| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > plusgid | Structured version Visualization version GIF version | ||
| Description: Utility theorem: index-independent form of df-plusg 17209. (Contributed by NM, 20-Oct-2012.) |
| Ref | Expression |
|---|---|
| plusgid | ⊢ +g = Slot (+g‘ndx) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-plusg 17209 | . 2 ⊢ +g = Slot 2 | |
| 2 | 2nn 12235 | . 2 ⊢ 2 ∈ ℕ | |
| 3 | 1, 2 | ndxid 17143 | 1 ⊢ +g = Slot (+g‘ndx) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ‘cfv 6499 2c2 12217 Slot cslot 17127 ndxcnx 17139 +gcplusg 17196 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-1cn 11102 ax-addcl 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-nn 12163 df-2 12225 df-slot 17128 df-ndx 17140 df-plusg 17209 |
| This theorem is referenced by: grpplusg 17229 ressplusg 17230 rngplusg 17239 srngplusg 17250 lmodplusg 17266 ipsaddg 17277 phlplusg 17287 topgrpplusg 17302 odrngplusg 17344 prdsplusg 17397 imasplusg 17456 frmdplusg 18757 efmndplusg 18783 grpss 18862 oppgplusfval 19256 mgpplusg 20029 oppradd 20229 rmodislmod 20812 sraaddg 21061 mpocnfldadd 21245 cnfldaddOLD 21260 zlmplusg 21404 znadd 21426 psrplusg 21821 opsrplusg 21934 ply1plusgfvi 22102 matplusg 22277 tngplusg 24506 ttgplusg 28781 rlocaddval 33192 resvplusg 33280 idlsrgplusg 33449 bj-endcomp 37278 hlhilsplus 41907 opprmndb 42472 opprgrpb 42473 opprablb 42474 algaddg 43137 mendplusgfval 43143 mnringaddgd 44182 cznabel 48221 cznrng 48222 |
| Copyright terms: Public domain | W3C validator |