MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnlly Structured version   Visualization version   GIF version

Theorem isnlly 23498
Description: The property of being an n-locally 𝐴 topological space. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
isnlly (𝐽 ∈ 𝑛-Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴))
Distinct variable groups:   𝑥,𝑢,𝑦,𝐴   𝑢,𝐽,𝑥,𝑦

Proof of Theorem isnlly
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6920 . . . . . . 7 (𝑗 = 𝐽 → (nei‘𝑗) = (nei‘𝐽))
21fveq1d 6922 . . . . . 6 (𝑗 = 𝐽 → ((nei‘𝑗)‘{𝑦}) = ((nei‘𝐽)‘{𝑦}))
32ineq1d 4240 . . . . 5 (𝑗 = 𝐽 → (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) = (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥))
4 oveq1 7455 . . . . . 6 (𝑗 = 𝐽 → (𝑗t 𝑢) = (𝐽t 𝑢))
54eleq1d 2829 . . . . 5 (𝑗 = 𝐽 → ((𝑗t 𝑢) ∈ 𝐴 ↔ (𝐽t 𝑢) ∈ 𝐴))
63, 5rexeqbidv 3355 . . . 4 (𝑗 = 𝐽 → (∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐴 ↔ ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴))
76ralbidv 3184 . . 3 (𝑗 = 𝐽 → (∀𝑦𝑥𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐴 ↔ ∀𝑦𝑥𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴))
87raleqbi1dv 3346 . 2 (𝑗 = 𝐽 → (∀𝑥𝑗𝑦𝑥𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐴 ↔ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴))
9 df-nlly 23496 . 2 𝑛-Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐴}
108, 9elrab2 3711 1 (𝐽 ∈ 𝑛-Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  cin 3975  𝒫 cpw 4622  {csn 4648  cfv 6573  (class class class)co 7448  t crest 17480  Topctop 22920  neicnei 23126  𝑛-Locally cnlly 23494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-nlly 23496
This theorem is referenced by:  nllytop  23502  nllyi  23504  llynlly  23506  nllyss  23509  nllyrest  23515  nllyidm  23518  hausllycmp  23523  cldllycmp  23524  txnlly  23666  cnllycmp  25007
  Copyright terms: Public domain W3C validator