![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > znaddOLD | Structured version Visualization version GIF version |
Description: Obsolete version of znadd 20930 as of 3-Nov-2024. The additive structure of β€/nβ€ is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
znval2.s | β’ π = (RSpanββ€ring) |
znval2.u | β’ π = (β€ring /s (β€ring ~QG (πβ{π}))) |
znval2.y | β’ π = (β€/nβ€βπ) |
Ref | Expression |
---|---|
znaddOLD | β’ (π β β0 β (+gβπ) = (+gβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | znval2.s | . 2 β’ π = (RSpanββ€ring) | |
2 | znval2.u | . 2 β’ π = (β€ring /s (β€ring ~QG (πβ{π}))) | |
3 | znval2.y | . 2 β’ π = (β€/nβ€βπ) | |
4 | df-plusg 17138 | . 2 β’ +g = Slot 2 | |
5 | 2nn 12222 | . 2 β’ 2 β β | |
6 | 2lt10 12752 | . 2 β’ 2 < ;10 | |
7 | 1, 2, 3, 4, 5, 6 | znbaslemOLD 20927 | 1 β’ (π β β0 β (+gβπ) = (+gβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 {csn 4584 βcfv 6493 (class class class)co 7353 2c2 12204 β0cn0 12409 +gcplusg 17125 /s cqus 17379 ~QG cqg 18915 RSpancrsp 20617 β€ringczring 20854 β€/nβ€czn 20888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7668 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 ax-addf 11126 ax-mulf 11127 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-tp 4589 df-op 4591 df-uni 4864 df-iun 4954 df-br 5104 df-opab 5166 df-mpt 5187 df-tr 5221 df-id 5529 df-eprel 5535 df-po 5543 df-so 5544 df-fr 5586 df-we 5588 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6251 df-ord 6318 df-on 6319 df-lim 6320 df-suc 6321 df-iota 6445 df-fun 6495 df-fn 6496 df-f 6497 df-f1 6498 df-fo 6499 df-f1o 6500 df-fv 6501 df-riota 7309 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7799 df-1st 7917 df-2nd 7918 df-frecs 8208 df-wrecs 8239 df-recs 8313 df-rdg 8352 df-1o 8408 df-er 8644 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11187 df-mnf 11188 df-xr 11189 df-ltxr 11190 df-le 11191 df-sub 11383 df-neg 11384 df-nn 12150 df-2 12212 df-3 12213 df-4 12214 df-5 12215 df-6 12216 df-7 12217 df-8 12218 df-9 12219 df-n0 12410 df-z 12496 df-dec 12615 df-uz 12760 df-fz 13417 df-struct 17011 df-sets 17028 df-slot 17046 df-ndx 17058 df-base 17076 df-ress 17105 df-plusg 17138 df-mulr 17139 df-starv 17140 df-tset 17144 df-ple 17145 df-ds 17147 df-unif 17148 df-0g 17315 df-mgm 18489 df-sgrp 18538 df-mnd 18549 df-grp 18743 df-minusg 18744 df-subg 18916 df-cmn 19555 df-mgp 19888 df-ur 19905 df-ring 19952 df-cring 19953 df-subrg 20205 df-cnfld 20782 df-zring 20855 df-zn 20892 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |