ↑m 𝐴) ↔ 𝐹:𝐴⟶𝐵) |
25 | 23, 22 | elmap 8929 | . . . . 5 ⊢ (𝐺 ∈ (𝐴 ↑m 𝐵) ↔ 𝐺:𝐵⟶𝐴) |
26 | 24, 25 | anbi12i 627 | . . . 4 ⊢ ((𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐴 ↑m 𝐵)) ↔ (𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴)) |
27 | 26 | anbi1i 623 | . . 3 ⊢ (((𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦))) ↔ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦)))) |
28 | 21, 27 | bitr2i 276 | . 2 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦))) ↔ 𝐹{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))}𝐺) |
29 | 11, 28 | bitr4di 289 | 1 ⊢ (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 class class class wbr 5166 {copab 5228 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 Basecbs 17258 lecple 17318 Proset cproset 18363 MGalConncmgc 32952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-mgc 32954 |
This theorem is referenced by: mgcf1 32961 mgcf2 32962 mgccole1 32963 mgccole2 32964 mgcmnt1 32965 mgcmnt2 32966 dfmgc2lem 32968 dfmgc2 32969 mgccnv 32972 pwrssmgc 32973 nsgmgc 33405 |
Copyright terms: Public domain | W3C validator |