![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nllyeq | Structured version Visualization version GIF version |
Description: Equality theorem for the Locally 𝐴 predicate. (Contributed by Mario Carneiro, 2-Mar-2015.) |
Ref | Expression |
---|---|
nllyeq | ⊢ (𝐴 = 𝐵 → 𝑛-Locally 𝐴 = 𝑛-Locally 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2828 | . . . . 5 ⊢ (𝐴 = 𝐵 → ((𝑗 ↾t 𝑢) ∈ 𝐴 ↔ (𝑗 ↾t 𝑢) ∈ 𝐵)) | |
2 | 1 | rexbidv 3177 | . . . 4 ⊢ (𝐴 = 𝐵 → (∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴 ↔ ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐵)) |
3 | 2 | 2ralbidv 3219 | . . 3 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴 ↔ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐵)) |
4 | 3 | rabbidv 3441 | . 2 ⊢ (𝐴 = 𝐵 → {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴} = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐵}) |
5 | df-nlly 23491 | . 2 ⊢ 𝑛-Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴} | |
6 | df-nlly 23491 | . 2 ⊢ 𝑛-Locally 𝐵 = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐵} | |
7 | 4, 5, 6 | 3eqtr4g 2800 | 1 ⊢ (𝐴 = 𝐵 → 𝑛-Locally 𝐴 = 𝑛-Locally 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 {crab 3433 ∩ cin 3962 𝒫 cpw 4605 {csn 4631 ‘cfv 6563 (class class class)co 7431 ↾t crest 17467 Topctop 22915 neicnei 23121 𝑛-Locally cnlly 23489 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-nlly 23491 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |