![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > plusgid | Structured version Visualization version GIF version |
Description: Utility theorem: index-independent form of df-plusg 17310. (Contributed by NM, 20-Oct-2012.) |
Ref | Expression |
---|---|
plusgid | ⊢ +g = Slot (+g‘ndx) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-plusg 17310 | . 2 ⊢ +g = Slot 2 | |
2 | 2nn 12336 | . 2 ⊢ 2 ∈ ℕ | |
3 | 1, 2 | ndxid 17230 | 1 ⊢ +g = Slot (+g‘ndx) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ‘cfv 6562 2c2 12318 Slot cslot 17214 ndxcnx 17226 +gcplusg 17297 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-1cn 11210 ax-addcl 11212 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-nn 12264 df-2 12326 df-slot 17215 df-ndx 17227 df-plusg 17310 |
This theorem is referenced by: grpplusg 17333 ressplusg 17335 rngplusg 17345 srngplusg 17356 lmodplusg 17372 ipsaddg 17383 phlplusg 17393 topgrpplusg 17408 odrngplusg 17450 prdsplusg 17504 imasplusg 17563 frmdplusg 18879 efmndplusg 18905 grpss 18984 oppgplusfval 19378 mgpplusg 20155 oppradd 20359 rmodislmod 20944 rmodislmodOLD 20945 sraaddg 21196 mpocnfldadd 21386 cnfldaddOLD 21401 zlmplusg 21548 znadd 21574 psrplusg 21973 opsrplusg 22088 ply1plusgfvi 22258 matplusg 22433 tngplusg 24672 ttgplusg 28903 rlocaddval 33254 resvplusg 33340 idlsrgplusg 33512 bj-endcomp 37299 hlhilsplus 41924 opprmndb 42497 opprgrpb 42498 opprablb 42499 algaddg 43163 mendplusgfval 43169 mnringaddgd 44212 cznabel 48103 cznrng 48104 |
Copyright terms: Public domain | W3C validator |