Step | Hyp | Ref
| Expression |
1 | | df-perpg 26787 |
. . . . . 6
⊢ ⟂G
= (𝑔 ∈ V ↦
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔))}) |
2 | | simpr 488 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → 𝑔 = 𝐺) |
3 | 2 | fveq2d 6721 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (LineG‘𝑔) = (LineG‘𝐺)) |
4 | | perpln.l |
. . . . . . . . . . . 12
⊢ 𝐿 = (LineG‘𝐺) |
5 | 3, 4 | eqtr4di 2796 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (LineG‘𝑔) = 𝐿) |
6 | 5 | rneqd 5807 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → ran (LineG‘𝑔) = ran 𝐿) |
7 | 6 | eleq2d 2823 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (𝑎 ∈ ran (LineG‘𝑔) ↔ 𝑎 ∈ ran 𝐿)) |
8 | 6 | eleq2d 2823 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (𝑏 ∈ ran (LineG‘𝑔) ↔ 𝑏 ∈ ran 𝐿)) |
9 | 7, 8 | anbi12d 634 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ↔ (𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿))) |
10 | 2 | fveq2d 6721 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (∟G‘𝑔) = (∟G‘𝐺)) |
11 | 10 | eleq2d 2823 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔) ↔ 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) |
12 | 11 | ralbidv 3118 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔) ↔ ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) |
13 | 12 | rexralbidv 3220 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔) ↔ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) |
14 | 9, 13 | anbi12d 634 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔)) ↔ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺)))) |
15 | 14 | opabbidv 5119 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔))} = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))}) |
16 | | perpln.1 |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
17 | 16 | elexd 3428 |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ V) |
18 | 4 | fvexi 6731 |
. . . . . . . . 9
⊢ 𝐿 ∈ V |
19 | | rnexg 7682 |
. . . . . . . . 9
⊢ (𝐿 ∈ V → ran 𝐿 ∈ V) |
20 | 18, 19 | mp1i 13 |
. . . . . . . 8
⊢ (𝜑 → ran 𝐿 ∈ V) |
21 | 20, 20 | xpexd 7536 |
. . . . . . 7
⊢ (𝜑 → (ran 𝐿 × ran 𝐿) ∈ V) |
22 | | opabssxp 5640 |
. . . . . . . 8
⊢
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))} ⊆ (ran 𝐿 × ran 𝐿) |
23 | 22 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))} ⊆ (ran 𝐿 × ran 𝐿)) |
24 | 21, 23 | ssexd 5217 |
. . . . . 6
⊢ (𝜑 → {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))} ∈ V) |
25 | 1, 15, 17, 24 | fvmptd2 6826 |
. . . . 5
⊢ (𝜑 → (⟂G‘𝐺) = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))}) |
26 | 25 | rneqd 5807 |
. . . 4
⊢ (𝜑 → ran (⟂G‘𝐺) = ran {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))}) |
27 | 22 | rnssi 5809 |
. . . 4
⊢ ran
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))} ⊆ ran (ran 𝐿 × ran 𝐿) |
28 | 26, 27 | eqsstrdi 3955 |
. . 3
⊢ (𝜑 → ran (⟂G‘𝐺) ⊆ ran (ran 𝐿 × ran 𝐿)) |
29 | | rnxpss 6035 |
. . 3
⊢ ran (ran
𝐿 × ran 𝐿) ⊆ ran 𝐿 |
30 | 28, 29 | sstrdi 3913 |
. 2
⊢ (𝜑 → ran (⟂G‘𝐺) ⊆ ran 𝐿) |
31 | | relopabv 5691 |
. . . . . 6
⊢ Rel
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))} |
32 | 25 | releqd 5650 |
. . . . . 6
⊢ (𝜑 → (Rel
(⟂G‘𝐺) ↔
Rel {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))})) |
33 | 31, 32 | mpbiri 261 |
. . . . 5
⊢ (𝜑 → Rel (⟂G‘𝐺)) |
34 | | perpln.2 |
. . . . 5
⊢ (𝜑 → 𝐴(⟂G‘𝐺)𝐵) |
35 | | brrelex12 5601 |
. . . . 5
⊢ ((Rel
(⟂G‘𝐺) ∧
𝐴(⟂G‘𝐺)𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
36 | 33, 34, 35 | syl2anc 587 |
. . . 4
⊢ (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
37 | 36 | simpld 498 |
. . 3
⊢ (𝜑 → 𝐴 ∈ V) |
38 | 36 | simprd 499 |
. . 3
⊢ (𝜑 → 𝐵 ∈ V) |
39 | | brelrng 5810 |
. . 3
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴(⟂G‘𝐺)𝐵) → 𝐵 ∈ ran (⟂G‘𝐺)) |
40 | 37, 38, 34, 39 | syl3anc 1373 |
. 2
⊢ (𝜑 → 𝐵 ∈ ran (⟂G‘𝐺)) |
41 | 30, 40 | sseldd 3902 |
1
⊢ (𝜑 → 𝐵 ∈ ran 𝐿) |