| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-r | Structured version Visualization version GIF version | ||
| Description: Define the set of real numbers. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-r | ⊢ ℝ = (R × {0R}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cr 11154 | . 2 class ℝ | |
| 2 | cnr 10905 | . . 3 class R | |
| 3 | c0r 10906 | . . . 4 class 0R | |
| 4 | 3 | csn 4626 | . . 3 class {0R} |
| 5 | 2, 4 | cxp 5683 | . 2 class (R × {0R}) |
| 6 | 1, 5 | wceq 1540 | 1 wff ℝ = (R × {0R}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: opelreal 11170 elreal 11171 elreal2 11172 axresscn 11188 ax1rid 11201 avril1 30482 |
| Copyright terms: Public domain | W3C validator |