![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > antisymrelressn | Structured version Visualization version GIF version |
Description: (Contributed by Peter Mazsa, 29-Jun-2024.) |
Ref | Expression |
---|---|
antisymrelressn | ⊢ AntisymRel (𝑅 ↾ {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | antisymressn 38440 | . 2 ⊢ ∀𝑥∀𝑦((𝑥(𝑅 ↾ {𝐴})𝑦 ∧ 𝑦(𝑅 ↾ {𝐴})𝑥) → 𝑥 = 𝑦) | |
2 | relres 6030 | . 2 ⊢ Rel (𝑅 ↾ {𝐴}) | |
3 | dfantisymrel5 38758 | . 2 ⊢ ( AntisymRel (𝑅 ↾ {𝐴}) ↔ (∀𝑥∀𝑦((𝑥(𝑅 ↾ {𝐴})𝑦 ∧ 𝑦(𝑅 ↾ {𝐴})𝑥) → 𝑥 = 𝑦) ∧ Rel (𝑅 ↾ {𝐴}))) | |
4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ AntisymRel (𝑅 ↾ {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 = wceq 1539 {csn 4634 class class class wbr 5151 ↾ cres 5695 Rel wrel 5698 AntisymRel wantisymrel 38213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-dm 5703 df-rn 5704 df-res 5705 df-cnvrefrel 38523 df-antisymrel 38756 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |