Step | Hyp | Ref
| Expression |
1 | | opsrval.o |
. 2
⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) |
2 | | opsrval.i |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
3 | 2 | elexd 3418 |
. . . 4
⊢ (𝜑 → 𝐼 ∈ V) |
4 | | opsrval.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ 𝑊) |
5 | 4 | elexd 3418 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ V) |
6 | 2, 2 | xpexd 7492 |
. . . . 5
⊢ (𝜑 → (𝐼 × 𝐼) ∈ V) |
7 | | pwexg 5245 |
. . . . 5
⊢ ((𝐼 × 𝐼) ∈ V → 𝒫 (𝐼 × 𝐼) ∈ V) |
8 | | mptexg 6994 |
. . . . 5
⊢
(𝒫 (𝐼
× 𝐼) ∈ V →
(𝑟 ∈ 𝒫 (𝐼 × 𝐼) ↦ (𝑆 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉)) ∈ V) |
9 | 6, 7, 8 | 3syl 18 |
. . . 4
⊢ (𝜑 → (𝑟 ∈ 𝒫 (𝐼 × 𝐼) ↦ (𝑆 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉)) ∈ V) |
10 | | simpl 486 |
. . . . . . . 8
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) → 𝑖 = 𝐼) |
11 | 10 | sqxpeqd 5557 |
. . . . . . 7
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) → (𝑖 × 𝑖) = (𝐼 × 𝐼)) |
12 | 11 | pweqd 4507 |
. . . . . 6
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) → 𝒫 (𝑖 × 𝑖) = 𝒫 (𝐼 × 𝐼)) |
13 | | ovexd 7205 |
. . . . . . 7
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) → (𝑖 mPwSer 𝑠) ∈ V) |
14 | | id 22 |
. . . . . . . . . 10
⊢ (𝑝 = (𝑖 mPwSer 𝑠) → 𝑝 = (𝑖 mPwSer 𝑠)) |
15 | | oveq12 7179 |
. . . . . . . . . 10
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) → (𝑖 mPwSer 𝑠) = (𝐼 mPwSer 𝑅)) |
16 | 14, 15 | sylan9eqr 2795 |
. . . . . . . . 9
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → 𝑝 = (𝐼 mPwSer 𝑅)) |
17 | | opsrval.s |
. . . . . . . . 9
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
18 | 16, 17 | eqtr4di 2791 |
. . . . . . . 8
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → 𝑝 = 𝑆) |
19 | 18 | fveq2d 6678 |
. . . . . . . . . . . . 13
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → (Base‘𝑝) = (Base‘𝑆)) |
20 | | opsrval.b |
. . . . . . . . . . . . 13
⊢ 𝐵 = (Base‘𝑆) |
21 | 19, 20 | eqtr4di 2791 |
. . . . . . . . . . . 12
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → (Base‘𝑝) = 𝐵) |
22 | 21 | sseq2d 3909 |
. . . . . . . . . . 11
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → ({𝑥, 𝑦} ⊆ (Base‘𝑝) ↔ {𝑥, 𝑦} ⊆ 𝐵)) |
23 | | ovex 7203 |
. . . . . . . . . . . . . . 15
⊢
(ℕ0 ↑m 𝑖) ∈ V |
24 | 23 | rabex 5200 |
. . . . . . . . . . . . . 14
⊢ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V |
25 | 24 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V) |
26 | 10 | adantr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → 𝑖 = 𝐼) |
27 | 26 | oveq2d 7186 |
. . . . . . . . . . . . . . 15
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → (ℕ0
↑m 𝑖) =
(ℕ0 ↑m 𝐼)) |
28 | | rabeq 3385 |
. . . . . . . . . . . . . . 15
⊢
((ℕ0 ↑m 𝑖) = (ℕ0 ↑m
𝐼) → {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
29 | 27, 28 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
30 | | opsrval.d |
. . . . . . . . . . . . . 14
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
31 | 29, 30 | eqtr4di 2791 |
. . . . . . . . . . . . 13
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} = 𝐷) |
32 | | simpr 488 |
. . . . . . . . . . . . . 14
⊢ ((((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷) |
33 | | simpllr 776 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) ∧ 𝑑 = 𝐷) → 𝑠 = 𝑅) |
34 | 33 | fveq2d 6678 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) ∧ 𝑑 = 𝐷) → (lt‘𝑠) = (lt‘𝑅)) |
35 | | opsrval.q |
. . . . . . . . . . . . . . . . 17
⊢ < =
(lt‘𝑅) |
36 | 34, 35 | eqtr4di 2791 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) ∧ 𝑑 = 𝐷) → (lt‘𝑠) = < ) |
37 | 36 | breqd 5041 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) ∧ 𝑑 = 𝐷) → ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ↔ (𝑥‘𝑧) < (𝑦‘𝑧))) |
38 | 26 | adantr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) ∧ 𝑑 = 𝐷) → 𝑖 = 𝐼) |
39 | 38 | oveq2d 7186 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) ∧ 𝑑 = 𝐷) → (𝑟 <bag 𝑖) = (𝑟 <bag 𝐼)) |
40 | 39 | breqd 5041 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) ∧ 𝑑 = 𝐷) → (𝑤(𝑟 <bag 𝑖)𝑧 ↔ 𝑤(𝑟 <bag 𝐼)𝑧)) |
41 | 40 | imbi1d 345 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) ∧ 𝑑 = 𝐷) → ((𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)) ↔ (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))) |
42 | 32, 41 | raleqbidv 3304 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) ∧ 𝑑 = 𝐷) → (∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)) ↔ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))) |
43 | 37, 42 | anbi12d 634 |
. . . . . . . . . . . . . 14
⊢ ((((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) ∧ 𝑑 = 𝐷) → (((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))))) |
44 | 32, 43 | rexeqbidv 3305 |
. . . . . . . . . . . . 13
⊢ ((((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) ∧ 𝑑 = 𝐷) → (∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))))) |
45 | 25, 31, 44 | sbcied2 3725 |
. . . . . . . . . . . 12
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → ([{ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑]∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))))) |
46 | 45 | orbi1d 916 |
. . . . . . . . . . 11
