| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmopsr | Structured version Visualization version GIF version | ||
| Description: Lemma for ordered power series. (Contributed by Stefan O'Rear, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| reldmopsr | ⊢ Rel dom ordPwSer |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-opsr 21860 | . 2 ⊢ ordPwSer = (𝑖 ∈ V, 𝑠 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑖 × 𝑖) ↦ ⦋(𝑖 mPwSer 𝑠) / 𝑝⦌(𝑝 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ℎ ∈ (ℕ0 ↑m 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑]∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉))) | |
| 2 | 1 | reldmmpo 7489 | 1 ⊢ Rel dom ordPwSer |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2113 ∀wral 3049 ∃wrex 3058 {crab 3397 Vcvv 3438 [wsbc 3738 ⦋csb 3847 ⊆ wss 3899 𝒫 cpw 4551 {cpr 4579 〈cop 4583 class class class wbr 5095 {copab 5157 ↦ cmpt 5176 × cxp 5619 ◡ccnv 5620 dom cdm 5621 “ cima 5624 Rel wrel 5626 ‘cfv 6489 (class class class)co 7355 ↑m cmap 8759 Fincfn 8878 ℕcn 12135 ℕ0cn0 12391 sSet csts 17084 ndxcnx 17114 Basecbs 17130 lecple 17178 ltcplt 18224 mPwSer cmps 21851 <bag cltb 21854 ordPwSer copws 21855 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-dm 5631 df-oprab 7359 df-mpo 7360 df-opsr 21860 |
| This theorem is referenced by: opsrle 21992 opsrbaslem 21994 psr1val 22108 |
| Copyright terms: Public domain | W3C validator |