![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldmopsr | Structured version Visualization version GIF version |
Description: Lemma for ordered power series. (Contributed by Stefan O'Rear, 2-Oct-2015.) |
Ref | Expression |
---|---|
reldmopsr | β’ Rel dom ordPwSer |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-opsr 21472 | . 2 β’ ordPwSer = (π β V, π β V β¦ (π β π« (π Γ π) β¦ β¦(π mPwSer π ) / πβ¦(π sSet β¨(leβndx), {β¨π₯, π¦β© β£ ({π₯, π¦} β (Baseβπ) β§ ([{β β (β0 βm π) β£ (β‘β β β) β Fin} / π]βπ§ β π ((π₯βπ§)(ltβπ )(π¦βπ§) β§ βπ€ β π (π€(π <bag π)π§ β (π₯βπ€) = (π¦βπ€))) β¨ π₯ = π¦))}β©))) | |
2 | 1 | reldmmpo 7545 | 1 β’ Rel dom ordPwSer |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β¨ wo 845 = wceq 1541 β wcel 2106 βwral 3061 βwrex 3070 {crab 3432 Vcvv 3474 [wsbc 3777 β¦csb 3893 β wss 3948 π« cpw 4602 {cpr 4630 β¨cop 4634 class class class wbr 5148 {copab 5210 β¦ cmpt 5231 Γ cxp 5674 β‘ccnv 5675 dom cdm 5676 β cima 5679 Rel wrel 5681 βcfv 6543 (class class class)co 7411 βm cmap 8822 Fincfn 8941 βcn 12214 β0cn0 12474 sSet csts 17098 ndxcnx 17128 Basecbs 17146 lecple 17206 ltcplt 18263 mPwSer cmps 21463 <bag cltb 21466 ordPwSer copws 21467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-dm 5686 df-oprab 7415 df-mpo 7416 df-opsr 21472 |
This theorem is referenced by: opsrle 21608 opsrbaslem 21610 opsrbaslemOLD 21611 psr1val 21716 |
Copyright terms: Public domain | W3C validator |