MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnlly Structured version   Visualization version   GIF version

Theorem isnlly 23493
Description: The property of being an n-locally 𝐴 topological space. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
isnlly (𝐽 ∈ 𝑛-Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴))
Distinct variable groups:   𝑥,𝑢,𝑦,𝐴   𝑢,𝐽,𝑥,𝑦

Proof of Theorem isnlly
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6907 . . . . . . 7 (𝑗 = 𝐽 → (nei‘𝑗) = (nei‘𝐽))
21fveq1d 6909 . . . . . 6 (𝑗 = 𝐽 → ((nei‘𝑗)‘{𝑦}) = ((nei‘𝐽)‘{𝑦}))
32ineq1d 4227 . . . . 5 (𝑗 = 𝐽 → (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥) = (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥))
4 oveq1 7438 . . . . . 6 (𝑗 = 𝐽 → (𝑗t 𝑢) = (𝐽t 𝑢))
54eleq1d 2824 . . . . 5 (𝑗 = 𝐽 → ((𝑗t 𝑢) ∈ 𝐴 ↔ (𝐽t 𝑢) ∈ 𝐴))
63, 5rexeqbidv 3345 . . . 4 (𝑗 = 𝐽 → (∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐴 ↔ ∃𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴))
76ralbidv 3176 . . 3 (𝑗 = 𝐽 → (∀𝑦𝑥𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐴 ↔ ∀𝑦𝑥𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴))
87raleqbi1dv 3336 . 2 (𝑗 = 𝐽 → (∀𝑥𝑗𝑦𝑥𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐴 ↔ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴))
9 df-nlly 23491 . 2 𝑛-Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐴}
108, 9elrab2 3698 1 (𝐽 ∈ 𝑛-Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑢) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  cin 3962  𝒫 cpw 4605  {csn 4631  cfv 6563  (class class class)co 7431  t crest 17467  Topctop 22915  neicnei 23121  𝑛-Locally cnlly 23489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-ov 7434  df-nlly 23491
This theorem is referenced by:  nllytop  23497  nllyi  23499  llynlly  23501  nllyss  23504  nllyrest  23510  nllyidm  23513  hausllycmp  23518  cldllycmp  23519  txnlly  23661  cnllycmp  25002
  Copyright terms: Public domain W3C validator