Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  antisymrelressn Structured version   Visualization version   GIF version

Theorem antisymrelressn 38722
Description: (Contributed by Peter Mazsa, 29-Jun-2024.)
Assertion
Ref Expression
antisymrelressn AntisymRel (𝑅 ↾ {𝐴})

Proof of Theorem antisymrelressn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 antisymressn 38402 . 2 𝑥𝑦((𝑥(𝑅 ↾ {𝐴})𝑦𝑦(𝑅 ↾ {𝐴})𝑥) → 𝑥 = 𝑦)
2 relres 6037 . 2 Rel (𝑅 ↾ {𝐴})
3 dfantisymrel5 38720 . 2 ( AntisymRel (𝑅 ↾ {𝐴}) ↔ (∀𝑥𝑦((𝑥(𝑅 ↾ {𝐴})𝑦𝑦(𝑅 ↾ {𝐴})𝑥) → 𝑥 = 𝑦) ∧ Rel (𝑅 ↾ {𝐴})))
41, 2, 3mpbir2an 710 1 AntisymRel (𝑅 ↾ {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535   = wceq 1537  {csn 4648   class class class wbr 5166  cres 5702  Rel wrel 5705   AntisymRel wantisymrel 38174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-cnvrefrel 38485  df-antisymrel 38718
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator