| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > avril1 | Structured version Visualization version GIF version | ||
| Description: Poisson d'Avril's
Theorem. This theorem is noted for its
Selbstdokumentieren property, which means, literally,
"self-documenting" and recalls the principle of quidquid
german dictum
sit, altum viditur, often used in set theory. Starting with the
seemingly simple yet profound fact that any object 𝑥 equals
itself
(proved by Tarski in 1965; see Lemma 6 of [Tarski] p. 68), we
demonstrate that the power set of the real numbers, as a relation on the
value of the imaginary unit, does not conjoin with an empty relation on
the product of the additive and multiplicative identity elements,
leading to this startling conclusion that has left even seasoned
professional mathematicians scratching their heads. (Contributed by
Prof. Loof Lirpa, 1-Apr-2005.) (Proof modification is discouraged.)
(New usage is discouraged.)
A reply to skeptics can be found at mmnotes.txt, under the 1-Apr-2006 entry. |
| Ref | Expression |
|---|---|
| avril1 | ⊢ ¬ (𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equid 2012 | . . . . . . . 8 ⊢ 𝑥 = 𝑥 | |
| 2 | dfnul2 4289 | . . . . . . . . . 10 ⊢ ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥} | |
| 3 | 2 | eqabri 2871 | . . . . . . . . 9 ⊢ (𝑥 ∈ ∅ ↔ ¬ 𝑥 = 𝑥) |
| 4 | 3 | con2bii 357 | . . . . . . . 8 ⊢ (𝑥 = 𝑥 ↔ ¬ 𝑥 ∈ ∅) |
| 5 | 1, 4 | mpbi 230 | . . . . . . 7 ⊢ ¬ 𝑥 ∈ ∅ |
| 6 | eleq1 2816 | . . . . . . 7 ⊢ (𝑥 = 〈𝐹, 0〉 → (𝑥 ∈ ∅ ↔ 〈𝐹, 0〉 ∈ ∅)) | |
| 7 | 5, 6 | mtbii 326 | . . . . . 6 ⊢ (𝑥 = 〈𝐹, 0〉 → ¬ 〈𝐹, 0〉 ∈ ∅) |
| 8 | 7 | vtocleg 3510 | . . . . 5 ⊢ (〈𝐹, 0〉 ∈ V → ¬ 〈𝐹, 0〉 ∈ ∅) |
| 9 | elex 3459 | . . . . . 6 ⊢ (〈𝐹, 0〉 ∈ ∅ → 〈𝐹, 0〉 ∈ V) | |
| 10 | 9 | con3i 154 | . . . . 5 ⊢ (¬ 〈𝐹, 0〉 ∈ V → ¬ 〈𝐹, 0〉 ∈ ∅) |
| 11 | 8, 10 | pm2.61i 182 | . . . 4 ⊢ ¬ 〈𝐹, 0〉 ∈ ∅ |
| 12 | df-br 5096 | . . . . 5 ⊢ (𝐹∅(0 · 1) ↔ 〈𝐹, (0 · 1)〉 ∈ ∅) | |
| 13 | 0cn 11126 | . . . . . . . 8 ⊢ 0 ∈ ℂ | |
| 14 | 13 | mulridi 11138 | . . . . . . 7 ⊢ (0 · 1) = 0 |
| 15 | 14 | opeq2i 4831 | . . . . . 6 ⊢ 〈𝐹, (0 · 1)〉 = 〈𝐹, 0〉 |
| 16 | 15 | eleq1i 2819 | . . . . 5 ⊢ (〈𝐹, (0 · 1)〉 ∈ ∅ ↔ 〈𝐹, 0〉 ∈ ∅) |
