Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > plusgid | Structured version Visualization version GIF version |
Description: Utility theorem: index-independent form of df-plusg 17020. (Contributed by NM, 20-Oct-2012.) |
Ref | Expression |
---|---|
plusgid | ⊢ +g = Slot (+g‘ndx) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-plusg 17020 | . 2 ⊢ +g = Slot 2 | |
2 | 2nn 12092 | . 2 ⊢ 2 ∈ ℕ | |
3 | 1, 2 | ndxid 16943 | 1 ⊢ +g = Slot (+g‘ndx) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ‘cfv 6458 2c2 12074 Slot cslot 16927 ndxcnx 16939 +gcplusg 17007 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-1cn 10975 ax-addcl 10977 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-nn 12020 df-2 12082 df-slot 16928 df-ndx 16940 df-plusg 17020 |
This theorem is referenced by: grpplusg 17043 ressplusg 17045 rngplusg 17055 srngplusg 17066 lmodplusg 17082 ipsaddg 17093 phlplusg 17103 topgrpplusg 17118 odrngplusg 17160 prdsplusg 17214 imasplusg 17273 frmdplusg 18538 efmndplusg 18564 grpss 18642 oppgplusfval 18997 mgpplusg 19769 oppradd 19916 rmodislmod 20236 rmodislmodOLD 20237 sraaddg 20488 cnfldadd 20647 zlmplusg 20767 znadd 20791 psrplusg 21195 opsrplusg 21299 ply1plusgfvi 21458 matplusg 21606 tngplusg 23845 ttgplusg 27287 resvplusg 31579 idlsrgplusg 31695 bj-endcomp 35532 hlhilsplus 39998 algaddg 41042 mendplusgfval 41048 mnringaddgd 41873 cznabel 45570 cznrng 45571 |
Copyright terms: Public domain | W3C validator |