Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brparts Structured version   Visualization version   GIF version

Theorem brparts 38875
Description: Binary partitions relation. (Contributed by Peter Mazsa, 23-Jul-2021.)
Assertion
Ref Expression
brparts (𝐴𝑉 → (𝑅 Parts 𝐴 ↔ (𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴)))

Proof of Theorem brparts
StepHypRef Expression
1 df-parts 38869 . 2 Parts = ( DomainQss ↾ Disjs )
21eqres 38378 1 (𝐴𝑉 → (𝑅 Parts 𝐴 ↔ (𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111   class class class wbr 5093   DomainQss cdmqss 38251   Disjs cdisjs 38261   Parts cparts 38266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-xp 5625  df-res 5631  df-parts 38869
This theorem is referenced by:  brparts2  38876  brpartspart  38877
  Copyright terms: Public domain W3C validator