MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nllyeq Structured version   Visualization version   GIF version

Theorem nllyeq 23386
Description: Equality theorem for the Locally 𝐴 predicate. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
nllyeq (𝐴 = 𝐵 → 𝑛-Locally 𝐴 = 𝑛-Locally 𝐵)

Proof of Theorem nllyeq
Dummy variables 𝑗 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2820 . . . . 5 (𝐴 = 𝐵 → ((𝑗t 𝑢) ∈ 𝐴 ↔ (𝑗t 𝑢) ∈ 𝐵))
21rexbidv 3156 . . . 4 (𝐴 = 𝐵 → (∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐴 ↔ ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐵))
322ralbidv 3196 . . 3 (𝐴 = 𝐵 → (∀𝑥𝑗𝑦𝑥𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐴 ↔ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐵))
43rabbidv 3402 . 2 (𝐴 = 𝐵 → {𝑗 ∈ Top ∣ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐴} = {𝑗 ∈ Top ∣ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐵})
5 df-nlly 23382 . 2 𝑛-Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐴}
6 df-nlly 23382 . 2 𝑛-Locally 𝐵 = {𝑗 ∈ Top ∣ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐵}
74, 5, 63eqtr4g 2791 1 (𝐴 = 𝐵 → 𝑛-Locally 𝐴 = 𝑛-Locally 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wral 3047  wrex 3056  {crab 3395  cin 3896  𝒫 cpw 4547  {csn 4573  cfv 6481  (class class class)co 7346  t crest 17324  Topctop 22808  neicnei 23012  𝑛-Locally cnlly 23380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-nlly 23382
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator