Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nllyeq Structured version   Visualization version   GIF version

Theorem nllyeq 22055
 Description: Equality theorem for the Locally 𝐴 predicate. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
nllyeq (𝐴 = 𝐵 → 𝑛-Locally 𝐴 = 𝑛-Locally 𝐵)

Proof of Theorem nllyeq
Dummy variables 𝑗 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2899 . . . . 5 (𝐴 = 𝐵 → ((𝑗t 𝑢) ∈ 𝐴 ↔ (𝑗t 𝑢) ∈ 𝐵))
21rexbidv 3284 . . . 4 (𝐴 = 𝐵 → (∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐴 ↔ ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐵))
322ralbidv 3186 . . 3 (𝐴 = 𝐵 → (∀𝑥𝑗𝑦𝑥𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐴 ↔ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐵))
43rabbidv 3459 . 2 (𝐴 = 𝐵 → {𝑗 ∈ Top ∣ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐴} = {𝑗 ∈ Top ∣ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐵})
5 df-nlly 22051 . 2 𝑛-Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐴}
6 df-nlly 22051 . 2 𝑛-Locally 𝐵 = {𝑗 ∈ Top ∣ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐵}
74, 5, 63eqtr4g 2880 1 (𝐴 = 𝐵 → 𝑛-Locally 𝐴 = 𝑛-Locally 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1537   ∈ wcel 2114  ∀wral 3125  ∃wrex 3126  {crab 3129   ∩ cin 3912  𝒫 cpw 4515  {csn 4543  ‘cfv 6331  (class class class)co 7133   ↾t crest 16673  Topctop 21477  neicnei 21681  𝑛-Locally cnlly 22049 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-ext 2792 This theorem depends on definitions:  df-bi 209  df-an 399  df-ex 1781  df-sb 2070  df-clab 2799  df-cleq 2813  df-clel 2891  df-ral 3130  df-rex 3131  df-rab 3134  df-nlly 22051 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator