MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nllyeq Structured version   Visualization version   GIF version

Theorem nllyeq 23319
Description: Equality theorem for the Locally 𝐴 predicate. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
nllyeq (𝐴 = 𝐡 β†’ 𝑛-Locally 𝐴 = 𝑛-Locally 𝐡)

Proof of Theorem nllyeq
Dummy variables 𝑗 𝑒 π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2814 . . . . 5 (𝐴 = 𝐡 β†’ ((𝑗 β†Ύt 𝑒) ∈ 𝐴 ↔ (𝑗 β†Ύt 𝑒) ∈ 𝐡))
21rexbidv 3170 . . . 4 (𝐴 = 𝐡 β†’ (βˆƒπ‘’ ∈ (((neiβ€˜π‘—)β€˜{𝑦}) ∩ 𝒫 π‘₯)(𝑗 β†Ύt 𝑒) ∈ 𝐴 ↔ βˆƒπ‘’ ∈ (((neiβ€˜π‘—)β€˜{𝑦}) ∩ 𝒫 π‘₯)(𝑗 β†Ύt 𝑒) ∈ 𝐡))
322ralbidv 3210 . . 3 (𝐴 = 𝐡 β†’ (βˆ€π‘₯ ∈ 𝑗 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘’ ∈ (((neiβ€˜π‘—)β€˜{𝑦}) ∩ 𝒫 π‘₯)(𝑗 β†Ύt 𝑒) ∈ 𝐴 ↔ βˆ€π‘₯ ∈ 𝑗 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘’ ∈ (((neiβ€˜π‘—)β€˜{𝑦}) ∩ 𝒫 π‘₯)(𝑗 β†Ύt 𝑒) ∈ 𝐡))
43rabbidv 3432 . 2 (𝐴 = 𝐡 β†’ {𝑗 ∈ Top ∣ βˆ€π‘₯ ∈ 𝑗 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘’ ∈ (((neiβ€˜π‘—)β€˜{𝑦}) ∩ 𝒫 π‘₯)(𝑗 β†Ύt 𝑒) ∈ 𝐴} = {𝑗 ∈ Top ∣ βˆ€π‘₯ ∈ 𝑗 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘’ ∈ (((neiβ€˜π‘—)β€˜{𝑦}) ∩ 𝒫 π‘₯)(𝑗 β†Ύt 𝑒) ∈ 𝐡})
5 df-nlly 23315 . 2 𝑛-Locally 𝐴 = {𝑗 ∈ Top ∣ βˆ€π‘₯ ∈ 𝑗 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘’ ∈ (((neiβ€˜π‘—)β€˜{𝑦}) ∩ 𝒫 π‘₯)(𝑗 β†Ύt 𝑒) ∈ 𝐴}
6 df-nlly 23315 . 2 𝑛-Locally 𝐡 = {𝑗 ∈ Top ∣ βˆ€π‘₯ ∈ 𝑗 βˆ€π‘¦ ∈ π‘₯ βˆƒπ‘’ ∈ (((neiβ€˜π‘—)β€˜{𝑦}) ∩ 𝒫 π‘₯)(𝑗 β†Ύt 𝑒) ∈ 𝐡}
74, 5, 63eqtr4g 2789 1 (𝐴 = 𝐡 β†’ 𝑛-Locally 𝐴 = 𝑛-Locally 𝐡)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098  βˆ€wral 3053  βˆƒwrex 3062  {crab 3424   ∩ cin 3940  π’« cpw 4595  {csn 4621  β€˜cfv 6534  (class class class)co 7402   β†Ύt crest 17371  Topctop 22739  neicnei 22945  π‘›-Locally cnlly 23313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-nlly 23315
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator