MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perpln1 Structured version   Visualization version   GIF version

Theorem perpln1 27958
Description: Derive a line from perpendicularity. (Contributed by Thierry Arnoux, 27-Nov-2019.)
Hypotheses
Ref Expression
perpln.l 𝐿 = (LineGβ€˜πΊ)
perpln.1 (πœ‘ β†’ 𝐺 ∈ TarskiG)
perpln.2 (πœ‘ β†’ 𝐴(βŸ‚Gβ€˜πΊ)𝐡)
Assertion
Ref Expression
perpln1 (πœ‘ β†’ 𝐴 ∈ ran 𝐿)

Proof of Theorem perpln1
Dummy variables π‘Ž 𝑏 𝑔 𝑒 𝑣 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-perpg 27944 . . . . . 6 βŸ‚G = (𝑔 ∈ V ↦ {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ ran (LineGβ€˜π‘”) ∧ 𝑏 ∈ ran (LineGβ€˜π‘”)) ∧ βˆƒπ‘₯ ∈ (π‘Ž ∩ 𝑏)βˆ€π‘’ ∈ π‘Ž βˆ€π‘£ ∈ 𝑏 βŸ¨β€œπ‘’π‘₯π‘£β€βŸ© ∈ (∟Gβ€˜π‘”))})
2 simpr 485 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑔 = 𝐺) β†’ 𝑔 = 𝐺)
32fveq2d 6895 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑔 = 𝐺) β†’ (LineGβ€˜π‘”) = (LineGβ€˜πΊ))
4 perpln.l . . . . . . . . . . . 12 𝐿 = (LineGβ€˜πΊ)
53, 4eqtr4di 2790 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑔 = 𝐺) β†’ (LineGβ€˜π‘”) = 𝐿)
65rneqd 5937 . . . . . . . . . 10 ((πœ‘ ∧ 𝑔 = 𝐺) β†’ ran (LineGβ€˜π‘”) = ran 𝐿)
76eleq2d 2819 . . . . . . . . 9 ((πœ‘ ∧ 𝑔 = 𝐺) β†’ (π‘Ž ∈ ran (LineGβ€˜π‘”) ↔ π‘Ž ∈ ran 𝐿))
86eleq2d 2819 . . . . . . . . 9 ((πœ‘ ∧ 𝑔 = 𝐺) β†’ (𝑏 ∈ ran (LineGβ€˜π‘”) ↔ 𝑏 ∈ ran 𝐿))
97, 8anbi12d 631 . . . . . . . 8 ((πœ‘ ∧ 𝑔 = 𝐺) β†’ ((π‘Ž ∈ ran (LineGβ€˜π‘”) ∧ 𝑏 ∈ ran (LineGβ€˜π‘”)) ↔ (π‘Ž ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿)))
102fveq2d 6895 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑔 = 𝐺) β†’ (∟Gβ€˜π‘”) = (∟Gβ€˜πΊ))
1110eleq2d 2819 . . . . . . . . . 10 ((πœ‘ ∧ 𝑔 = 𝐺) β†’ (βŸ¨β€œπ‘’π‘₯π‘£β€βŸ© ∈ (∟Gβ€˜π‘”) ↔ βŸ¨β€œπ‘’π‘₯π‘£β€βŸ© ∈ (∟Gβ€˜πΊ)))
1211ralbidv 3177 . . . . . . . . 9 ((πœ‘ ∧ 𝑔 = 𝐺) β†’ (βˆ€π‘£ ∈ 𝑏 βŸ¨β€œπ‘’π‘₯π‘£β€βŸ© ∈ (∟Gβ€˜π‘”) ↔ βˆ€π‘£ ∈ 𝑏 βŸ¨β€œπ‘’π‘₯π‘£β€βŸ© ∈ (∟Gβ€˜πΊ)))
1312rexralbidv 3220 . . . . . . . 8 ((πœ‘ ∧ 𝑔 = 𝐺) β†’ (βˆƒπ‘₯ ∈ (π‘Ž ∩ 𝑏)βˆ€π‘’ ∈ π‘Ž βˆ€π‘£ ∈ 𝑏 βŸ¨β€œπ‘’π‘₯π‘£β€βŸ© ∈ (∟Gβ€˜π‘”) ↔ βˆƒπ‘₯ ∈ (π‘Ž ∩ 𝑏)βˆ€π‘’ ∈ π‘Ž βˆ€π‘£ ∈ 𝑏 βŸ¨β€œπ‘’π‘₯π‘£β€βŸ© ∈ (∟Gβ€˜πΊ)))
149, 13anbi12d 631 . . . . . . 7 ((πœ‘ ∧ 𝑔 = 𝐺) β†’ (((π‘Ž ∈ ran (LineGβ€˜π‘”) ∧ 𝑏 ∈ ran (LineGβ€˜π‘”)) ∧ βˆƒπ‘₯ ∈ (π‘Ž ∩ 𝑏)βˆ€π‘’ ∈ π‘Ž βˆ€π‘£ ∈ 𝑏 βŸ¨β€œπ‘’π‘₯π‘£β€βŸ© ∈ (∟Gβ€˜π‘”)) ↔ ((π‘Ž ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ βˆƒπ‘₯ ∈ (π‘Ž ∩ 𝑏)βˆ€π‘’ ∈ π‘Ž βˆ€π‘£ ∈ 𝑏 βŸ¨β€œπ‘’π‘₯π‘£β€βŸ© ∈ (∟Gβ€˜πΊ))))
1514opabbidv 5214 . . . . . 6 ((πœ‘ ∧ 𝑔 = 𝐺) β†’ {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ ran (LineGβ€˜π‘”) ∧ 𝑏 ∈ ran (LineGβ€˜π‘”)) ∧ βˆƒπ‘₯ ∈ (π‘Ž ∩ 𝑏)βˆ€π‘’ ∈ π‘Ž βˆ€π‘£ ∈ 𝑏 βŸ¨β€œπ‘’π‘₯π‘£β€βŸ© ∈ (∟Gβ€˜π‘”))} = {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ βˆƒπ‘₯ ∈ (π‘Ž ∩ 𝑏)βˆ€π‘’ ∈ π‘Ž βˆ€π‘£ ∈ 𝑏 βŸ¨β€œπ‘’π‘₯π‘£β€βŸ© ∈ (∟Gβ€˜πΊ))})
16 perpln.1 . . . . . . 7 (πœ‘ β†’ 𝐺 ∈ TarskiG)
1716elexd 3494 . . . . . 6 (πœ‘ β†’ 𝐺 ∈ V)
184fvexi 6905 . . . . . . . . 9 𝐿 ∈ V
19 rnexg 7894 . . . . . . . . 9 (𝐿 ∈ V β†’ ran 𝐿 ∈ V)
2018, 19mp1i 13 . . . . . . . 8 (πœ‘ β†’ ran 𝐿 ∈ V)
2120, 20xpexd 7737 . . . . . . 7 (πœ‘ β†’ (ran 𝐿 Γ— ran 𝐿) ∈ V)
22 opabssxp 5768 . . . . . . . 8 {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ βˆƒπ‘₯ ∈ (π‘Ž ∩ 𝑏)βˆ€π‘’ ∈ π‘Ž βˆ€π‘£ ∈ 𝑏 βŸ¨β€œπ‘’π‘₯π‘£β€βŸ© ∈ (∟Gβ€˜πΊ))} βŠ† (ran 𝐿 Γ— ran 𝐿)
