![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > plusgid | Structured version Visualization version GIF version |
Description: Utility theorem: index-independent form of df-plusg 17324. (Contributed by NM, 20-Oct-2012.) |
Ref | Expression |
---|---|
plusgid | ⊢ +g = Slot (+g‘ndx) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-plusg 17324 | . 2 ⊢ +g = Slot 2 | |
2 | 2nn 12366 | . 2 ⊢ 2 ∈ ℕ | |
3 | 1, 2 | ndxid 17244 | 1 ⊢ +g = Slot (+g‘ndx) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ‘cfv 6573 2c2 12348 Slot cslot 17228 ndxcnx 17240 +gcplusg 17311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-1cn 11242 ax-addcl 11244 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 df-2 12356 df-slot 17229 df-ndx 17241 df-plusg 17324 |
This theorem is referenced by: grpplusg 17347 ressplusg 17349 rngplusg 17359 srngplusg 17370 lmodplusg 17386 ipsaddg 17397 phlplusg 17407 topgrpplusg 17422 odrngplusg 17464 prdsplusg 17518 imasplusg 17577 frmdplusg 18889 efmndplusg 18915 grpss 18994 oppgplusfval 19388 mgpplusg 20165 oppradd 20369 rmodislmod 20950 rmodislmodOLD 20951 sraaddg 21202 mpocnfldadd 21392 cnfldaddOLD 21407 zlmplusg 21554 znadd 21580 psrplusg 21979 opsrplusg 22094 ply1plusgfvi 22264 matplusg 22439 tngplusg 24678 ttgplusg 28907 rlocaddval 33240 resvplusg 33326 idlsrgplusg 33498 bj-endcomp 37283 hlhilsplus 41899 opprmndb 42466 opprgrpb 42467 opprablb 42468 algaddg 43136 mendplusgfval 43142 mnringaddgd 44186 cznabel 47983 cznrng 47984 |
Copyright terms: Public domain | W3C validator |