| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | df-mgc 32972 | . . 3
⊢ MGalConn
= (𝑣 ∈ V, 𝑤 ∈ V ↦
⦋(Base‘𝑣) / 𝑎⦌⦋(Base‘𝑤) / 𝑏⦌{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑏 ↑m 𝑎) ∧ 𝑔 ∈ (𝑎 ↑m 𝑏)) ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 ((𝑓‘𝑥)(le‘𝑤)𝑦 ↔ 𝑥(le‘𝑣)(𝑔‘𝑦)))}) | 
| 2 | 1 | a1i 11 | . 2
⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → MGalConn = (𝑣 ∈ V, 𝑤 ∈ V ↦
⦋(Base‘𝑣) / 𝑎⦌⦋(Base‘𝑤) / 𝑏⦌{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑏 ↑m 𝑎) ∧ 𝑔 ∈ (𝑎 ↑m 𝑏)) ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 ((𝑓‘𝑥)(le‘𝑤)𝑦 ↔ 𝑥(le‘𝑣)(𝑔‘𝑦)))})) | 
| 3 |  | fvexd 6920 | . . 3
⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) → (Base‘𝑣) ∈ V) | 
| 4 |  | simprl 770 | . . . . 5
⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) → 𝑣 = 𝑉) | 
| 5 | 4 | fveq2d 6909 | . . . 4
⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) → (Base‘𝑣) = (Base‘𝑉)) | 
| 6 |  | mgcoval.1 | . . . 4
⊢ 𝐴 = (Base‘𝑉) | 
| 7 | 5, 6 | eqtr4di 2794 | . . 3
⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) → (Base‘𝑣) = 𝐴) | 
| 8 |  | fvexd 6920 | . . . 4
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) → (Base‘𝑤) ∈ V) | 
| 9 |  | simplrr 777 | . . . . . 6
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) → 𝑤 = 𝑊) | 
| 10 | 9 | fveq2d 6909 | . . . . 5
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) → (Base‘𝑤) = (Base‘𝑊)) | 
| 11 |  | mgcoval.2 | . . . . 5
⊢ 𝐵 = (Base‘𝑊) | 
| 12 | 10, 11 | eqtr4di 2794 | . . . 4
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) → (Base‘𝑤) = 𝐵) | 
| 13 |  | simpr 484 | . . . . . . . . 9
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵) | 
| 14 |  | simplr 768 | . . . . . . . . 9
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → 𝑎 = 𝐴) | 
| 15 | 13, 14 | oveq12d 7450 | . . . . . . . 8
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → (𝑏 ↑m 𝑎) = (𝐵 ↑m 𝐴)) | 
| 16 | 15 | eleq2d 2826 | . . . . . . 7
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → (𝑓 ∈ (𝑏 ↑m 𝑎) ↔ 𝑓 ∈ (𝐵 ↑m 𝐴))) | 
| 17 | 14, 13 | oveq12d 7450 | . . . . . . . 8
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → (𝑎 ↑m 𝑏) = (𝐴 ↑m 𝐵)) | 
| 18 | 17 | eleq2d 2826 | . . . . . . 7
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → (𝑔 ∈ (𝑎 ↑m 𝑏) ↔ 𝑔 ∈ (𝐴 ↑m 𝐵))) | 
| 19 | 16, 18 | anbi12d 632 | . . . . . 6
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → ((𝑓 ∈ (𝑏 ↑m 𝑎) ∧ 𝑔 ∈ (𝑎 ↑m 𝑏)) ↔ (𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)))) | 
| 20 | 9 | adantr 480 | . . . . . . . . . . . 12
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → 𝑤 = 𝑊) | 
| 21 | 20 | fveq2d 6909 | . . . . . . . . . . 11
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → (le‘𝑤) = (le‘𝑊)) | 
| 22 |  | mgcoval.4 | . . . . . . . . . . 11
⊢  ≲ =
(le‘𝑊) | 
| 23 | 21, 22 | eqtr4di 2794 | . . . . . . . . . 10
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → (le‘𝑤) = ≲ ) | 
| 24 | 23 | breqd 5153 | . . . . . . . . 9
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → ((𝑓‘𝑥)(le‘𝑤)𝑦 ↔ (𝑓‘𝑥) ≲ 𝑦)) | 
| 25 | 4 | ad2antrr 726 | . . . . . . . . . . . 12
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → 𝑣 = 𝑉) | 
| 26 | 25 | fveq2d 6909 | . . . . . . . . . . 11
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → (le‘𝑣) = (le‘𝑉)) | 
