Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-plusg | Structured version Visualization version GIF version |
Description: Define group operation. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form plusgid 16915 instead. (New usage is discouraged.) |
Ref | Expression |
---|---|
df-plusg | ⊢ +g = Slot 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cplusg 16888 | . 2 class +g | |
2 | c2 11958 | . . 3 class 2 | |
3 | 2 | cslot 16810 | . 2 class Slot 2 |
4 | 1, 3 | wceq 1539 | 1 wff +g = Slot 2 |
Colors of variables: wff setvar class |
This definition is referenced by: plusgndx 16914 plusgid 16915 grpstr 16920 grpbaseOLD 16923 grpplusgOLD 16925 oppraddOLD 19787 sraaddgOLD 20359 zlmplusgOLD 20635 znaddOLD 20659 opsrplusgOLD 21165 tngplusgOLD 23707 ttgplusgOLD 27146 resvplusgOLD 31437 hlhilsplusOLD 39884 mnringaddgdOLD 41725 |
Copyright terms: Public domain | W3C validator |