Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-plusg | Structured version Visualization version GIF version |
Description: Define group operation. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form plusgid 16998 instead. (New usage is discouraged.) |
Ref | Expression |
---|---|
df-plusg | ⊢ +g = Slot 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cplusg 16971 | . 2 class +g | |
2 | c2 12037 | . . 3 class 2 | |
3 | 2 | cslot 16891 | . 2 class Slot 2 |
4 | 1, 3 | wceq 1539 | 1 wff +g = Slot 2 |
Colors of variables: wff setvar class |
This definition is referenced by: plusgndx 16997 plusgid 16998 grpstr 17003 grpbaseOLD 17006 grpplusgOLD 17008 oppraddOLD 19881 sraaddgOLD 20453 zlmplusgOLD 20732 znaddOLD 20756 opsrplusgOLD 21264 tngplusgOLD 23810 ttgplusgOLD 27252 resvplusgOLD 31544 hlhilsplusOLD 39964 mnringaddgdOLD 41843 |
Copyright terms: Public domain | W3C validator |