Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  antisymrelressn Structured version   Visualization version   GIF version

Theorem antisymrelressn 38760
Description: (Contributed by Peter Mazsa, 29-Jun-2024.)
Assertion
Ref Expression
antisymrelressn AntisymRel (𝑅 ↾ {𝐴})

Proof of Theorem antisymrelressn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 antisymressn 38440 . 2 𝑥𝑦((𝑥(𝑅 ↾ {𝐴})𝑦𝑦(𝑅 ↾ {𝐴})𝑥) → 𝑥 = 𝑦)
2 relres 6030 . 2 Rel (𝑅 ↾ {𝐴})
3 dfantisymrel5 38758 . 2 ( AntisymRel (𝑅 ↾ {𝐴}) ↔ (∀𝑥𝑦((𝑥(𝑅 ↾ {𝐴})𝑦𝑦(𝑅 ↾ {𝐴})𝑥) → 𝑥 = 𝑦) ∧ Rel (𝑅 ↾ {𝐴})))
41, 2, 3mpbir2an 711 1 AntisymRel (𝑅 ↾ {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537   = wceq 1539  {csn 4634   class class class wbr 5151  cres 5695  Rel wrel 5698   AntisymRel wantisymrel 38213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-br 5152  df-opab 5214  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-dm 5703  df-rn 5704  df-res 5705  df-cnvrefrel 38523  df-antisymrel 38756
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator