MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmopsr Structured version   Visualization version   GIF version

Theorem reldmopsr 21606
Description: Lemma for ordered power series. (Contributed by Stefan O'Rear, 2-Oct-2015.)
Assertion
Ref Expression
reldmopsr Rel dom ordPwSer

Proof of Theorem reldmopsr
Dummy variables π‘Ÿ 𝑖 𝑝 𝑠 β„Ž 𝑑 𝑀 π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-opsr 21472 . 2 ordPwSer = (𝑖 ∈ V, 𝑠 ∈ V ↦ (π‘Ÿ ∈ 𝒫 (𝑖 Γ— 𝑖) ↦ ⦋(𝑖 mPwSer 𝑠) / π‘β¦Œ(𝑝 sSet ⟨(leβ€˜ndx), {⟨π‘₯, π‘¦βŸ© ∣ ({π‘₯, 𝑦} βŠ† (Baseβ€˜π‘) ∧ ([{β„Ž ∈ (β„•0 ↑m 𝑖) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin} / 𝑑]βˆƒπ‘§ ∈ 𝑑 ((π‘₯β€˜π‘§)(ltβ€˜π‘ )(π‘¦β€˜π‘§) ∧ βˆ€π‘€ ∈ 𝑑 (𝑀(π‘Ÿ <bag 𝑖)𝑧 β†’ (π‘₯β€˜π‘€) = (π‘¦β€˜π‘€))) ∨ π‘₯ = 𝑦))}⟩)))
21reldmmpo 7545 1 Rel dom ordPwSer
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∨ wo 845   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070  {crab 3432  Vcvv 3474  [wsbc 3777  β¦‹csb 3893   βŠ† wss 3948  π’« cpw 4602  {cpr 4630  βŸ¨cop 4634   class class class wbr 5148  {copab 5210   ↦ cmpt 5231   Γ— cxp 5674  β—‘ccnv 5675  dom cdm 5676   β€œ cima 5679  Rel wrel 5681  β€˜cfv 6543  (class class class)co 7411   ↑m cmap 8822  Fincfn 8941  β„•cn 12214  β„•0cn0 12474   sSet csts 17098  ndxcnx 17128  Basecbs 17146  lecple 17206  ltcplt 18263   mPwSer cmps 21463   <bag cltb 21466   ordPwSer copws 21467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-dm 5686  df-oprab 7415  df-mpo 7416  df-opsr 21472
This theorem is referenced by:  opsrle  21608  opsrbaslem  21610  opsrbaslemOLD  21611  psr1val  21716
  Copyright terms: Public domain W3C validator