Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgcoval Structured version   Visualization version   GIF version

Theorem mgcoval 30775
Description: Operation value of the monotone Galois connection. (Contributed by Thierry Arnoux, 23-Apr-2024.)
Hypotheses
Ref Expression
mgcoval.1 𝐴 = (Base‘𝑉)
mgcoval.2 𝐵 = (Base‘𝑊)
mgcoval.3 = (le‘𝑉)
mgcoval.4 = (le‘𝑊)
Assertion
Ref Expression
mgcoval ((𝑉𝑋𝑊𝑌) → (𝑉MGalConn𝑊) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝐵m 𝐴) ∧ 𝑔 ∈ (𝐴m 𝐵)) ∧ ∀𝑥𝐴𝑦𝐵 ((𝑓𝑥) 𝑦𝑥 (𝑔𝑦)))})
Distinct variable groups:   𝐴,𝑓,𝑔,𝑥,𝑦   𝐵,𝑓,𝑔,𝑥,𝑦   𝑓,𝑉,𝑔,𝑥,𝑦   𝑓,𝑊,𝑔,𝑥,𝑦   𝑓,𝑋,𝑔,𝑥,𝑦   𝑓,𝑌,𝑔,𝑥,𝑦
Allowed substitution hints:   (𝑥,𝑦,𝑓,𝑔)   (𝑥,𝑦,𝑓,𝑔)

Proof of Theorem mgcoval
Dummy variables 𝑎 𝑏 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mgc 30770 . . 3 MGalConn = (𝑣 ∈ V, 𝑤 ∈ V ↦ (Base‘𝑣) / 𝑎(Base‘𝑤) / 𝑏{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑏m 𝑎) ∧ 𝑔 ∈ (𝑎m 𝑏)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑓𝑥)(le‘𝑤)𝑦𝑥(le‘𝑣)(𝑔𝑦)))})
21a1i 11 . 2 ((𝑉𝑋𝑊𝑌) → MGalConn = (𝑣 ∈ V, 𝑤 ∈ V ↦ (Base‘𝑣) / 𝑎(Base‘𝑤) / 𝑏{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑏m 𝑎) ∧ 𝑔 ∈ (𝑎m 𝑏)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑓𝑥)(le‘𝑤)𝑦𝑥(le‘𝑣)(𝑔𝑦)))}))
3 fvexd 6666 . . 3 (((𝑉𝑋𝑊𝑌) ∧ (𝑣 = 𝑉𝑤 = 𝑊)) → (Base‘𝑣) ∈ V)
4 simprl 771 . . . . 5 (((𝑉𝑋𝑊𝑌) ∧ (𝑣 = 𝑉𝑤 = 𝑊)) → 𝑣 = 𝑉)
54fveq2d 6655 . . . 4 (((𝑉𝑋𝑊𝑌) ∧ (𝑣 = 𝑉𝑤 = 𝑊)) → (Base‘𝑣) = (Base‘𝑉))
6 mgcoval.1 . . . 4 𝐴 = (Base‘𝑉)
75, 6eqtr4di 2812 . . 3 (((𝑉𝑋𝑊𝑌) ∧ (𝑣 = 𝑉𝑤 = 𝑊)) → (Base‘𝑣) = 𝐴)
8 fvexd 6666 . . . 4 ((((𝑉𝑋𝑊𝑌) ∧ (𝑣 = 𝑉𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) → (Base‘𝑤) ∈ V)
9 simplrr 778 . . . . . 6 ((((𝑉𝑋𝑊𝑌) ∧ (𝑣 = 𝑉𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) → 𝑤 = 𝑊)
109fveq2d 6655 . . . . 5 ((((𝑉𝑋𝑊𝑌) ∧ (𝑣 = 𝑉𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) → (Base‘𝑤) = (Base‘𝑊))
11 mgcoval.2 . . . . 5 𝐵 = (Base‘𝑊)
1210, 11eqtr4di 2812 . . . 4 ((((𝑉𝑋𝑊𝑌) ∧ (𝑣 = 𝑉𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) → (Base‘𝑤) = 𝐵)
13 simpr 489 . . . . . . . . 9 (((((𝑉𝑋𝑊𝑌) ∧ (𝑣 = 𝑉𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵)
14 simplr 769 . . . . . . . . 9 (((((𝑉𝑋𝑊𝑌) ∧ (𝑣 = 𝑉𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → 𝑎 = 𝐴)
1513, 14oveq12d 7161 . . . . . . . 8 (((((𝑉𝑋𝑊𝑌) ∧ (𝑣 = 𝑉𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → (𝑏m 𝑎) = (𝐵m 𝐴))
