Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-r | Structured version Visualization version GIF version |
Description: Define the set of real numbers. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-r | ⊢ ℝ = (R × {0R}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cr 10870 | . 2 class ℝ | |
2 | cnr 10621 | . . 3 class R | |
3 | c0r 10622 | . . . 4 class 0R | |
4 | 3 | csn 4561 | . . 3 class {0R} |
5 | 2, 4 | cxp 5587 | . 2 class (R × {0R}) |
6 | 1, 5 | wceq 1539 | 1 wff ℝ = (R × {0R}) |
Colors of variables: wff setvar class |
This definition is referenced by: opelreal 10886 elreal 10887 elreal2 10888 axresscn 10904 ax1rid 10917 avril1 28827 |
Copyright terms: Public domain | W3C validator |