Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgcval Structured version   Visualization version   GIF version

Theorem mgcval 30656
Description: Monotone Galois connection between two functions 𝐹 and 𝐺. If this relation is satisfied, 𝐹 is called the lower adjoint of 𝐺, and 𝐺 is called the upper adjoint of 𝐹.

Technically, this is implemented as an operation taking a pair of structures 𝑉 and 𝑊, expected to be posets, which gives a relation between pairs of functions 𝐹 and 𝐺.

If such a relation exists, it can be proven to be unique.

Galois connections generalize the fundamental theorem of Galois theory about the correspondence between subgroups and subfields. (Contributed by Thierry Arnoux, 23-Apr-2024.)

Hypotheses
Ref Expression
mgcoval.1 𝐴 = (Base‘𝑉)
mgcoval.2 𝐵 = (Base‘𝑊)
mgcoval.3 = (le‘𝑉)
mgcoval.4 = (le‘𝑊)
mgcval.1 𝐻 = (𝑉MGalConn𝑊)
mgcval.2 (𝜑𝑉 ∈ Proset )
mgcval.3 (𝜑𝑊 ∈ Proset )
Assertion
Ref Expression
mgcval (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)))))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐻(𝑥,𝑦)   (𝑥,𝑦)   (𝑥,𝑦)

Proof of Theorem mgcval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgcval.1 . . . 4 𝐻 = (𝑉MGalConn𝑊)
2 mgcval.2 . . . . 5 (𝜑𝑉 ∈ Proset )
3 mgcval.3 . . . . 5 (𝜑𝑊 ∈ Proset )
4 mgcoval.1 . . . . . 6 𝐴 = (Base‘𝑉)
5 mgcoval.2 . . . . . 6 𝐵 = (Base‘𝑊)
6 mgcoval.3 . . . . . 6 = (le‘𝑉)
7 mgcoval.4 . . . . . 6 = (le‘𝑊)
84, 5, 6, 7mgcoval 30655 . . . . 5 ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝑉MGalConn𝑊) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝐵m 𝐴) ∧ 𝑔 ∈ (𝐴m 𝐵)) ∧ ∀𝑥𝐴𝑦𝐵 ((𝑓𝑥) 𝑦𝑥 (𝑔𝑦)))})
92, 3, 8syl2anc 586 . . . 4 (𝜑 → (𝑉MGalConn𝑊) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝐵m 𝐴) ∧ 𝑔 ∈ (𝐴m 𝐵)) ∧ ∀𝑥𝐴𝑦𝐵 ((𝑓𝑥) 𝑦𝑥 (𝑔𝑦)))})
101, 9syl5eq 2867 . . 3 (𝜑𝐻 = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝐵m 𝐴) ∧ 𝑔 ∈ (𝐴m 𝐵)) ∧ ∀𝑥𝐴𝑦𝐵 ((𝑓𝑥) 𝑦𝑥 (𝑔𝑦)))})
1110breqd 5053 . 2 (𝜑 → (𝐹𝐻𝐺𝐹{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝐵m 𝐴) ∧ 𝑔 ∈ (𝐴m 𝐵)) ∧ ∀𝑥𝐴𝑦𝐵 ((𝑓𝑥) 𝑦𝑥 (𝑔𝑦)))}𝐺))
12 fveq1 6645 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
1312adantr 483 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓𝑥) = (𝐹𝑥))
1413breq1d 5052 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓𝑥) 𝑦 ↔ (𝐹𝑥) 𝑦))
15 fveq1 6645 . . . . . . . 8 (𝑔 = 𝐺 → (𝑔𝑦) = (𝐺𝑦))
1615adantl 484 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑔𝑦) = (𝐺𝑦))
1716breq2d 5054 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑥 (𝑔𝑦) ↔ 𝑥 (𝐺𝑦)))
1814, 17bibi12d 348 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → (((𝑓𝑥) 𝑦𝑥 (𝑔𝑦)) ↔ ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦))))
19182ralbidv 3186 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (∀𝑥𝐴𝑦𝐵 ((𝑓𝑥) 𝑦𝑥 (𝑔𝑦)) ↔ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦))))
20 eqid 2820 . . . 4 {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝐵m 𝐴) ∧ 𝑔 ∈ (𝐴m 𝐵)) ∧ ∀𝑥𝐴𝑦𝐵 ((𝑓𝑥) 𝑦𝑥 (𝑔𝑦)))} = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝐵m 𝐴) ∧ 𝑔 ∈ (𝐴m 𝐵)) ∧ ∀𝑥𝐴𝑦𝐵 ((𝑓𝑥) 𝑦𝑥 (𝑔𝑦)))}
2119, 20brab2a 5620 . . 3 (𝐹{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝐵m 𝐴) ∧ 𝑔 ∈ (𝐴m 𝐵)) ∧ ∀𝑥𝐴𝑦𝐵 ((𝑓𝑥) 𝑦𝑥 (𝑔𝑦)))}𝐺 ↔ ((𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐴m 𝐵)) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦))))
225fvexi 6660 . . . . . 6 𝐵 ∈ V
234fvexi 6660 . . . . . 6 𝐴 ∈ V
2422, 23elmap 8413 . . . . 5 (𝐹 ∈ (𝐵m 𝐴) ↔ 𝐹:𝐴𝐵)
2523, 22elmap 8413 . . . . 5 (𝐺 ∈ (𝐴m 𝐵) ↔ 𝐺:𝐵𝐴)
2624, 25anbi12i 628 . . . 4 ((𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐴m 𝐵)) ↔ (𝐹:𝐴𝐵𝐺:𝐵𝐴))
2726anbi1i 625 . . 3 (((𝐹 ∈ (𝐵m 𝐴) ∧ 𝐺 ∈ (𝐴m 𝐵)) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦))) ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦))))
2821, 27bitr2i 278 . 2 (((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦))) ↔ 𝐹{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝐵m 𝐴) ∧ 𝑔 ∈ (𝐴m 𝐵)) ∧ ∀𝑥𝐴𝑦𝐵 ((𝑓𝑥) 𝑦𝑥 (𝑔𝑦)))}𝐺)
2911, 28syl6bbr 291 1 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3125   class class class wbr 5042  {copab 5104  wf 6327  cfv 6331  (class class class)co 7133  m cmap 8384  Basecbs 16462  lecple 16551   Proset cproset 17515  MGalConncmgc 30648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ral 3130  df-rex 3131  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-op 4550  df-uni 4815  df-br 5043  df-opab 5105  df-id 5436  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-fv 6339  df-ov 7136  df-oprab 7137  df-mpo 7138  df-map 8386  df-mgc 30650
This theorem is referenced by:  mgcf1  30657  mgcf2  30658  mgccole1  30659  mgccole2  30660  mcgmnt1  30661  mcgmnt2  30662  dfmgc2lem  30664  dfmgc2  30665  mcgcnv  30666  pwrssmgc  30667
  Copyright terms: Public domain W3C validator