| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmopsr | Structured version Visualization version GIF version | ||
| Description: Lemma for ordered power series. (Contributed by Stefan O'Rear, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| reldmopsr | ⊢ Rel dom ordPwSer |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-opsr 21843 | . 2 ⊢ ordPwSer = (𝑖 ∈ V, 𝑠 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑖 × 𝑖) ↦ ⦋(𝑖 mPwSer 𝑠) / 𝑝⦌(𝑝 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ℎ ∈ (ℕ0 ↑m 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑]∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉))) | |
| 2 | 1 | reldmmpo 7475 | 1 ⊢ Rel dom ordPwSer |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2110 ∀wral 3045 ∃wrex 3054 {crab 3393 Vcvv 3434 [wsbc 3739 ⦋csb 3848 ⊆ wss 3900 𝒫 cpw 4548 {cpr 4576 〈cop 4580 class class class wbr 5089 {copab 5151 ↦ cmpt 5170 × cxp 5612 ◡ccnv 5613 dom cdm 5614 “ cima 5617 Rel wrel 5619 ‘cfv 6477 (class class class)co 7341 ↑m cmap 8745 Fincfn 8864 ℕcn 12117 ℕ0cn0 12373 sSet csts 17066 ndxcnx 17096 Basecbs 17112 lecple 17160 ltcplt 18206 mPwSer cmps 21834 <bag cltb 21837 ordPwSer copws 21838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-dm 5624 df-oprab 7345 df-mpo 7346 df-opsr 21843 |
| This theorem is referenced by: opsrle 21975 opsrbaslem 21977 psr1val 22091 |
| Copyright terms: Public domain | W3C validator |