| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-r | Structured version Visualization version GIF version | ||
| Description: Define the set of real numbers. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-r | ⊢ ℝ = (R × {0R}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cr 11128 | . 2 class ℝ | |
| 2 | cnr 10879 | . . 3 class R | |
| 3 | c0r 10880 | . . . 4 class 0R | |
| 4 | 3 | csn 4601 | . . 3 class {0R} |
| 5 | 2, 4 | cxp 5652 | . 2 class (R × {0R}) |
| 6 | 1, 5 | wceq 1540 | 1 wff ℝ = (R × {0R}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: opelreal 11144 elreal 11145 elreal2 11146 axresscn 11162 ax1rid 11175 avril1 30444 |
| Copyright terms: Public domain | W3C validator |