Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnringaddgdOLD Structured version   Visualization version   GIF version

Theorem mnringaddgdOLD 41698
Description: Obsolete version of mnringaddgd 41697 as of 1-Nov-2024. The additive operation of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
mnringaddgd.1 𝐹 = (𝑅 MndRing 𝑀)
mnringaddgd.2 𝐴 = (Base‘𝑀)
mnringaddgd.3 𝑉 = (𝑅 freeLMod 𝐴)
mnringaddgd.4 (𝜑𝑅𝑈)
mnringaddgd.5 (𝜑𝑀𝑊)
Assertion
Ref Expression
mnringaddgdOLD (𝜑 → (+g𝑉) = (+g𝐹))

Proof of Theorem mnringaddgdOLD
StepHypRef Expression
1 mnringaddgd.1 . 2 𝐹 = (𝑅 MndRing 𝑀)
2 df-plusg 16876 . 2 +g = Slot 2
3 2nn 11951 . 2 2 ∈ ℕ
4 2re 11952 . . . 4 2 ∈ ℝ
5 2lt3 12050 . . . 4 2 < 3
64, 5ltneii 10993 . . 3 2 ≠ 3
7 mulrndx 16904 . . 3 (.r‘ndx) = 3
86, 7neeqtrri 3017 . 2 2 ≠ (.r‘ndx)
9 mnringaddgd.2 . 2 𝐴 = (Base‘𝑀)
10 mnringaddgd.3 . 2 𝑉 = (𝑅 freeLMod 𝐴)
11 mnringaddgd.4 . 2 (𝜑𝑅𝑈)
12 mnringaddgd.5 . 2 (𝜑𝑀𝑊)
131, 2, 3, 8, 9, 10, 11, 12mnringnmulrdOLD 41690 1 (𝜑 → (+g𝑉) = (+g𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2112  cfv 6415  (class class class)co 7252  2c2 11933  3c3 11934  ndxcnx 16797  Basecbs 16815  +gcplusg 16863  .rcmulr 16864   freeLMod cfrlm 20838   MndRing cmnring 41686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5216  ax-nul 5223  ax-pow 5282  ax-pr 5346  ax-un 7563  ax-cnex 10833  ax-resscn 10834  ax-1cn 10835  ax-icn 10836  ax-addcl 10837  ax-addrcl 10838  ax-mulcl 10839  ax-mulrcl 10840  ax-mulcom 10841  ax-addass 10842  ax-mulass 10843  ax-distr 10844  ax-i2m1 10845  ax-1ne0 10846  ax-1rid 10847  ax-rnegex 10848  ax-rrecex 10849  ax-cnre 10850  ax-pre-lttri 10851  ax-pre-lttrn 10852  ax-pre-ltadd 10853  ax-pre-mulgt0 10854
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3425  df-sbc 3713  df-csb 3830  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5153  df-tr 5186  df-id 5479  df-eprel 5485  df-po 5493  df-so 5494  df-fr 5534  df-we 5536  df-xp 5585  df-rel 5586  df-cnv 5587  df-co 5588  df-dm 5589  df-rn 5590  df-res 5591  df-ima 5592  df-pred 6189  df-ord 6251  df-on 6252  df-lim 6253  df-suc 6254  df-iota 6373  df-fun 6417  df-fn 6418  df-f 6419  df-f1 6420  df-fo 6421  df-f1o 6422  df-fv 6423  df-riota 7209  df-ov 7255  df-oprab 7256  df-mpo 7257  df-om 7685  df-wrecs 8089  df-recs 8150  df-rdg 8188  df-er 8433  df-en 8669  df-dom 8670  df-sdom 8671  df-pnf 10917  df-mnf 10918  df-xr 10919  df-ltxr 10920  df-le 10921  df-sub 11112  df-neg 11113  df-nn 11879  df-2 11941  df-3 11942  df-sets 16768  df-slot 16786  df-ndx 16798  df-plusg 16876  df-mulr 16877  df-mnring 41687
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator