| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > antisymrelressn | Structured version Visualization version GIF version | ||
| Description: (Contributed by Peter Mazsa, 29-Jun-2024.) |
| Ref | Expression |
|---|---|
| antisymrelressn | ⊢ AntisymRel (𝑅 ↾ {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | antisymressn 38430 | . 2 ⊢ ∀𝑥∀𝑦((𝑥(𝑅 ↾ {𝐴})𝑦 ∧ 𝑦(𝑅 ↾ {𝐴})𝑥) → 𝑥 = 𝑦) | |
| 2 | relres 5978 | . 2 ⊢ Rel (𝑅 ↾ {𝐴}) | |
| 3 | dfantisymrel5 38749 | . 2 ⊢ ( AntisymRel (𝑅 ↾ {𝐴}) ↔ (∀𝑥∀𝑦((𝑥(𝑅 ↾ {𝐴})𝑦 ∧ 𝑦(𝑅 ↾ {𝐴})𝑥) → 𝑥 = 𝑦) ∧ Rel (𝑅 ↾ {𝐴}))) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ AntisymRel (𝑅 ↾ {𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 {csn 4591 class class class wbr 5109 ↾ cres 5642 Rel wrel 5645 AntisymRel wantisymrel 38201 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-br 5110 df-opab 5172 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-dm 5650 df-rn 5651 df-res 5652 df-cnvrefrel 38513 df-antisymrel 38747 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |