Detailed syntax breakdown of Definition df-perpg
Step | Hyp | Ref
| Expression |
1 | | cperpg 27056 |
. 2
class
⟂G |
2 | | vg |
. . 3
setvar 𝑔 |
3 | | cvv 3432 |
. . 3
class
V |
4 | | va |
. . . . . . . 8
setvar 𝑎 |
5 | 4 | cv 1538 |
. . . . . . 7
class 𝑎 |
6 | 2 | cv 1538 |
. . . . . . . . 9
class 𝑔 |
7 | | clng 26795 |
. . . . . . . . 9
class
LineG |
8 | 6, 7 | cfv 6433 |
. . . . . . . 8
class
(LineG‘𝑔) |
9 | 8 | crn 5590 |
. . . . . . 7
class ran
(LineG‘𝑔) |
10 | 5, 9 | wcel 2106 |
. . . . . 6
wff 𝑎 ∈ ran (LineG‘𝑔) |
11 | | vb |
. . . . . . . 8
setvar 𝑏 |
12 | 11 | cv 1538 |
. . . . . . 7
class 𝑏 |
13 | 12, 9 | wcel 2106 |
. . . . . 6
wff 𝑏 ∈ ran (LineG‘𝑔) |
14 | 10, 13 | wa 396 |
. . . . 5
wff (𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) |
15 | | vu |
. . . . . . . . . . 11
setvar 𝑢 |
16 | 15 | cv 1538 |
. . . . . . . . . 10
class 𝑢 |
17 | | vx |
. . . . . . . . . . 11
setvar 𝑥 |
18 | 17 | cv 1538 |
. . . . . . . . . 10
class 𝑥 |
19 | | vv |
. . . . . . . . . . 11
setvar 𝑣 |
20 | 19 | cv 1538 |
. . . . . . . . . 10
class 𝑣 |
21 | 16, 18, 20 | cs3 14555 |
. . . . . . . . 9
class
〈“𝑢𝑥𝑣”〉 |
22 | | crag 27054 |
. . . . . . . . . 10
class
∟G |
23 | 6, 22 | cfv 6433 |
. . . . . . . . 9
class
(∟G‘𝑔) |
24 | 21, 23 | wcel 2106 |
. . . . . . . 8
wff
〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔) |
25 | 24, 19, 12 | wral 3064 |
. . . . . . 7
wff
∀𝑣 ∈
𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔) |
26 | 25, 15, 5 | wral 3064 |
. . . . . 6
wff
∀𝑢 ∈
𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔) |
27 | 5, 12 | cin 3886 |
. . . . . 6
class (𝑎 ∩ 𝑏) |
28 | 26, 17, 27 | wrex 3065 |
. . . . 5
wff
∃𝑥 ∈
(𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔) |
29 | 14, 28 | wa 396 |
. . . 4
wff ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔)) |
30 | 29, 4, 11 | copab 5136 |
. . 3
class
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔))} |
31 | 2, 3, 30 | cmpt 5157 |
. 2
class (𝑔 ∈ V ↦ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔))}) |
32 | 1, 31 | wceq 1539 |
1
wff ⟂G =
(𝑔 ∈ V ↦
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔))}) |