| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brparts | Structured version Visualization version GIF version | ||
| Description: Binary partitions relation. (Contributed by Peter Mazsa, 23-Jul-2021.) |
| Ref | Expression |
|---|---|
| brparts | ⊢ (𝐴 ∈ 𝑉 → (𝑅 Parts 𝐴 ↔ (𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-parts 38764 | . 2 ⊢ Parts = ( DomainQss ↾ Disjs ) | |
| 2 | 1 | eqres 38329 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝑅 Parts 𝐴 ↔ (𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5110 DomainQss cdmqss 38199 Disjs cdisjs 38209 Parts cparts 38214 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-res 5653 df-parts 38764 |
| This theorem is referenced by: brparts2 38771 brpartspart 38772 |
| Copyright terms: Public domain | W3C validator |