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → (([{ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑]∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦) ↔ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))) |
47 | 22, 46 | anbi12d 634 |
. . . . . . . . . 10
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → (({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑]∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦)) ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦)))) |
48 | 47 | opabbidv 5096 |
. . . . . . . . 9
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑]∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))} = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}) |
49 | 48 | opeq2d 4768 |
. . . . . . . 8
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑]∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉 = 〈(le‘ndx),
{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉) |
50 | 18, 49 | oveq12d 7188 |
. . . . . . 7
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → (𝑝 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑]∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉) = (𝑆 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉)) |
51 | 13, 50 | csbied 3826 |
. . . . . 6
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) → ⦋(𝑖 mPwSer 𝑠) / 𝑝⦌(𝑝 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑]∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉) = (𝑆 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉)) |
52 | 12, 51 | mpteq12dv 5115 |
. . . . 5
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑅) → (𝑟 ∈ 𝒫 (𝑖 × 𝑖) ↦ ⦋(𝑖 mPwSer 𝑠) / 𝑝⦌(𝑝 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑]∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉)) = (𝑟 ∈ 𝒫 (𝐼 × 𝐼) ↦ (𝑆 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉))) |
53 | | df-opsr 20726 |
. . . . 5
⊢ ordPwSer
= (𝑖 ∈ V, 𝑠 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑖 × 𝑖) ↦ ⦋(𝑖 mPwSer 𝑠) / 𝑝⦌(𝑝 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑]∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉))) |
54 | 52, 53 | ovmpoga 7319 |
. . . 4
⊢ ((𝐼 ∈ V ∧ 𝑅 ∈ V ∧ (𝑟 ∈ 𝒫 (𝐼 × 𝐼) ↦ (𝑆 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉)) ∈ V) → (𝐼 ordPwSer 𝑅) = (𝑟 ∈ 𝒫 (𝐼 × 𝐼) ↦ (𝑆 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉))) |
55 | 3, 5, 9, 54 | syl3anc 1372 |
. . 3
⊢ (𝜑 → (𝐼 ordPwSer 𝑅) = (𝑟 ∈ 𝒫 (𝐼 × 𝐼) ↦ (𝑆 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉))) |
56 | | simpr 488 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑟 = 𝑇) → 𝑟 = 𝑇) |
57 | 56 | oveq1d 7185 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑟 = 𝑇) → (𝑟 <bag 𝐼) = (𝑇 <bag 𝐼)) |
58 | | opsrval.c |
. . . . . . . . . . . . . . 15
⊢ 𝐶 = (𝑇 <bag 𝐼) |
59 | 57, 58 | eqtr4di 2791 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 = 𝑇) → (𝑟 <bag 𝐼) = 𝐶) |
60 | 59 | breqd 5041 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑟 = 𝑇) → (𝑤(𝑟 <bag 𝐼)𝑧 ↔ 𝑤𝐶𝑧)) |
61 | 60 | imbi1d 345 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑟 = 𝑇) → ((𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)) ↔ (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))) |
62 | 61 | ralbidv 3109 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑟 = 𝑇) → (∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)) ↔ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))) |
63 | 62 | anbi2d 632 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑟 = 𝑇) → (((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))))) |
64 | 63 | rexbidv 3207 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑟 = 𝑇) → (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))))) |
65 | 64 | orbi1d 916 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑟 = 𝑇) → ((∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦) ↔ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))) |
66 | 65 | anbi2d 632 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑟 = 𝑇) → (({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦)) ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦)))) |
67 | 66 | opabbidv 5096 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 = 𝑇) → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))} = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}) |
68 | | opsrval.l |
. . . . . 6
⊢ ≤ =
{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))} |
69 | 67, 68 | eqtr4di 2791 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 = 𝑇) → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))} = ≤ ) |
70 | 69 | opeq2d 4768 |
. . . 4
⊢ ((𝜑 ∧ 𝑟 = 𝑇) → 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉 = 〈(le‘ndx), ≤
〉) |
71 | 70 | oveq2d 7186 |
. . 3
⊢ ((𝜑 ∧ 𝑟 = 𝑇) → (𝑆 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉) = (𝑆 sSet 〈(le‘ndx), ≤
〉)) |
72 | | opsrval.t |
. . . 4
⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) |
73 | 6, 72 | sselpwd 5194 |
. . 3
⊢ (𝜑 → 𝑇 ∈ 𝒫 (𝐼 × 𝐼)) |
74 | | ovexd 7205 |
. . 3
⊢ (𝜑 → (𝑆 sSet 〈(le‘ndx), ≤ 〉)
∈ V) |
75 | 55, 71, 73, 74 | fvmptd 6782 |
. 2
⊢ (𝜑 → ((𝐼 ordPwSer 𝑅)‘𝑇) = (𝑆 sSet 〈(le‘ndx), ≤
〉)) |
76 | 1, 75 | syl5eq 2785 |
1
⊢ (𝜑 → 𝑂 = (𝑆 sSet 〈(le‘ndx), ≤
〉)) |