Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  antisymrelressn Structured version   Visualization version   GIF version

Theorem antisymrelressn 37939
Description: (Contributed by Peter Mazsa, 29-Jun-2024.)
Assertion
Ref Expression
antisymrelressn AntisymRel (𝑅 ↾ {𝐴})

Proof of Theorem antisymrelressn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 antisymressn 37619 . 2 𝑥𝑦((𝑥(𝑅 ↾ {𝐴})𝑦𝑦(𝑅 ↾ {𝐴})𝑥) → 𝑥 = 𝑦)
2 relres 6011 . 2 Rel (𝑅 ↾ {𝐴})
3 dfantisymrel5 37937 . 2 ( AntisymRel (𝑅 ↾ {𝐴}) ↔ (∀𝑥𝑦((𝑥(𝑅 ↾ {𝐴})𝑦𝑦(𝑅 ↾ {𝐴})𝑥) → 𝑥 = 𝑦) ∧ Rel (𝑅 ↾ {𝐴})))
41, 2, 3mpbir2an 707 1 AntisymRel (𝑅 ↾ {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wal 1537   = wceq 1539  {csn 4629   class class class wbr 5149  cres 5679  Rel wrel 5682   AntisymRel wantisymrel 37385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-dm 5687  df-rn 5688  df-res 5689  df-cnvrefrel 37702  df-antisymrel 37935
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator