Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  perpln1 Structured version   Visualization version   GIF version

Theorem perpln1 26508
 Description: Derive a line from perpendicularity. (Contributed by Thierry Arnoux, 27-Nov-2019.)
Hypotheses
Ref Expression
perpln.l 𝐿 = (LineG‘𝐺)
perpln.1 (𝜑𝐺 ∈ TarskiG)
perpln.2 (𝜑𝐴(⟂G‘𝐺)𝐵)
Assertion
Ref Expression
perpln1 (𝜑𝐴 ∈ ran 𝐿)

Proof of Theorem perpln1
Dummy variables 𝑎 𝑏 𝑔 𝑢 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-perpg 26494 . . . . . 6 ⟂G = (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝑔))})
2 simpr 488 . . . . . . . . . . . . 13 ((𝜑𝑔 = 𝐺) → 𝑔 = 𝐺)
32fveq2d 6653 . . . . . . . . . . . 12 ((𝜑𝑔 = 𝐺) → (LineG‘𝑔) = (LineG‘𝐺))
4 perpln.l . . . . . . . . . . . 12 𝐿 = (LineG‘𝐺)
53, 4eqtr4di 2854 . . . . . . . . . . 11 ((𝜑𝑔 = 𝐺) → (LineG‘𝑔) = 𝐿)
65rneqd 5776 . . . . . . . . . 10 ((𝜑𝑔 = 𝐺) → ran (LineG‘𝑔) = ran 𝐿)
76eleq2d 2878 . . . . . . . . 9 ((𝜑𝑔 = 𝐺) → (𝑎 ∈ ran (LineG‘𝑔) ↔ 𝑎 ∈ ran 𝐿))
86eleq2d 2878 . . . . . . . . 9 ((𝜑𝑔 = 𝐺) → (𝑏 ∈ ran (LineG‘𝑔) ↔ 𝑏 ∈ ran 𝐿))
97, 8anbi12d 633 . . . . . . . 8 ((𝜑𝑔 = 𝐺) → ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ↔ (𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿)))
102fveq2d 6653 . . . . . . . . . . 11 ((𝜑𝑔 = 𝐺) → (∟G‘𝑔) = (∟G‘𝐺))
1110eleq2d 2878 . . . . . . . . . 10 ((𝜑𝑔 = 𝐺) → (⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝑔) ↔ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
1211ralbidv 3165 . . . . . . . . 9 ((𝜑𝑔 = 𝐺) → (∀𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝑔) ↔ ∀𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
1312rexralbidv 3263 . . . . . . . 8 ((𝜑𝑔 = 𝐺) → (∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝑔) ↔ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
149, 13anbi12d 633 . . . . . . 7 ((𝜑𝑔 = 𝐺) → (((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝑔)) ↔ ((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))))
1514opabbidv 5099 . . . . . 6 ((𝜑𝑔 = 𝐺) → {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝑔))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))})
16 perpln.1 . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
1716elexd 3464 . . . . . 6 (𝜑𝐺 ∈ V)
184fvexi 6663 . . . . . . . . 9 𝐿 ∈ V
19 rnexg 7599 . . . . . . . . 9 (𝐿 ∈ V → ran 𝐿 ∈ V)
2018, 19mp1i 13 . . . . . . . 8 (𝜑 → ran 𝐿 ∈ V)
2120, 20xpexd 7458 . . . . . . 7 (𝜑 → (ran 𝐿 × ran 𝐿) ∈ V)
22 opabssxp 5611 . . . . . . . 8 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))} ⊆ (ran 𝐿 × ran 𝐿)
2322a1i 11 . . . . . . 7 (𝜑 → {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))} ⊆ (ran 𝐿 × ran 𝐿))
2421, 23ssexd 5195 . . . . . 6 (𝜑 → {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))} ∈ V)
251, 15, 17, 24fvmptd2 6757 . . . . 5 (𝜑 → (⟂G‘𝐺) = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))})
26 anass 472 . . . . . 6 (((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) ↔ (𝑎 ∈ ran 𝐿 ∧ (𝑏 ∈ ran 𝐿 ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))))
2726opabbii 5100 . . . . 5 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))} = {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ ran 𝐿 ∧ (𝑏 ∈ ran 𝐿 ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))}
2825, 27eqtrdi 2852 . . . 4 (𝜑 → (⟂G‘𝐺) = {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ ran 𝐿 ∧ (𝑏 ∈ ran 𝐿 ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))})
2928dmeqd 5742 . . 3 (𝜑 → dom (⟂G‘𝐺) = dom {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ ran 𝐿 ∧ (𝑏 ∈ ran 𝐿 ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))})
30 dmopabss 5755 . . 3 dom {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ ran 𝐿 ∧ (𝑏 ∈ ran 𝐿 ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))} ⊆ ran 𝐿
3129, 30eqsstrdi 3972 . 2 (𝜑 → dom (⟂G‘𝐺) ⊆ ran 𝐿)
32 relopab 5664 . . . . . 6 Rel {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))}
3325releqd 5621 . . . . . 6 (𝜑 → (Rel (⟂G‘𝐺) ↔ Rel {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))}))
3432, 33mpbiri 261 . . . . 5 (𝜑 → Rel (⟂G‘𝐺))
35 perpln.2 . . . . 5 (𝜑𝐴(⟂G‘𝐺)𝐵)
36 brrelex12 5572 . . . . 5 ((Rel (⟂G‘𝐺) ∧ 𝐴(⟂G‘𝐺)𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
3734, 35, 36syl2anc 587 . . . 4 (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
3837simpld 498 . . 3 (𝜑𝐴 ∈ V)
3937simprd 499 . . 3 (𝜑𝐵 ∈ V)
40 breldmg 5746 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴(⟂G‘𝐺)𝐵) → 𝐴 ∈ dom (⟂G‘𝐺))
4138, 39, 35, 40syl3anc 1368 . 2 (𝜑𝐴 ∈ dom (⟂G‘𝐺))
4231, 41sseldd 3919 1 (𝜑𝐴 ∈ ran 𝐿)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2112  ∀wral 3109  ∃wrex 3110  Vcvv 3444   ∩ cin 3883   ⊆ wss 3884   class class class wbr 5033  {copab 5095   × cxp 5521  dom cdm 5523  ran crn 5524  Rel wrel 5528  ‘cfv 6328  ⟨“cs3 14199  TarskiGcstrkg 26228  LineGclng 26235  ∟Gcrag 26491  ⟂Gcperpg 26493 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-iota 6287  df-fun 6330  df-fv 6336  df-perpg 26494 This theorem is referenced by:  footne  26521  footeq  26522  perpdragALT  26525  perpdrag  26526  colperp  26527  midex  26535  opphl  26552  lmieu  26582  lnperpex  26601  trgcopy  26602
 Copyright terms: Public domain W3C validator