| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > plusgid | Structured version Visualization version GIF version | ||
| Description: Utility theorem: index-independent form of df-plusg 17282. (Contributed by NM, 20-Oct-2012.) |
| Ref | Expression |
|---|---|
| plusgid | ⊢ +g = Slot (+g‘ndx) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-plusg 17282 | . 2 ⊢ +g = Slot 2 | |
| 2 | 2nn 12311 | . 2 ⊢ 2 ∈ ℕ | |
| 3 | 1, 2 | ndxid 17214 | 1 ⊢ +g = Slot (+g‘ndx) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ‘cfv 6530 2c2 12293 Slot cslot 17198 ndxcnx 17210 +gcplusg 17269 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-1cn 11185 ax-addcl 11187 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-nn 12239 df-2 12301 df-slot 17199 df-ndx 17211 df-plusg 17282 |
| This theorem is referenced by: grpplusg 17302 ressplusg 17303 rngplusg 17312 srngplusg 17323 lmodplusg 17339 ipsaddg 17350 phlplusg 17360 topgrpplusg 17375 odrngplusg 17417 prdsplusg 17470 imasplusg 17529 frmdplusg 18830 efmndplusg 18856 grpss 18935 oppgplusfval 19329 mgpplusg 20102 oppradd 20302 rmodislmod 20885 sraaddg 21134 mpocnfldadd 21318 cnfldaddOLD 21333 zlmplusg 21477 znadd 21499 psrplusg 21894 opsrplusg 22007 ply1plusgfvi 22175 matplusg 22350 tngplusg 24579 ttgplusg 28803 rlocaddval 33209 resvplusg 33297 idlsrgplusg 33466 bj-endcomp 37281 hlhilsplus 41905 opprmndb 42481 opprgrpb 42482 opprablb 42483 algaddg 43146 mendplusgfval 43152 mnringaddgd 44192 cznabel 48183 cznrng 48184 |
| Copyright terms: Public domain | W3C validator |