2322a1i 11 . . . . . . 7 (πœ‘ β†’ {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ βˆƒπ‘₯ ∈ (π‘Ž ∩ 𝑏)βˆ€π‘’ ∈ π‘Ž βˆ€π‘£ ∈ 𝑏 βŸ¨β€œπ‘’π‘₯π‘£β€βŸ© ∈ (∟Gβ€˜πΊ))} βŠ† (ran 𝐿 Γ— ran 𝐿))
2421, 23ssexd 5324 . . . . . 6 (πœ‘ β†’ {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ βˆƒπ‘₯ ∈ (π‘Ž ∩ 𝑏)βˆ€π‘’ ∈ π‘Ž βˆ€π‘£ ∈ 𝑏 βŸ¨β€œπ‘’π‘₯π‘£β€βŸ© ∈ (∟Gβ€˜πΊ))} ∈ V)
251, 15, 17, 24fvmptd2 7006 . . . . 5 (πœ‘ β†’ (βŸ‚Gβ€˜πΊ) = {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ βˆƒπ‘₯ ∈ (π‘Ž ∩ 𝑏)βˆ€π‘’ ∈ π‘Ž βˆ€π‘£ ∈ 𝑏 βŸ¨β€œπ‘’π‘₯π‘£β€βŸ© ∈ (∟Gβ€˜πΊ))})
26 anass 469 . . . . . 6 (((π‘Ž ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ βˆƒπ‘₯ ∈ (π‘Ž ∩ 𝑏)βˆ€π‘’ ∈ π‘Ž βˆ€π‘£ ∈ 𝑏 βŸ¨β€œπ‘’π‘₯π‘£β€βŸ© ∈ (∟Gβ€˜πΊ)) ↔ (π‘Ž ∈ ran 𝐿 ∧ (𝑏 ∈ ran 𝐿 ∧ βˆƒπ‘₯ ∈ (π‘Ž ∩ 𝑏)βˆ€π‘’ ∈ π‘Ž βˆ€π‘£ ∈ 𝑏 βŸ¨β€œπ‘’π‘₯π‘£β€βŸ© ∈ (∟Gβ€˜πΊ))))
2726opabbii 5215 . . . . 5 {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ βˆƒπ‘₯ ∈ (π‘Ž ∩ 𝑏)βˆ€π‘’ ∈ π‘Ž βˆ€π‘£ ∈ 𝑏 βŸ¨β€œπ‘’π‘₯π‘£β€βŸ© ∈ (∟Gβ€˜πΊ))} = {βŸ¨π‘Ž, π‘βŸ© ∣ (π‘Ž ∈ ran 𝐿 ∧ (𝑏 ∈ ran 𝐿 ∧ βˆƒπ‘₯ ∈ (π‘Ž ∩ 𝑏)βˆ€π‘’ ∈ π‘Ž βˆ€π‘£ ∈ 𝑏 βŸ¨β€œπ‘’π‘₯π‘£β€βŸ© ∈ (∟Gβ€˜πΊ)))}
2825, 27eqtrdi 2788 . . . 4 (πœ‘ β†’ (βŸ‚Gβ€˜πΊ) = {βŸ¨π‘Ž, π‘βŸ© ∣ (π‘Ž ∈ ran 𝐿 ∧ (𝑏 ∈ ran 𝐿 ∧ βˆƒπ‘₯ ∈ (π‘Ž ∩ 𝑏)βˆ€π‘’ ∈ π‘Ž βˆ€π‘£ ∈ 𝑏 βŸ¨β€œπ‘’π‘₯π‘£β€βŸ© ∈ (∟Gβ€˜πΊ)))})
2928dmeqd 5905 . . 3 (πœ‘ β†’ dom (βŸ‚Gβ€˜πΊ) = dom {βŸ¨π‘Ž, π‘βŸ© ∣ (π‘Ž ∈ ran 𝐿 ∧ (𝑏 ∈ ran 𝐿 ∧ βˆƒπ‘₯ ∈ (π‘Ž ∩ 𝑏)βˆ€π‘’ ∈ π‘Ž βˆ€π‘£ ∈ 𝑏 βŸ¨β€œπ‘’π‘₯π‘£β€βŸ© ∈ (∟Gβ€˜πΊ)))})
30 dmopabss 5918 . . 3 dom {βŸ¨π‘Ž, π‘βŸ© ∣ (π‘Ž ∈ ran 𝐿 ∧ (𝑏 ∈ ran 𝐿 ∧ βˆƒπ‘₯ ∈ (π‘Ž ∩ 𝑏)βˆ€π‘’ ∈ π‘Ž βˆ€π‘£ ∈ 𝑏 βŸ¨β€œπ‘’π‘₯π‘£β€βŸ© ∈ (∟Gβ€˜πΊ)))} βŠ† ran 𝐿
