| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | df-br 5143 | . . 3
⊢ (𝐴(⟂G‘𝐺)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (⟂G‘𝐺)) | 
| 2 |  | df-perpg 28705 | . . . . 5
⊢ ⟂G
= (𝑔 ∈ V ↦
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔))}) | 
| 3 |  | simpr 484 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → 𝑔 = 𝐺) | 
| 4 | 3 | fveq2d 6909 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (LineG‘𝑔) = (LineG‘𝐺)) | 
| 5 |  | isperp.l | . . . . . . . . . . 11
⊢ 𝐿 = (LineG‘𝐺) | 
| 6 | 4, 5 | eqtr4di 2794 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (LineG‘𝑔) = 𝐿) | 
| 7 | 6 | rneqd 5948 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → ran (LineG‘𝑔) = ran 𝐿) | 
| 8 | 7 | eleq2d 2826 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (𝑎 ∈ ran (LineG‘𝑔) ↔ 𝑎 ∈ ran 𝐿)) | 
| 9 | 7 | eleq2d 2826 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (𝑏 ∈ ran (LineG‘𝑔) ↔ 𝑏 ∈ ran 𝐿)) | 
| 10 | 8, 9 | anbi12d 632 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ↔ (𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿))) | 
| 11 | 3 | fveq2d 6909 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (∟G‘𝑔) = (∟G‘𝐺)) | 
| 12 | 11 | eleq2d 2826 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔) ↔ 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) | 
| 13 | 12 | ralbidv 3177 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔) ↔ ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) | 
| 14 | 13 | rexralbidv 3222 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔) ↔ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) | 
| 15 | 10, 14 | anbi12d 632 | . . . . . 6
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔)) ↔ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺)))) | 
| 16 | 15 | opabbidv 5208 | . . . . 5
⊢ ((𝜑 ∧ 𝑔 = 𝐺) → {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔))} = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))}) | 
| 17 |  | isperp.g | . . . . . 6
⊢ (𝜑 → 𝐺 ∈ TarskiG) | 
| 18 | 17 | elexd 3503 | . . . . 5
⊢ (𝜑 → 𝐺 ∈ V) | 
| 19 | 5 | fvexi 6919 | . . . . . . . 8
⊢ 𝐿 ∈ V | 
| 20 |  | rnexg 7925 | . . . . . . . 8
⊢ (𝐿 ∈ V → ran 𝐿 ∈ V) | 
| 21 | 19, 20 | mp1i 13 | . . . . . . 7
⊢ (𝜑 → ran 𝐿 ∈ V) | 
| 22 | 21, 21 | xpexd 7772 | . . . . . 6
⊢ (𝜑 → (ran 𝐿 × ran 𝐿) ∈ V) | 
| 23 |  | opabssxp 5777 | . . . . . . 7
⊢
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))} ⊆ (ran 𝐿 × ran 𝐿) | 
| 24 | 23 | a1i 11 | . . . . . 6
⊢ (𝜑 → {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))} ⊆ (ran 𝐿 × ran 𝐿)) | 
| 25 | 22, 24 | ssexd 5323 | . . . . 5
⊢ (𝜑 → {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))} ∈ V) | 
| 26 | 2, 16, 18, 25 | fvmptd2 7023 | . . . 4
⊢ (𝜑 → (⟂G‘𝐺) = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))}) | 
| 27 | 26 | eleq2d 2826 | . . 3
⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ (⟂G‘𝐺) ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))})) | 
| 28 | 1, 27 | bitrid 283 | . 2
⊢ (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))})) | 
| 29 |  | isperp.a | . . 3
⊢ (𝜑 → 𝐴 ∈ ran 𝐿) | 
| 30 |  | isperp.b | . . 3
⊢ (𝜑 → 𝐵 ∈ ran 𝐿) | 
| 31 |  | ineq12 4214 | . . . . 5
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝑎 ∩ 𝑏) = (𝐴 ∩ 𝐵)) | 
| 32 |  | simpll 766 | . . . . . 6
⊢ (((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ (𝑎 ∩ 𝑏)) → 𝑎 = 𝐴) | 
| 33 |  | simpllr 775 | . . . . . . 7
⊢ ((((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ (𝑎 ∩ 𝑏)) ∧ 𝑢 ∈ 𝑎) → 𝑏 = 𝐵) | 
| 34 | 33 | raleqdv 3325 | . . . . . 6
⊢ ((((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ (𝑎 ∩ 𝑏)) ∧ 𝑢 ∈ 𝑎) → (∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺) ↔ ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) | 
| 35 | 32, 34 | raleqbidva 3331 | . . . . 5
⊢ (((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ (𝑎 ∩ 𝑏)) → (∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) | 
| 36 | 31, 35 | rexeqbidva 3332 | . . . 4
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺) ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) | 
| 37 | 36 | opelopab2a 5539 | . . 3
⊢ ((𝐴 ∈ ran 𝐿 ∧ 𝐵 ∈ ran 𝐿) → (〈𝐴, 𝐵〉 ∈ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))} ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) | 
| 38 | 29, 30, 37 | syl2anc 584 | . 2
⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran 𝐿 ∧ 𝑏 ∈ ran 𝐿) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))} ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) | 
| 39 | 28, 38 | bitrd 279 | 1
⊢ (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) |