| 17 | 12, 16 | bitri 275 | . . . 4 ⊢ (𝐹∅(0 · 1) ↔ 〈𝐹, 0〉 ∈ ∅) |
| 18 | 11, 17 | mtbir 323 | . . 3 ⊢ ¬ 𝐹∅(0 · 1) |
| 19 | 18 | intnan 486 | . 2 ⊢ ¬ (𝐴𝒫 (R × {0R})(℩𝑦1〈0R, 1R〉𝑦) ∧ 𝐹∅(0 · 1)) |
| 20 | df-i 11037 | . . . . . . . 8 ⊢ i = 〈0R, 1R〉 | |
| 21 | 20 | fveq1i 6827 | . . . . . . 7 ⊢ (i‘1) = (〈0R, 1R〉‘1) |
| 22 | df-fv 6494 | . . . . . . 7 ⊢ (〈0R, 1R〉‘1) = (℩𝑦1〈0R, 1R〉𝑦) | |
| 23 | 21, 22 | eqtri 2752 | . . . . . 6 ⊢ (i‘1) = (℩𝑦1〈0R, 1R〉𝑦) |
| 24 | 23 | breq2i 5103 | . . . . 5 ⊢ (𝐴𝒫 ℝ(i‘1) ↔ 𝐴𝒫 ℝ(℩𝑦1〈0R, 1R〉𝑦)) |
| 25 | df-r 11038 | . . . . . . 7 ⊢ ℝ = (R × {0R}) | |
| 26 | sseq2 3964 | . . . . . . . . 9 ⊢ (ℝ = (R × {0R}) → (𝑧 ⊆ ℝ ↔ 𝑧 ⊆ (R × {0R}))) | |
| 27 | 26 | abbidv 2795 | . . . . . . . 8 ⊢ (ℝ = (R × {0R}) → {𝑧 ∣ 𝑧 ⊆ ℝ} = {𝑧 ∣ 𝑧 ⊆ (R × {0R})}) |
| 28 | df-pw 4555 | . . . . . . . 8 ⊢ 𝒫 ℝ = {𝑧 ∣ 𝑧 ⊆ ℝ} | |
| 29 | df-pw 4555 | . . . . . . . 8 ⊢ 𝒫 (R × {0R}) = {𝑧 ∣ 𝑧 ⊆ (R × {0R})} | |
| 30 | 27, 28, 29 | 3eqtr4g 2789 | . . . . . . 7 ⊢ (ℝ = (R × {0R}) → 𝒫 ℝ = 𝒫 (R × {0R})) |
| 31 | 25, 30 | ax-mp 5 | . . . . . 6 ⊢ 𝒫 ℝ = 𝒫 (R × {0R}) |
| 32 | 31 | breqi 5101 | . . . . 5 ⊢ (𝐴𝒫 ℝ(℩𝑦1〈0R, 1R〉𝑦) ↔ 𝐴𝒫 (R × {0R})(℩𝑦1〈0R, 1R〉𝑦)) |
| 33 | 24, 32 | bitri 275 | . . . 4 ⊢ (𝐴𝒫 ℝ(i‘1) ↔ 𝐴𝒫 (R × {0R})(℩𝑦1〈0R, 1R〉𝑦)) |
| 34 | 33 | anbi1i 624 | . . 3 ⊢ ((𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1)) ↔ (𝐴𝒫 (R × {0R})(℩𝑦1〈0R, 1R〉𝑦) ∧ 𝐹∅(0 · 1))) |
| 35 | 34 | notbii 320 | . 2 ⊢ (¬ (𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1)) ↔ ¬ (𝐴𝒫 (R × {0R})(℩𝑦1〈0R, 1R〉𝑦) ∧ 𝐹∅(0 · 1))) |
| 36 | 19, 35 | mpbir 231 | 1 ⊢ ¬ (𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 Vcvv 3438 ⊆ wss 3905 ∅c0 4286 𝒫 cpw 4553 {csn 4579 〈cop 4585 class class class wbr 5095 × cxp 5621 ℩cio 6440 ‘cfv 6486 (class class class)co 7353 Rcnr 10778 0Rc0r 10779 1Rc1r 10780 ℝcr 11027 0cc0 11028 1c1 11029 ici 11030 · cmul 11033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-mulcl 11090 ax-mulcom 11092 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1rid 11098 ax-cnre 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-i 11037 df-r 11038 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |