MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmopsr Structured version   Visualization version   GIF version

Theorem reldmopsr 22088
Description: Lemma for ordered power series. (Contributed by Stefan O'Rear, 2-Oct-2015.)
Assertion
Ref Expression
reldmopsr Rel dom ordPwSer

Proof of Theorem reldmopsr
Dummy variables 𝑟 𝑖 𝑝 𝑠 𝑑 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-opsr 21958 . 2 ordPwSer = (𝑖 ∈ V, 𝑠 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑖 × 𝑖) ↦ (𝑖 mPwSer 𝑠) / 𝑝(𝑝 sSet ⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} / 𝑑]𝑧𝑑 ((𝑥𝑧)(lt‘𝑠)(𝑦𝑧) ∧ ∀𝑤𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}⟩)))
21reldmmpo 7586 1 Rel dom ordPwSer
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  [wsbc 3804  csb 3921  wss 3976  𝒫 cpw 4622  {cpr 4650  cop 4654   class class class wbr 5166  {copab 5228  cmpt 5249   × cxp 5698  ccnv 5699  dom cdm 5700  cima 5703  Rel wrel 5705  cfv 6575  (class class class)co 7450  m cmap 8886  Fincfn 9005  cn 12295  0cn0 12555   sSet csts 17212  ndxcnx 17242  Basecbs 17260  lecple 17320  ltcplt 18380   mPwSer cmps 21949   <bag cltb 21952   ordPwSer copws 21953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-dm 5710  df-oprab 7454  df-mpo 7455  df-opsr 21958
This theorem is referenced by:  opsrle  22090  opsrbaslem  22092  opsrbaslemOLD  22093  psr1val  22210
  Copyright terms: Public domain W3C validator