| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ttgplusgOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete proof of ttgplusg 28831 as of 29-Oct-2024. The addition operation of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ttgval.n | ⊢ 𝐺 = (toTG‘𝐻) |
| ttgplusg.1 | ⊢ + = (+g‘𝐻) |
| Ref | Expression |
|---|---|
| ttgplusgOLD | ⊢ + = (+g‘𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ttgplusg.1 | . 2 ⊢ + = (+g‘𝐻) | |
| 2 | ttgval.n | . . 3 ⊢ 𝐺 = (toTG‘𝐻) | |
| 3 | df-plusg 17300 | . . 3 ⊢ +g = Slot 2 | |
| 4 | 2nn 12347 | . . 3 ⊢ 2 ∈ ℕ | |
| 5 | 1nn 12285 | . . . 4 ⊢ 1 ∈ ℕ | |
| 6 | 6nn0 12555 | . . . 4 ⊢ 6 ∈ ℕ0 | |
| 7 | 2nn0 12551 | . . . 4 ⊢ 2 ∈ ℕ0 | |
| 8 | 2lt10 12877 | . . . 4 ⊢ 2 < ;10 | |
| 9 | 5, 6, 7, 8 | declti 12777 | . . 3 ⊢ 2 < ;16 |
| 10 | 2, 3, 4, 9 | ttglemOLD 28828 | . 2 ⊢ (+g‘𝐻) = (+g‘𝐺) |
| 11 | 1, 10 | eqtri 2757 | 1 ⊢ + = (+g‘𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1534 ‘cfv 6558 1c1 11166 2c2 12329 6c6 12333 +gcplusg 17287 toTGcttg 28823 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2102 ax-9 2110 ax-10 2133 ax-11 2150 ax-12 2170 ax-ext 2700 ax-rep 5293 ax-sep 5307 ax-nul 5314 ax-pow 5373 ax-pr 5437 ax-un 7751 ax-cnex 11221 ax-resscn 11222 ax-1cn 11223 ax-icn 11224 ax-addcl 11225 ax-addrcl 11226 ax-mulcl 11227 ax-mulrcl 11228 ax-mulcom 11229 ax-addass 11230 ax-mulass 11231 ax-distr 11232 ax-i2m1 11233 ax-1ne0 11234 ax-1rid 11235 ax-rnegex 11236 ax-rrecex 11237 ax-cnre 11238 ax-pre-lttri 11239 ax-pre-lttrn 11240 ax-pre-ltadd 11241 ax-pre-mulgt0 11242 |
| This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2062 df-mo 2532 df-eu 2561 df-clab 2707 df-cleq 2721 df-clel 2806 df-nfc 2881 df-ne 2934 df-nel 3040 df-ral 3055 df-rex 3064 df-reu 3374 df-rab 3429 df-v 3474 df-sbc 3789 df-csb 3905 df-dif 3962 df-un 3964 df-in 3966 df-ss 3976 df-pss 3979 df-nul 4336 df-if 4537 df-pw 4612 df-sn 4637 df-pr 4639 df-op 4643 df-uni 4919 df-iun 5008 df-br 5157 df-opab 5219 df-mpt 5240 df-tr 5274 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5641 df-we 5643 df-xp 5692 df-rel 5693 df-cnv 5694 df-co 5695 df-dm 5696 df-rn 5697 df-res 5698 df-ima 5699 df-pred 6317 df-ord 6383 df-on 6384 df-lim 6385 df-suc 6386 df-iota 6510 df-fun 6560 df-fn 6561 df-f 6562 df-f1 6563 df-fo 6564 df-f1o 6565 df-fv 6566 df-riota 7386 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7885 df-1st 8011 df-2nd 8012 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8742 df-en 8983 df-dom 8984 df-sdom 8985 df-pnf 11307 df-mnf 11308 df-xr 11309 df-ltxr 11310 df-le 11311 df-sub 11503 df-neg 11504 df-nn 12275 df-2 12337 df-3 12338 df-4 12339 df-5 12340 df-6 12341 df-7 12342 df-8 12343 df-9 12344 df-n0 12535 df-z 12621 df-dec 12740 df-sets 17187 df-slot 17205 df-ndx 17217 df-plusg 17300 df-itv 28385 df-lng 28386 df-ttg 28824 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |