Step | Hyp | Ref
| Expression |
1 | | df-mgc 31255 |
. . 3
⊢ MGalConn
= (𝑣 ∈ V, 𝑤 ∈ V ↦
⦋(Base‘𝑣) / 𝑎⦌⦋(Base‘𝑤) / 𝑏⦌{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑏 ↑m 𝑎) ∧ 𝑔 ∈ (𝑎 ↑m 𝑏)) ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 ((𝑓‘𝑥)(le‘𝑤)𝑦 ↔ 𝑥(le‘𝑣)(𝑔‘𝑦)))}) |
2 | 1 | a1i 11 |
. 2
⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → MGalConn = (𝑣 ∈ V, 𝑤 ∈ V ↦
⦋(Base‘𝑣) / 𝑎⦌⦋(Base‘𝑤) / 𝑏⦌{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑏 ↑m 𝑎) ∧ 𝑔 ∈ (𝑎 ↑m 𝑏)) ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 ((𝑓‘𝑥)(le‘𝑤)𝑦 ↔ 𝑥(le‘𝑣)(𝑔‘𝑦)))})) |
3 | | fvexd 6786 |
. . 3
⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) → (Base‘𝑣) ∈ V) |
4 | | simprl 768 |
. . . . 5
⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) → 𝑣 = 𝑉) |
5 | 4 | fveq2d 6775 |
. . . 4
⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) → (Base‘𝑣) = (Base‘𝑉)) |
6 | | mgcoval.1 |
. . . 4
⊢ 𝐴 = (Base‘𝑉) |
7 | 5, 6 | eqtr4di 2798 |
. . 3
⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) → (Base‘𝑣) = 𝐴) |
8 | | fvexd 6786 |
. . . 4
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) → (Base‘𝑤) ∈ V) |
9 | | simplrr 775 |
. . . . . 6
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) → 𝑤 = 𝑊) |
10 | 9 | fveq2d 6775 |
. . . . 5
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) → (Base‘𝑤) = (Base‘𝑊)) |
11 | | mgcoval.2 |
. . . . 5
⊢ 𝐵 = (Base‘𝑊) |
12 | 10, 11 | eqtr4di 2798 |
. . . 4
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) → (Base‘𝑤) = 𝐵) |
13 | | simpr 485 |
. . . . . . . . 9
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵) |
14 | | simplr 766 |
. . . . . . . . 9
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → 𝑎 = 𝐴) |
15 | 13, 14 | oveq12d 7289 |
. . . . . . . 8
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → (𝑏 ↑m 𝑎) = (𝐵 ↑m 𝐴)) |
16 | 15 | eleq2d 2826 |
. . . . . . 7
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → (𝑓 ∈ (𝑏 ↑m 𝑎) ↔ 𝑓 ∈ (𝐵 ↑m 𝐴))) |
17 | 14, 13 | oveq12d 7289 |
. . . . . . . 8
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → (𝑎 ↑m 𝑏) = (𝐴 ↑m 𝐵)) |
18 | 17 | eleq2d 2826 |
. . . . . . 7
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → (𝑔 ∈ (𝑎 ↑m 𝑏) ↔ 𝑔 ∈ (𝐴 ↑m 𝐵))) |
19 | 16, 18 | anbi12d 631 |
. . . . . 6
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → ((𝑓 ∈ (𝑏 ↑m 𝑎) ∧ 𝑔 ∈ (𝑎 ↑m 𝑏)) ↔ (𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)))) |
20 | 9 | adantr 481 |
. . . . . . . . . . . 12
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → 𝑤 = 𝑊) |
21 | 20 | fveq2d 6775 |
. . . . . . . . . . 11
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → (le‘𝑤) = (le‘𝑊)) |
22 | | mgcoval.4 |
. . . . . . . . . . 11
⊢ ≲ =
(le‘𝑊) |
23 | 21, 22 | eqtr4di 2798 |
. . . . . . . . . 10
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → (le‘𝑤) = ≲ ) |
24 | 23 | breqd 5090 |
. . . . . . . . 9
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → ((𝑓‘𝑥)(le‘𝑤)𝑦 ↔ (𝑓‘𝑥) ≲ 𝑦)) |
25 | 4 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → 𝑣 = 𝑉) |
26 | 25 | fveq2d 6775 |
. . . . . . . . . . 11
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → (le‘𝑣) = (le‘𝑉)) |
27 | | mgcoval.3 |
. . . . . . . . . . 11
