MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmopsr Structured version   Visualization version   GIF version

Theorem reldmopsr 20849
Description: Lemma for ordered power series. (Contributed by Stefan O'Rear, 2-Oct-2015.)
Assertion
Ref Expression
reldmopsr Rel dom ordPwSer

Proof of Theorem reldmopsr
Dummy variables 𝑟 𝑖 𝑝 𝑠 𝑑 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-opsr 20719 . 2 ordPwSer = (𝑖 ∈ V, 𝑠 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑖 × 𝑖) ↦ (𝑖 mPwSer 𝑠) / 𝑝(𝑝 sSet ⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} / 𝑑]𝑧𝑑 ((𝑥𝑧)(lt‘𝑠)(𝑦𝑧) ∧ ∀𝑤𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}⟩)))
21reldmmpo 7294 1 Rel dom ordPwSer
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 846   = wceq 1542  wcel 2113  wral 3053  wrex 3054  {crab 3057  Vcvv 3397  [wsbc 3679  csb 3788  wss 3841  𝒫 cpw 4485  {cpr 4515  cop 4519   class class class wbr 5027  {copab 5089  cmpt 5107   × cxp 5517  ccnv 5518  dom cdm 5519  cima 5522  Rel wrel 5524  cfv 6333  (class class class)co 7164  m cmap 8430  Fincfn 8548  cn 11709  0cn0 11969  ndxcnx 16576   sSet csts 16577  Basecbs 16579  lecple 16668  ltcplt 17660   mPwSer cmps 20710   <bag cltb 20713   ordPwSer copws 20714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pr 5293
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-v 3399  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-sn 4514  df-pr 4516  df-op 4520  df-br 5028  df-opab 5090  df-xp 5525  df-rel 5526  df-dm 5529  df-oprab 7168  df-mpo 7169  df-opsr 20719
This theorem is referenced by:  opsrle  20851  opsrbaslem  20853  psr1val  20954
  Copyright terms: Public domain W3C validator