1615eleq2d 2836 . . . . . . 7 (((((𝑉𝑋𝑊𝑌) ∧ (𝑣 = 𝑉𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → (𝑓 ∈ (𝑏m 𝑎) ↔ 𝑓 ∈ (𝐵m 𝐴)))
1714, 13oveq12d 7161 . . . . . . . 8 (((((𝑉𝑋𝑊𝑌) ∧ (𝑣 = 𝑉𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → (𝑎m 𝑏) = (𝐴m 𝐵))
1817eleq2d 2836 . . . . . . 7 (((((𝑉𝑋𝑊𝑌) ∧ (𝑣 = 𝑉𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → (𝑔 ∈ (𝑎m 𝑏) ↔ 𝑔 ∈ (𝐴m 𝐵)))
1916, 18anbi12d 634 . . . . . 6 (((((𝑉𝑋𝑊𝑌) ∧ (𝑣 = 𝑉𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → ((𝑓 ∈ (𝑏m 𝑎) ∧ 𝑔 ∈ (𝑎m 𝑏)) ↔ (𝑓 ∈ (𝐵m 𝐴) ∧ 𝑔 ∈ (𝐴m 𝐵))))
209adantr 485 . . . . . . . . . . . 12 (((((𝑉𝑋𝑊𝑌) ∧ (𝑣 = 𝑉𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → 𝑤 = 𝑊)
2120fveq2d 6655 . . . . . . . . . . 11 (((((𝑉𝑋𝑊𝑌) ∧ (𝑣 = 𝑉𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → (le‘𝑤) = (le‘𝑊))
22 mgcoval.4 . . . . . . . . . . 11 = (le‘𝑊)
2321, 22eqtr4di 2812 . . . . . . . . . 10 (((((𝑉𝑋𝑊𝑌) ∧ (𝑣 = 𝑉𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → (le‘𝑤) = )
2423breqd 5036 . . . . . . . . 9 (((((𝑉𝑋𝑊𝑌) ∧ (𝑣 = 𝑉𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → ((𝑓𝑥)(le‘𝑤)𝑦 ↔ (𝑓𝑥) 𝑦))
254ad2antrr 726 . . . . . . . . . . . 12 (((((𝑉𝑋𝑊𝑌) ∧ (𝑣 = 𝑉𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → 𝑣 = 𝑉)
2625fveq2d 6655 . . . . . . . . . . 11 (((((𝑉𝑋𝑊𝑌) ∧ (𝑣 = 𝑉𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → (le‘𝑣) = (le‘𝑉))
27 mgcoval.3 . . . . . . . . . . 11 = (le‘𝑉)
2826, 27eqtr4di 2812 . . . . . . . . . 10 (((((𝑉𝑋𝑊𝑌) ∧ (𝑣 = 𝑉𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → (le‘𝑣) = )
2928breqd 5036 . . . . . . . . 9 (((((𝑉𝑋𝑊𝑌) ∧ (𝑣 = 𝑉𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → (𝑥(le‘𝑣)(𝑔𝑦) ↔ 𝑥 (𝑔𝑦)))
3024, 29bibi12d 350 . . . . . . . 8 (((((𝑉𝑋𝑊𝑌) ∧ (𝑣 = 𝑉𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → (((𝑓𝑥)(le‘𝑤)𝑦𝑥(le‘𝑣)(𝑔𝑦)) ↔ ((𝑓𝑥) 𝑦𝑥 (𝑔𝑦))))
3113, 30raleqbidv 3317 . . . . . . 7 (((((𝑉𝑋𝑊𝑌) ∧ (𝑣 = 𝑉𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → (∀𝑦𝑏 ((𝑓𝑥)(le‘𝑤)𝑦𝑥(le‘𝑣)(𝑔𝑦)) ↔ ∀𝑦𝐵 ((𝑓𝑥) 𝑦𝑥 (𝑔𝑦))))
3214, 31raleqbidv 3317 . . . . . 6 (((((𝑉𝑋𝑊𝑌) ∧ (𝑣 = 𝑉𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → (∀𝑥𝑎𝑦𝑏 ((𝑓𝑥)(le‘𝑤)𝑦𝑥(le‘𝑣)(𝑔𝑦)) ↔ ∀𝑥𝐴𝑦𝐵 ((𝑓𝑥) 𝑦𝑥 (𝑔𝑦))))
3319, 32anbi12d 634 . . . . 5 (((((𝑉𝑋𝑊𝑌) ∧ (𝑣 = 𝑉𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → (((𝑓 ∈ (𝑏m 𝑎) ∧ 𝑔 ∈ (𝑎m 𝑏)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑓𝑥)(le‘𝑤)𝑦𝑥(le‘𝑣)(𝑔𝑦))) ↔ ((𝑓 ∈ (𝐵m 𝐴) ∧ 𝑔 ∈ (𝐴m 𝐵)) ∧ ∀𝑥𝐴𝑦𝐵 ((𝑓𝑥) 𝑦𝑥 (𝑔𝑦)))))
