| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nllyeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the Locally 𝐴 predicate. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| Ref | Expression |
|---|---|
| nllyeq | ⊢ (𝐴 = 𝐵 → 𝑛-Locally 𝐴 = 𝑛-Locally 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2817 | . . . . 5 ⊢ (𝐴 = 𝐵 → ((𝑗 ↾t 𝑢) ∈ 𝐴 ↔ (𝑗 ↾t 𝑢) ∈ 𝐵)) | |
| 2 | 1 | rexbidv 3157 | . . . 4 ⊢ (𝐴 = 𝐵 → (∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴 ↔ ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐵)) |
| 3 | 2 | 2ralbidv 3201 | . . 3 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴 ↔ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐵)) |
| 4 | 3 | rabbidv 3413 | . 2 ⊢ (𝐴 = 𝐵 → {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴} = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐵}) |
| 5 | df-nlly 23354 | . 2 ⊢ 𝑛-Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴} | |
| 6 | df-nlly 23354 | . 2 ⊢ 𝑛-Locally 𝐵 = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐵} | |
| 7 | 4, 5, 6 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → 𝑛-Locally 𝐴 = 𝑛-Locally 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 {crab 3405 ∩ cin 3913 𝒫 cpw 4563 {csn 4589 ‘cfv 6511 (class class class)co 7387 ↾t crest 17383 Topctop 22780 neicnei 22984 𝑛-Locally cnlly 23352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-nlly 23354 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |