| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmopsr | Structured version Visualization version GIF version | ||
| Description: Lemma for ordered power series. (Contributed by Stefan O'Rear, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| reldmopsr | ⊢ Rel dom ordPwSer |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-opsr 21828 | . 2 ⊢ ordPwSer = (𝑖 ∈ V, 𝑠 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑖 × 𝑖) ↦ ⦋(𝑖 mPwSer 𝑠) / 𝑝⦌(𝑝 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ℎ ∈ (ℕ0 ↑m 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑]∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉))) | |
| 2 | 1 | reldmmpo 7525 | 1 ⊢ Rel dom ordPwSer |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 {crab 3408 Vcvv 3450 [wsbc 3755 ⦋csb 3864 ⊆ wss 3916 𝒫 cpw 4565 {cpr 4593 〈cop 4597 class class class wbr 5109 {copab 5171 ↦ cmpt 5190 × cxp 5638 ◡ccnv 5639 dom cdm 5640 “ cima 5643 Rel wrel 5645 ‘cfv 6513 (class class class)co 7389 ↑m cmap 8801 Fincfn 8920 ℕcn 12187 ℕ0cn0 12448 sSet csts 17139 ndxcnx 17169 Basecbs 17185 lecple 17233 ltcplt 18275 mPwSer cmps 21819 <bag cltb 21822 ordPwSer copws 21823 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-br 5110 df-opab 5172 df-xp 5646 df-rel 5647 df-dm 5650 df-oprab 7393 df-mpo 7394 df-opsr 21828 |
| This theorem is referenced by: opsrle 21960 opsrbaslem 21962 psr1val 22076 |
| Copyright terms: Public domain | W3C validator |