⊢ ≤ =
(le‘𝑉) |
28 | 26, 27 | eqtr4di 2798 |
. . . . . . . . . 10
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → (le‘𝑣) = ≤ ) |
29 | 28 | breqd 5090 |
. . . . . . . . 9
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → (𝑥(le‘𝑣)(𝑔‘𝑦) ↔ 𝑥 ≤ (𝑔‘𝑦))) |
30 | 24, 29 | bibi12d 346 |
. . . . . . . 8
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → (((𝑓‘𝑥)(le‘𝑤)𝑦 ↔ 𝑥(le‘𝑣)(𝑔‘𝑦)) ↔ ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))) |
31 | 13, 30 | raleqbidv 3335 |
. . . . . . 7
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → (∀𝑦 ∈ 𝑏 ((𝑓‘𝑥)(le‘𝑤)𝑦 ↔ 𝑥(le‘𝑣)(𝑔‘𝑦)) ↔ ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))) |
32 | 14, 31 | raleqbidv 3335 |
. . . . . 6
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → (∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 ((𝑓‘𝑥)(le‘𝑤)𝑦 ↔ 𝑥(le‘𝑣)(𝑔‘𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))) |
33 | 19, 32 | anbi12d 631 |
. . . . 5
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → (((𝑓 ∈ (𝑏 ↑m 𝑎) ∧ 𝑔 ∈ (𝑎 ↑m 𝑏)) ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 ((𝑓‘𝑥)(le‘𝑤)𝑦 ↔ 𝑥(le‘𝑣)(𝑔‘𝑦))) ↔ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦))))) |
34 | 33 | opabbidv 5145 |
. . . 4
⊢
(((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑏 ↑m 𝑎) ∧ 𝑔 ∈ (𝑎 ↑m 𝑏)) ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 ((𝑓‘𝑥)(le‘𝑤)𝑦 ↔ 𝑥(le‘𝑣)(𝑔‘𝑦)))} = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))}) |
35 | 8, 12, 34 | csbied2 3877 |
. . 3
⊢ ((((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) → ⦋(Base‘𝑤) / 𝑏⦌{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑏 ↑m 𝑎) ∧ 𝑔 ∈ (𝑎 ↑m 𝑏)) ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 ((𝑓‘𝑥)(le‘𝑤)𝑦 ↔ 𝑥(le‘𝑣)(𝑔‘𝑦)))} = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))}) |
36 | 3, 7, 35 | csbied2 3877 |
. 2
⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑤 = 𝑊)) → ⦋(Base‘𝑣) / 𝑎⦌⦋(Base‘𝑤) / 𝑏⦌{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑏 ↑m 𝑎) ∧ 𝑔 ∈ (𝑎 ↑m 𝑏)) ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 ((𝑓‘𝑥)(le‘𝑤)𝑦 ↔ 𝑥(le‘𝑣)(𝑔‘𝑦)))} = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))}) |
37 | | simpl 483 |
. . 3
⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → 𝑉 ∈ 𝑋) |
38 | 37 | elexd 3451 |
. 2
⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → 𝑉 ∈ V) |
39 | | simpr 485 |
. . 3
⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → 𝑊 ∈ 𝑌) |
40 | 39 | elexd 3451 |
. 2
⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → 𝑊 ∈ V) |
41 | | ovexd 7306 |
. . 3
⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐵 ↑m 𝐴) ∈ V) |
42 | | ovexd 7306 |
. . 3
⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐴 ↑m 𝐵) ∈ V) |
43 | | simprll 776 |
. . 3
⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))) → 𝑓 ∈ (𝐵 ↑m 𝐴)) |
44 | | simprlr 777 |
. . 3
⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))) → 𝑔 ∈ (𝐴 ↑m 𝐵)) |
45 | 41, 42, 43, 44 | opabex2 7890 |
. 2
⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))} ∈ V) |
46 | 2, 36, 38, 40, 45 | ovmpod 7419 |
1
⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑉MGalConn𝑊) = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))}) |