![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldmopsr | Structured version Visualization version GIF version |
Description: Lemma for ordered power series. (Contributed by Stefan O'Rear, 2-Oct-2015.) |
Ref | Expression |
---|---|
reldmopsr | β’ Rel dom ordPwSer |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-opsr 21466 | . 2 β’ ordPwSer = (π β V, π β V β¦ (π β π« (π Γ π) β¦ β¦(π mPwSer π ) / πβ¦(π sSet β¨(leβndx), {β¨π₯, π¦β© β£ ({π₯, π¦} β (Baseβπ) β§ ([{β β (β0 βm π) β£ (β‘β β β) β Fin} / π]βπ§ β π ((π₯βπ§)(ltβπ )(π¦βπ§) β§ βπ€ β π (π€(π <bag π)π§ β (π₯βπ€) = (π¦βπ€))) β¨ π₯ = π¦))}β©))) | |
2 | 1 | reldmmpo 7543 | 1 β’ Rel dom ordPwSer |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 β¨ wo 846 = wceq 1542 β wcel 2107 βwral 3062 βwrex 3071 {crab 3433 Vcvv 3475 [wsbc 3778 β¦csb 3894 β wss 3949 π« cpw 4603 {cpr 4631 β¨cop 4635 class class class wbr 5149 {copab 5211 β¦ cmpt 5232 Γ cxp 5675 β‘ccnv 5676 dom cdm 5677 β cima 5680 Rel wrel 5682 βcfv 6544 (class class class)co 7409 βm cmap 8820 Fincfn 8939 βcn 12212 β0cn0 12472 sSet csts 17096 ndxcnx 17126 Basecbs 17144 lecple 17204 ltcplt 18261 mPwSer cmps 21457 <bag cltb 21460 ordPwSer copws 21461 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-dm 5687 df-oprab 7413 df-mpo 7414 df-opsr 21466 |
This theorem is referenced by: opsrle 21602 opsrbaslem 21604 opsrbaslemOLD 21605 psr1val 21710 |
Copyright terms: Public domain | W3C validator |