| 27 |  | mgcoval.3 | . . . . . . . . . . 11
⊢  ≤ =
(le‘𝑉) | 
| 28 | 26, 27 | eqtr4di 2794 | . . . . . . . . . 10
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → (le‘𝑣) = ≤ ) | 
| 29 | 28 | breqd 5153 | . . . . . . . . 9
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → (𝑥(le‘𝑣)(𝑔‘𝑦) ↔ 𝑥 ≤ (𝑔‘𝑦))) | 
| 30 | 24, 29 | bibi12d 345 | . . . . . . . 8
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → (((𝑓‘𝑥)(le‘𝑤)𝑦 ↔ 𝑥(le‘𝑣)(𝑔‘𝑦)) ↔ ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))) | 
| 31 | 13, 30 | raleqbidv 3345 | . . . . . . 7
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → (∀𝑦 ∈ 𝑏 ((𝑓‘𝑥)(le‘𝑤)𝑦 ↔ 𝑥(le‘𝑣)(𝑔‘𝑦)) ↔ ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))) | 
| 32 | 14, 31 | raleqbidv 3345 | . . . . . 6
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → (∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 ((𝑓‘𝑥)(le‘𝑤)𝑦 ↔ 𝑥(le‘𝑣)(𝑔‘𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))) | 
| 33 | 19, 32 | anbi12d 632 | . . . . 5
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → (((𝑓 ∈ (𝑏 ↑m 𝑎) ∧ 𝑔 ∈ (𝑎 ↑m 𝑏)) ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 ((𝑓‘𝑥)(le‘𝑤)𝑦 ↔ 𝑥(le‘𝑣)(𝑔‘𝑦))) ↔ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦))))) | 
| 34 | 33 | opabbidv 5208 | . . . 4
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑏 ↑m 𝑎) ∧ 𝑔 ∈ (𝑎 ↑m 𝑏)) ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 ((𝑓‘𝑥)(le‘𝑤)𝑦 ↔ 𝑥(le‘𝑣)(𝑔‘𝑦)))} = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))}) | 
| 35 | 8, 12, 34 | csbied2 3935 | . . 3
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) → ⦋(Base‘𝑤) / 𝑏⦌{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑏 ↑m 𝑎) ∧ 𝑔 ∈ (𝑎 ↑m 𝑏)) ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 ((𝑓‘𝑥)(le‘𝑤)𝑦 ↔ 𝑥(le‘𝑣)(𝑔‘𝑦)))} = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))}) | 
| 36 | 3, 7, 35 | csbied2 3935 | . 2
⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) → ⦋(Base‘𝑣) / 𝑎⦌⦋(Base‘𝑤) / 𝑏⦌{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑏 ↑m 𝑎) ∧ 𝑔 ∈ (𝑎 ↑m 𝑏)) ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 ((𝑓‘𝑥)(le‘𝑤)𝑦 ↔ 𝑥(le‘𝑣)(𝑔‘𝑦)))} = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))}) | 
| 37 |  | simpl 482 | . . 3
⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → 𝑉 ∈ 𝑋) | 
| 38 | 37 | elexd 3503 | . 2
⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → 𝑉 ∈ V) | 
| 39 |  | simpr 484 | . . 3
⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → 𝑊 ∈ 𝑌) | 
| 40 | 39 | elexd 3503 | . 2
⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → 𝑊 ∈ V) | 
| 41 |  | ovexd 7467 | . . 3
⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐵 ↑m 𝐴) ∈ V) | 
| 42 |  | ovexd 7467 | . . 3
⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐴 ↑m 𝐵) ∈ V) | 
| 43 |  | simprll 778 | . . 3
⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))) → 𝑓 ∈ (𝐵 ↑m 𝐴)) | 
| 44 |  | simprlr 779 | . . 3
⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))) → 𝑔 ∈ (𝐴 ↑m 𝐵)) | 
| 45 | 41, 42, 43, 44 | opabex2 8083 | . 2
⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))} ∈ V) | 
| 46 | 2, 36, 38, 40, 45 | ovmpod 7586 | 1
⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑉MGalConn𝑊) = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))}) |