![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldmopsr | Structured version Visualization version GIF version |
Description: Lemma for ordered power series. (Contributed by Stefan O'Rear, 2-Oct-2015.) |
Ref | Expression |
---|---|
reldmopsr | ⊢ Rel dom ordPwSer |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-opsr 19683 | . 2 ⊢ ordPwSer = (𝑖 ∈ V, 𝑠 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑖 × 𝑖) ↦ ⦋(𝑖 mPwSer 𝑠) / 𝑝⦌(𝑝 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ℎ ∈ (ℕ0 ↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑]∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉))) | |
2 | 1 | reldmmpt2 7005 | 1 ⊢ Rel dom ordPwSer |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∨ wo 874 = wceq 1653 ∈ wcel 2157 ∀wral 3089 ∃wrex 3090 {crab 3093 Vcvv 3385 [wsbc 3633 ⦋csb 3728 ⊆ wss 3769 𝒫 cpw 4349 {cpr 4370 〈cop 4374 class class class wbr 4843 {copab 4905 ↦ cmpt 4922 × cxp 5310 ◡ccnv 5311 dom cdm 5312 “ cima 5315 Rel wrel 5317 ‘cfv 6101 (class class class)co 6878 ↑𝑚 cmap 8095 Fincfn 8195 ℕcn 11312 ℕ0cn0 11580 ndxcnx 16181 sSet csts 16182 Basecbs 16184 lecple 16274 ltcplt 17256 mPwSer cmps 19674 <bag cltb 19677 ordPwSer copws 19678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-opab 4906 df-xp 5318 df-rel 5319 df-dm 5322 df-oprab 6882 df-mpt2 6883 df-opsr 19683 |
This theorem is referenced by: opsrle 19798 opsrbaslem 19800 psr1val 19878 |
Copyright terms: Public domain | W3C validator |