MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmopsr Structured version   Visualization version   GIF version

Theorem reldmopsr 21600
Description: Lemma for ordered power series. (Contributed by Stefan O'Rear, 2-Oct-2015.)
Assertion
Ref Expression
reldmopsr Rel dom ordPwSer

Proof of Theorem reldmopsr
Dummy variables π‘Ÿ 𝑖 𝑝 𝑠 β„Ž 𝑑 𝑀 π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-opsr 21466 . 2 ordPwSer = (𝑖 ∈ V, 𝑠 ∈ V ↦ (π‘Ÿ ∈ 𝒫 (𝑖 Γ— 𝑖) ↦ ⦋(𝑖 mPwSer 𝑠) / π‘β¦Œ(𝑝 sSet ⟨(leβ€˜ndx), {⟨π‘₯, π‘¦βŸ© ∣ ({π‘₯, 𝑦} βŠ† (Baseβ€˜π‘) ∧ ([{β„Ž ∈ (β„•0 ↑m 𝑖) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} / 𝑑]βˆƒπ‘§ ∈ 𝑑 ((π‘₯β€˜π‘§)(ltβ€˜π‘ )(π‘¦β€˜π‘§) ∧ βˆ€π‘€ ∈ 𝑑 (𝑀(π‘Ÿ <bag 𝑖)𝑧 β†’ (π‘₯β€˜π‘€) = (π‘¦β€˜π‘€))) ∨ π‘₯ = 𝑦))}⟩)))
21reldmmpo 7543 1 Rel dom ordPwSer
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∨ wo 846   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  βˆƒwrex 3071  {crab 3433  Vcvv 3475  [wsbc 3778  β¦‹csb 3894   βŠ† wss 3949  π’« cpw 4603  {cpr 4631  βŸ¨cop 4635   class class class wbr 5149  {copab 5211   ↦ cmpt 5232   Γ— cxp 5675  β—‘ccnv 5676  dom cdm 5677   β€œ cima 5680  Rel wrel 5682  β€˜cfv 6544  (class class class)co 7409   ↑m cmap 8820  Fincfn 8939  β„•cn 12212  β„•0cn0 12472   sSet csts 17096  ndxcnx 17126  Basecbs 17144  lecple 17204  ltcplt 18261   mPwSer cmps 21457   <bag cltb 21460   ordPwSer copws 21461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-rel 5684  df-dm 5687  df-oprab 7413  df-mpo 7414  df-opsr 21466
This theorem is referenced by:  opsrle  21602  opsrbaslem  21604  opsrbaslemOLD  21605  psr1val  21710
  Copyright terms: Public domain W3C validator