MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perpln1 Structured version   Visualization version   GIF version

Theorem perpln1 26755
Description: Derive a line from perpendicularity. (Contributed by Thierry Arnoux, 27-Nov-2019.)
Hypotheses
Ref Expression
perpln.l 𝐿 = (LineG‘𝐺)
perpln.1 (𝜑𝐺 ∈ TarskiG)
perpln.2 (𝜑𝐴(⟂G‘𝐺)𝐵)
Assertion
Ref Expression
perpln1 (𝜑𝐴 ∈ ran 𝐿)

Proof of Theorem perpln1
Dummy variables 𝑎 𝑏 𝑔 𝑢 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-perpg 26741 . . . . . 6 ⟂G = (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝑔))})
2 simpr 488 . . . . . . . . . . . . 13 ((𝜑𝑔 = 𝐺) → 𝑔 = 𝐺)
32fveq2d 6699 . . . . . . . . . . . 12 ((𝜑𝑔 = 𝐺) → (LineG‘𝑔) = (LineG‘𝐺))
4 perpln.l . . . . . . . . . . . 12 𝐿 = (LineG‘𝐺)
53, 4eqtr4di 2789 . . . . . . . . . . 11 ((𝜑𝑔 = 𝐺) → (LineG‘𝑔) = 𝐿)
65rneqd 5792 . . . . . . . . . 10 ((𝜑𝑔 = 𝐺) → ran (LineG‘𝑔) = ran 𝐿)
76eleq2d 2816 . . . . . . . . 9 ((𝜑𝑔 = 𝐺) → (𝑎 ∈ ran (LineG‘𝑔) ↔ 𝑎 ∈ ran 𝐿))
86eleq2d 2816 . . . . . . . . 9 ((𝜑𝑔 = 𝐺) → (𝑏 ∈ ran (LineG‘𝑔) ↔ 𝑏 ∈ ran 𝐿))
97, 8anbi12d 634 . . . . . . . 8 ((𝜑𝑔 = 𝐺) → ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ↔ (𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿)))
102fveq2d 6699 . . . . . . . . . . 11 ((𝜑𝑔 = 𝐺) → (∟G‘𝑔) = (∟G‘𝐺))
1110eleq2d 2816 . . . . . . . . . 10 ((𝜑𝑔 = 𝐺) → (⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝑔) ↔ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
1211ralbidv 3108 . . . . . . . . 9 ((𝜑𝑔 = 𝐺) → (∀𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝑔) ↔ ∀𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
1312rexralbidv 3210 . . . . . . . 8 ((𝜑𝑔 = 𝐺) → (∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝑔) ↔ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
149, 13anbi12d 634 . . . . . . 7 ((𝜑𝑔 = 𝐺) → (((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝑔)) ↔ ((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))))
1514opabbidv 5105 . . . . . 6 ((𝜑𝑔 = 𝐺) → {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝑔))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))})
16 perpln.1 . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
1716elexd 3418 . . . . . 6 (𝜑𝐺 ∈ V)
184fvexi 6709 . . . . . . . . 9 𝐿 ∈ V
19 rnexg 7660 . . . . . . . . 9 (𝐿 ∈ V → ran 𝐿 ∈ V)
2018, 19mp1i 13 . . . . . . . 8 (𝜑 → ran 𝐿 ∈ V)
2120, 20xpexd 7514 . . . . . . 7 (𝜑 → (ran 𝐿 × ran 𝐿) ∈ V)
22 opabssxp 5625 . . . . . . . 8 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))} ⊆ (ran 𝐿 × ran 𝐿)
2322a1i 11 . . . . . . 7 (𝜑 → {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))} ⊆ (ran 𝐿 × ran 𝐿))
2421, 23ssexd 5202 . . . . . 6 (𝜑 → {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))} ∈ V)
251, 15, 17, 24fvmptd2 6804 . . . . 5 (𝜑 → (⟂G‘𝐺) = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))})
26 anass 472 . . . . . 6 (((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) ↔ (𝑎 ∈ ran 𝐿 ∧ (𝑏 ∈ ran 𝐿 ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))))
2726opabbii 5106 . . . . 5 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))} = {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ ran 𝐿 ∧ (𝑏 ∈ ran 𝐿 ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))}
2825, 27eqtrdi 2787 . . . 4 (𝜑 → (⟂G‘𝐺) = {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ ran 𝐿 ∧ (𝑏 ∈ ran 𝐿 ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))})
2928dmeqd 5759 . . 3 (𝜑 → dom (⟂G‘𝐺) = dom {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ ran 𝐿 ∧ (𝑏 ∈ ran 𝐿 ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))})
30 dmopabss 5772 . . 3 dom {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ ran 𝐿 ∧ (𝑏 ∈ ran 𝐿 ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))} ⊆ ran 𝐿
3129, 30eqsstrdi 3941 . 2 (𝜑 → dom (⟂G‘𝐺) ⊆ ran 𝐿)
32 relopabv 5676 . . . . . 6 Rel {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))}
3325releqd 5635 . . . . . 6 (𝜑 → (Rel (⟂G‘𝐺) ↔ Rel {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran 𝐿𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))}))
3432, 33mpbiri 261 . . . . 5 (𝜑 → Rel (⟂G‘𝐺))
35 perpln.2 . . . . 5 (𝜑𝐴(⟂G‘𝐺)𝐵)
36 brrelex12 5586 . . . . 5 ((Rel (⟂G‘𝐺) ∧ 𝐴(⟂G‘𝐺)𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
3734, 35, 36syl2anc 587 . . . 4 (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
3837simpld 498 . . 3 (𝜑𝐴 ∈ V)
3937simprd 499 . . 3 (𝜑𝐵 ∈ V)
40 breldmg 5763 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴(⟂G‘𝐺)𝐵) → 𝐴 ∈ dom (⟂G‘𝐺))
4138, 39, 35, 40syl3anc 1373 . 2 (𝜑𝐴 ∈ dom (⟂G‘𝐺))
4231, 41sseldd 3888 1 (𝜑𝐴 ∈ ran 𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  wral 3051  wrex 3052  Vcvv 3398  cin 3852  wss 3853   class class class wbr 5039  {copab 5101   × cxp 5534  dom cdm 5536  ran crn 5537  Rel wrel 5541  cfv 6358  ⟨“cs3 14372  TarskiGcstrkg 26475  LineGclng 26482  ∟Gcrag 26738  ⟂Gcperpg 26740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-iota 6316  df-fun 6360  df-fv 6366  df-perpg 26741
This theorem is referenced by:  footne  26768  footeq  26769  perpdragALT  26772  perpdrag  26773  colperp  26774  midex  26782  opphl  26799  lmieu  26829  lnperpex  26848  trgcopy  26849
  Copyright terms: Public domain W3C validator