| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmopsr | Structured version Visualization version GIF version | ||
| Description: Lemma for ordered power series. (Contributed by Stefan O'Rear, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| reldmopsr | ⊢ Rel dom ordPwSer |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-opsr 21838 | . 2 ⊢ ordPwSer = (𝑖 ∈ V, 𝑠 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑖 × 𝑖) ↦ ⦋(𝑖 mPwSer 𝑠) / 𝑝⦌(𝑝 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ℎ ∈ (ℕ0 ↑m 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑]∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉))) | |
| 2 | 1 | reldmmpo 7487 | 1 ⊢ Rel dom ordPwSer |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 {crab 3396 Vcvv 3438 [wsbc 3744 ⦋csb 3853 ⊆ wss 3905 𝒫 cpw 4553 {cpr 4581 〈cop 4585 class class class wbr 5095 {copab 5157 ↦ cmpt 5176 × cxp 5621 ◡ccnv 5622 dom cdm 5623 “ cima 5626 Rel wrel 5628 ‘cfv 6486 (class class class)co 7353 ↑m cmap 8760 Fincfn 8879 ℕcn 12146 ℕ0cn0 12402 sSet csts 17092 ndxcnx 17122 Basecbs 17138 lecple 17186 ltcplt 18232 mPwSer cmps 21829 <bag cltb 21832 ordPwSer copws 21833 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-dm 5633 df-oprab 7357 df-mpo 7358 df-opsr 21838 |
| This theorem is referenced by: opsrle 21970 opsrbaslem 21972 psr1val 22086 |
| Copyright terms: Public domain | W3C validator |