3433opabbidv 5091 . . . 4 (((((𝑉𝑋𝑊𝑌) ∧ (𝑣 = 𝑉𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑏m 𝑎) ∧ 𝑔 ∈ (𝑎m 𝑏)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑓𝑥)(le‘𝑤)𝑦𝑥(le‘𝑣)(𝑔𝑦)))} = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝐵m 𝐴) ∧ 𝑔 ∈ (𝐴m 𝐵)) ∧ ∀𝑥𝐴𝑦𝐵 ((𝑓𝑥) 𝑦𝑥 (𝑔𝑦)))})
358, 12, 34csbied2 3838 . . 3 ((((𝑉𝑋𝑊𝑌) ∧ (𝑣 = 𝑉𝑤 = 𝑊)) ∧ 𝑎 = 𝐴) → (Base‘𝑤) / 𝑏{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑏m 𝑎) ∧ 𝑔 ∈ (𝑎m 𝑏)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑓𝑥)(le‘𝑤)𝑦𝑥(le‘𝑣)(𝑔𝑦)))} = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝐵m 𝐴) ∧ 𝑔 ∈ (𝐴m 𝐵)) ∧ ∀𝑥𝐴𝑦𝐵 ((𝑓𝑥) 𝑦𝑥 (𝑔𝑦)))})
363, 7, 35csbied2 3838 . 2 (((𝑉𝑋𝑊𝑌) ∧ (𝑣 = 𝑉𝑤 = 𝑊)) → (Base‘𝑣) / 𝑎(Base‘𝑤) / 𝑏{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑏m 𝑎) ∧ 𝑔 ∈ (𝑎m 𝑏)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑓𝑥)(le‘𝑤)𝑦𝑥(le‘𝑣)(𝑔𝑦)))} = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝐵m 𝐴) ∧ 𝑔 ∈ (𝐴m 𝐵)) ∧ ∀𝑥𝐴𝑦𝐵 ((𝑓𝑥) 𝑦𝑥 (𝑔𝑦)))})
37 simpl 487 . . 3 ((𝑉𝑋𝑊𝑌) → 𝑉𝑋)
3837elexd 3429 . 2 ((𝑉𝑋𝑊𝑌) → 𝑉 ∈ V)
39 simpr 489 . . 3 ((𝑉𝑋𝑊𝑌) → 𝑊𝑌)
4039elexd 3429 . 2 ((𝑉𝑋𝑊𝑌) → 𝑊 ∈ V)
41 ovexd 7178 . . 3 ((𝑉𝑋𝑊𝑌) → (𝐵m 𝐴) ∈ V)
42 ovexd 7178 . . 3 ((𝑉𝑋𝑊𝑌) → (𝐴m 𝐵) ∈ V)
43 simprll 779 . . 3 (((𝑉𝑋𝑊𝑌) ∧ ((𝑓 ∈ (𝐵m 𝐴) ∧ 𝑔 ∈ (𝐴m 𝐵)) ∧ ∀𝑥𝐴𝑦𝐵 ((𝑓𝑥) 𝑦𝑥 (𝑔𝑦)))) → 𝑓 ∈ (𝐵m 𝐴))
44 simprlr 780 . . 3 (((𝑉𝑋𝑊𝑌) ∧ ((𝑓 ∈ (𝐵m 𝐴) ∧ 𝑔 ∈ (𝐴m 𝐵)) ∧ ∀𝑥𝐴𝑦𝐵 ((𝑓𝑥) 𝑦𝑥 (𝑔𝑦)))) → 𝑔 ∈ (𝐴m 𝐵))
4541, 42, 43, 44opabex2 7752 . 2 ((𝑉𝑋𝑊𝑌) → {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝐵m 𝐴) ∧ 𝑔 ∈ (𝐴m 𝐵)) ∧ ∀𝑥𝐴𝑦𝐵 ((𝑓𝑥) 𝑦𝑥 (𝑔𝑦)))} ∈ V)
462, 36, 38, 40, 45ovmpod 7290 1 ((𝑉𝑋𝑊𝑌) → (𝑉MGalConn𝑊) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝐵m 𝐴) ∧ 𝑔 ∈ (𝐴m 𝐵)) ∧ ∀𝑥𝐴𝑦𝐵 ((𝑓𝑥) 𝑦𝑥 (𝑔𝑦)))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400   = wceq 1539  wcel 2112  wral 3068  Vcvv 3407  csb 3801   class class class wbr 5025  {copab 5087  cfv 6328  (class class class)co 7143  cmpo 7145  m cmap 8409  Basecbs 16526  lecple 16615  MGalConncmgc 30768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ral 3073  df-rex 3074  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-op 4522  df-uni 4792  df-br 5026  df-opab 5088  df-id 5423  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-iota 6287  df-fun 6330  df-fv 6336  df-ov 7146  df-oprab 7147  df-mpo 7148  df-mgc 30770
This theorem is referenced by:  mgcval  30776
  Copyright terms: Public domain W3C validator