| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmopsr | Structured version Visualization version GIF version | ||
| Description: Lemma for ordered power series. (Contributed by Stefan O'Rear, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| reldmopsr | ⊢ Rel dom ordPwSer |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-opsr 21829 | . 2 ⊢ ordPwSer = (𝑖 ∈ V, 𝑠 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑖 × 𝑖) ↦ ⦋(𝑖 mPwSer 𝑠) / 𝑝⦌(𝑝 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ℎ ∈ (ℕ0 ↑m 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑]∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉))) | |
| 2 | 1 | reldmmpo 7526 | 1 ⊢ Rel dom ordPwSer |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 {crab 3408 Vcvv 3450 [wsbc 3756 ⦋csb 3865 ⊆ wss 3917 𝒫 cpw 4566 {cpr 4594 〈cop 4598 class class class wbr 5110 {copab 5172 ↦ cmpt 5191 × cxp 5639 ◡ccnv 5640 dom cdm 5641 “ cima 5644 Rel wrel 5646 ‘cfv 6514 (class class class)co 7390 ↑m cmap 8802 Fincfn 8921 ℕcn 12193 ℕ0cn0 12449 sSet csts 17140 ndxcnx 17170 Basecbs 17186 lecple 17234 ltcplt 18276 mPwSer cmps 21820 <bag cltb 21823 ordPwSer copws 21824 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-dm 5651 df-oprab 7394 df-mpo 7395 df-opsr 21829 |
| This theorem is referenced by: opsrle 21961 opsrbaslem 21963 psr1val 22077 |
| Copyright terms: Public domain | W3C validator |