| Step | Hyp | Ref
| Expression |
| 1 | | df-perpg 28704 |
. . . . . 6
⊢ ⟂G
= (𝑔 ∈ V ↦
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔))}) |
| 2 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → 𝑔 = 𝐺) |
| 3 | 2 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (LineG‘𝑔) = (LineG‘𝐺)) |
| 4 | | perpln.l |
. . . . . . . . . . . 12
⊢ 𝐿 = (LineG‘𝐺) |
| 5 | 3, 4 | eqtr4di 2795 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (LineG‘𝑔) = 𝐿) |
| 6 | 5 | rneqd 5949 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → ran (LineG‘𝑔) = ran 𝐿) |
| 7 | 6 | eleq2d 2827 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (𝑎 ∈ ran (LineG‘𝑔) ↔ 𝑎 ∈ ran 𝐿)) |
| 8 | 6 | eleq2d 2827 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (𝑏 ∈ ran (LineG‘𝑔) ↔ 𝑏 ∈ ran 𝐿)) |
| 9 | 7, 8 | anbi12d 632 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ↔ (𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿))) |
| 10 | 2 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (∟G‘𝑔) = (∟G‘𝐺)) |
| 11 | 10 | eleq2d 2827 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔) ↔ 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) |
| 12 | 11 | ralbidv 3178 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔) ↔ ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) |
| 13 | 12 | rexralbidv 3223 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔) ↔ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) |
| 14 | 9, 13 | anbi12d 632 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔)) ↔ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺)))) |
| 15 | 14 | opabbidv 5209 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔))} = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))}) |
| 16 | | perpln.1 |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| 17 | 16 | elexd 3504 |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ V) |
| 18 | 4 | fvexi 6920 |
. . . . . . . . 9
⊢ 𝐿 ∈ V |
| 19 | | rnexg 7924 |
. . . . . . . . 9
⊢ (𝐿 ∈ V → ran 𝐿 ∈ V) |
| 20 | 18, 19 | mp1i 13 |
. . . . . . . 8
⊢ (𝜑 → ran 𝐿 ∈ V) |
| 21 | 20, 20 | xpexd 7771 |
. . . . . . 7
⊢ (𝜑 → (ran 𝐿 × ran 𝐿) ∈ V) |
| 22 | | opabssxp 5778 |
. . . . . . . 8
⊢
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))} ⊆ (ran 𝐿 × ran 𝐿) |
| 23 | 22 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))} ⊆ (ran 𝐿 × ran 𝐿)) |
| 24 | 21, 23 | ssexd 5324 |
. . . . . 6
⊢ (𝜑 → {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))} ∈ V) |
| 25 | 1, 15, 17, 24 | fvmptd2 7024 |
. . . . 5
⊢ (𝜑 → (⟂G‘𝐺) = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))}) |
| 26 | 25 | rneqd 5949 |
. . . 4
⊢ (𝜑 → ran (⟂G‘𝐺) = ran {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))}) |
| 27 | 22 | rnssi 5951 |
. . . 4
⊢ ran
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))} ⊆ ran (ran 𝐿 × ran 𝐿) |
| 28 | 26, 27 | eqsstrdi 4028 |
. . 3
⊢ (𝜑 → ran (⟂G‘𝐺) ⊆ ran (ran 𝐿 × ran 𝐿)) |
| 29 | | rnxpss 6192 |
. . 3
⊢ ran (ran
𝐿 × ran 𝐿) ⊆ ran 𝐿 |
| 30 | 28, 29 | sstrdi 3996 |
. 2
⊢ (𝜑 → ran (⟂G‘𝐺) ⊆ ran 𝐿) |
| 31 | | relopabv 5831 |
. . . . . 6
⊢ Rel
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))} |
| 32 | 25 | releqd 5788 |
. . . . . 6
⊢ (𝜑 → (Rel
(⟂G‘𝐺) ↔
Rel {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))})) |
| 33 | 31, 32 | mpbiri 258 |
. . . . 5
⊢ (𝜑 → Rel (⟂G‘𝐺)) |
| 34 | | perpln.2 |
. . . . 5
⊢ (𝜑 → 𝐴(⟂G‘𝐺)𝐵) |
| 35 | | brrelex12 5737 |
. . . . 5
⊢ ((Rel
(⟂G‘𝐺) ∧
𝐴(⟂G‘𝐺)𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 36 | 33, 34, 35 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 37 | 36 | simpld 494 |
. . 3
⊢ (𝜑 → 𝐴 ∈ V) |
| 38 | 36 | simprd 495 |
. . 3
⊢ (𝜑 → 𝐵 ∈ V) |
| 39 | | brelrng 5952 |
. . 3
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴(⟂G‘𝐺)𝐵) → 𝐵 ∈ ran (⟂G‘𝐺)) |
| 40 | 37, 38, 34, 39 | syl3anc 1373 |
. 2
⊢ (𝜑 → 𝐵 ∈ ran (⟂G‘𝐺)) |
| 41 | 30, 40 | sseldd 3984 |
1
⊢ (𝜑 → 𝐵 ∈ ran 𝐿) |