![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isnlly | Structured version Visualization version GIF version |
Description: The property of being an n-locally 𝐴 topological space. (Contributed by Mario Carneiro, 2-Mar-2015.) |
Ref | Expression |
---|---|
isnlly | ⊢ (𝐽 ∈ 𝑛-Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽 ↾t 𝑢) ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . . . . . 7 ⊢ (𝑗 = 𝐽 → (nei‘𝑗) = (nei‘𝐽)) | |
2 | 1 | fveq1d 6922 | . . . . . 6 ⊢ (𝑗 = 𝐽 → ((nei‘𝑗)‘{𝑦}) = ((nei‘𝐽)‘{𝑦})) |
3 | 2 | ineq1d 4240 | . . . . 5 ⊢ (𝑗 = 𝐽 → (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) = (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)) |
4 | oveq1 7455 | . . . . . 6 ⊢ (𝑗 = 𝐽 → (𝑗 ↾t 𝑢) = (𝐽 ↾t 𝑢)) | |
5 | 4 | eleq1d 2829 | . . . . 5 ⊢ (𝑗 = 𝐽 → ((𝑗 ↾t 𝑢) ∈ 𝐴 ↔ (𝐽 ↾t 𝑢) ∈ 𝐴)) |
6 | 3, 5 | rexeqbidv 3355 | . . . 4 ⊢ (𝑗 = 𝐽 → (∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴 ↔ ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽 ↾t 𝑢) ∈ 𝐴)) |
7 | 6 | ralbidv 3184 | . . 3 ⊢ (𝑗 = 𝐽 → (∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴 ↔ ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽 ↾t 𝑢) ∈ 𝐴)) |
8 | 7 | raleqbi1dv 3346 | . 2 ⊢ (𝑗 = 𝐽 → (∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽 ↾t 𝑢) ∈ 𝐴)) |
9 | df-nlly 23496 | . 2 ⊢ 𝑛-Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴} | |
10 | 8, 9 | elrab2 3711 | 1 ⊢ (𝐽 ∈ 𝑛-Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽 ↾t 𝑢) ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ∩ cin 3975 𝒫 cpw 4622 {csn 4648 ‘cfv 6573 (class class class)co 7448 ↾t crest 17480 Topctop 22920 neicnei 23126 𝑛-Locally cnlly 23494 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-nlly 23496 |
This theorem is referenced by: nllytop 23502 nllyi 23504 llynlly 23506 nllyss 23509 nllyrest 23515 nllyidm 23518 hausllycmp 23523 cldllycmp 23524 txnlly 23666 cnllycmp 25007 |
Copyright terms: Public domain | W3C validator |