Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > plusgid | Structured version Visualization version GIF version |
Description: Utility theorem: index-independent form of df-plusg 17052. (Contributed by NM, 20-Oct-2012.) |
Ref | Expression |
---|---|
plusgid | ⊢ +g = Slot (+g‘ndx) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-plusg 17052 | . 2 ⊢ +g = Slot 2 | |
2 | 2nn 12126 | . 2 ⊢ 2 ∈ ℕ | |
3 | 1, 2 | ndxid 16975 | 1 ⊢ +g = Slot (+g‘ndx) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ‘cfv 6466 2c2 12108 Slot cslot 16959 ndxcnx 16971 +gcplusg 17039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-cnex 11007 ax-1cn 11009 ax-addcl 11011 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-ov 7320 df-om 7760 df-2nd 7879 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-nn 12054 df-2 12116 df-slot 16960 df-ndx 16972 df-plusg 17052 |
This theorem is referenced by: grpplusg 17075 ressplusg 17077 rngplusg 17087 srngplusg 17098 lmodplusg 17114 ipsaddg 17125 phlplusg 17135 topgrpplusg 17150 odrngplusg 17192 prdsplusg 17246 imasplusg 17305 frmdplusg 18569 efmndplusg 18595 grpss 18673 oppgplusfval 19028 mgpplusg 19799 oppradd 19946 rmodislmod 20274 rmodislmodOLD 20275 sraaddg 20526 cnfldadd 20685 zlmplusg 20805 znadd 20829 psrplusg 21233 opsrplusg 21337 ply1plusgfvi 21496 matplusg 21644 tngplusg 23883 ttgplusg 27378 resvplusg 31672 idlsrgplusg 31789 bj-endcomp 35560 hlhilsplus 40177 algaddg 41221 mendplusgfval 41227 mnringaddgd 42069 cznabel 45777 cznrng 45778 |
Copyright terms: Public domain | W3C validator |