3129, 30eqsstrdi 4036 . 2 (πœ‘ β†’ dom (βŸ‚Gβ€˜πΊ) βŠ† ran 𝐿)
32 relopabv 5821 . . . . . 6 Rel {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ βˆƒπ‘₯ ∈ (π‘Ž ∩ 𝑏)βˆ€π‘’ ∈ π‘Ž βˆ€π‘£ ∈ 𝑏 βŸ¨β€œπ‘’π‘₯π‘£β€βŸ© ∈ (∟Gβ€˜πΊ))}
3325releqd 5778 . . . . . 6 (πœ‘ β†’ (Rel (βŸ‚Gβ€˜πΊ) ↔ Rel {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ βˆƒπ‘₯ ∈ (π‘Ž ∩ 𝑏)βˆ€π‘’ ∈ π‘Ž βˆ€π‘£ ∈ 𝑏 βŸ¨β€œπ‘’π‘₯π‘£β€βŸ© ∈ (∟Gβ€˜πΊ))}))
3432, 33mpbiri 257 . . . . 5 (πœ‘ β†’ Rel (βŸ‚Gβ€˜πΊ))
35 perpln.2 . . . . 5 (πœ‘ β†’ 𝐴(βŸ‚Gβ€˜πΊ)𝐡)
36 brrelex12 5728 . . . . 5 ((Rel (βŸ‚Gβ€˜πΊ) ∧ 𝐴(βŸ‚Gβ€˜πΊ)𝐡) β†’ (𝐴 ∈ V ∧ 𝐡 ∈ V))
3734, 35, 36syl2anc 584 . . . 4 (πœ‘ β†’ (𝐴 ∈ V ∧ 𝐡 ∈ V))
3837simpld 495 . . 3 (πœ‘ β†’ 𝐴 ∈ V)
3937simprd 496 . . 3 (πœ‘ β†’ 𝐡 ∈ V)
40 breldmg 5909 . . 3 ((𝐴 ∈ V ∧ 𝐡 ∈ V ∧ 𝐴(βŸ‚Gβ€˜πΊ)𝐡) β†’ 𝐴 ∈ dom (βŸ‚Gβ€˜πΊ))
4138, 39, 35, 40syl3anc 1371 . 2 (πœ‘ β†’ 𝐴 ∈ dom (βŸ‚Gβ€˜πΊ))
4231, 41sseldd 3983 1 (πœ‘ β†’ 𝐴 ∈ ran 𝐿)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070  Vcvv 3474   ∩ cin 3947   βŠ† wss 3948   class class class wbr 5148  {copab 5210   Γ— cxp 5674  dom cdm 5676  ran crn 5677  Rel wrel 5681  β€˜cfv 6543  βŸ¨β€œcs3 14792  TarskiGcstrkg 27675  LineGclng 27682  βˆŸGcrag 27941  βŸ‚Gcperpg 27943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fv 6551  df-perpg 27944
This theorem is referenced by:  footne  27971  footeq  27972  perpdragALT  27975  perpdrag  27976  colperp  27977  midex  27985  opphl  28002  lmieu  28032  lnperpex  28051  trgcopy  28052
  Copyright terms: Public domain W3C validator