MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plusgid Structured version   Visualization version   GIF version

Theorem plusgid 17254
Description: Utility theorem: index-independent form of df-plusg 17240. (Contributed by NM, 20-Oct-2012.)
Assertion
Ref Expression
plusgid +g = Slot (+g‘ndx)

Proof of Theorem plusgid
StepHypRef Expression
1 df-plusg 17240 . 2 +g = Slot 2
2 2nn 12266 . 2 2 ∈ ℕ
31, 2ndxid 17174 1 +g = Slot (+g‘ndx)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cfv 6514  2c2 12248  Slot cslot 17158  ndxcnx 17170  +gcplusg 17227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-1cn 11133  ax-addcl 11135
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-nn 12194  df-2 12256  df-slot 17159  df-ndx 17171  df-plusg 17240
This theorem is referenced by:  grpplusg  17260  ressplusg  17261  rngplusg  17270  srngplusg  17281  lmodplusg  17297  ipsaddg  17308  phlplusg  17318  topgrpplusg  17333  odrngplusg  17375  prdsplusg  17428  imasplusg  17487  frmdplusg  18788  efmndplusg  18814  grpss  18893  oppgplusfval  19287  mgpplusg  20060  oppradd  20260  rmodislmod  20843  sraaddg  21092  mpocnfldadd  21276  cnfldaddOLD  21291  zlmplusg  21435  znadd  21457  psrplusg  21852  opsrplusg  21965  ply1plusgfvi  22133  matplusg  22308  tngplusg  24537  ttgplusg  28812  rlocaddval  33226  resvplusg  33314  idlsrgplusg  33483  bj-endcomp  37312  hlhilsplus  41941  opprmndb  42506  opprgrpb  42507  opprablb  42508  algaddg  43171  mendplusgfval  43177  mnringaddgd  44216  cznabel  48252  cznrng  48253
  Copyright terms: Public domain W3C validator