MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  avril1 Structured version   Visualization version   GIF version

Theorem avril1 30482
Description: Poisson d'Avril's Theorem. This theorem is noted for its Selbstdokumentieren property, which means, literally, "self-documenting" and recalls the principle of quidquid german dictum sit, altum viditur, often used in set theory. Starting with the seemingly simple yet profound fact that any object 𝑥 equals itself (proved by Tarski in 1965; see Lemma 6 of [Tarski] p. 68), we demonstrate that the power set of the real numbers, as a relation on the value of the imaginary unit, does not conjoin with an empty relation on the product of the additive and multiplicative identity elements, leading to this startling conclusion that has left even seasoned professional mathematicians scratching their heads. (Contributed by Prof. Loof Lirpa, 1-Apr-2005.) (Proof modification is discouraged.) (New usage is discouraged.)

A reply to skeptics can be found at mmnotes.txt, under the 1-Apr-2006 entry.

Assertion
Ref Expression
avril1 ¬ (𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1))

Proof of Theorem avril1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 equid 2011 . . . . . . . 8 𝑥 = 𝑥
2 dfnul2 4336 . . . . . . . . . 10 ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥}
32eqabri 2885 . . . . . . . . 9 (𝑥 ∈ ∅ ↔ ¬ 𝑥 = 𝑥)
43con2bii 357 . . . . . . . 8 (𝑥 = 𝑥 ↔ ¬ 𝑥 ∈ ∅)
51, 4mpbi 230 . . . . . . 7 ¬ 𝑥 ∈ ∅
6 eleq1 2829 . . . . . . 7 (𝑥 = ⟨𝐹, 0⟩ → (𝑥 ∈ ∅ ↔ ⟨𝐹, 0⟩ ∈ ∅))
75, 6mtbii 326 . . . . . 6 (𝑥 = ⟨𝐹, 0⟩ → ¬ ⟨𝐹, 0⟩ ∈ ∅)
87vtocleg 3553 . . . . 5 (⟨𝐹, 0⟩ ∈ V → ¬ ⟨𝐹, 0⟩ ∈ ∅)
9 elex 3501 . . . . . 6 (⟨𝐹, 0⟩ ∈ ∅ → ⟨𝐹, 0⟩ ∈ V)
109con3i 154 . . . . 5 (¬ ⟨𝐹, 0⟩ ∈ V → ¬ ⟨𝐹, 0⟩ ∈ ∅)
118, 10pm2.61i 182 . . . 4 ¬ ⟨𝐹, 0⟩ ∈ ∅
12 df-br 5144 . . . . 5 (𝐹∅(0 · 1) ↔ ⟨𝐹, (0 · 1)⟩ ∈ ∅)
13 0cn 11253 . . . . . . . 8 0 ∈ ℂ
1413mulridi 11265 . . . . . . 7 (0 · 1) = 0
1514opeq2i 4877 . . . . . 6 𝐹, (0 · 1)⟩ = ⟨𝐹, 0⟩
1615eleq1i 2832 . . . . 5 (⟨𝐹, (0 · 1)⟩ ∈ ∅ ↔ ⟨𝐹, 0⟩ ∈ ∅)
1712, 16bitri 275 . . . 4 (𝐹∅(0 · 1) ↔ ⟨𝐹, 0⟩ ∈ ∅)
1811, 17mtbir 323 . . 3 ¬ 𝐹∅(0 · 1)
1918intnan 486 . 2 ¬ (𝐴𝒫 (R × {0R})(℩𝑦1⟨0R, 1R𝑦) ∧ 𝐹∅(0 · 1))
20 df-i 11164 . . . . . . . 8 i = ⟨0R, 1R
2120fveq1i 6907 . . . . . . 7 (i‘1) = (⟨0R, 1R⟩‘1)
22 df-fv 6569 . . . . . . 7 (⟨0R, 1R⟩‘1) = (℩𝑦1⟨0R, 1R𝑦)
2321, 22eqtri 2765 . . . . . 6 (i‘1) = (℩𝑦1⟨0R, 1R𝑦)
2423breq2i 5151 . . . . 5 (𝐴𝒫 ℝ(i‘1) ↔ 𝐴𝒫 ℝ(℩𝑦1⟨0R, 1R𝑦))
25 df-r 11165 . . . . . . 7 ℝ = (R × {0R})
26 sseq2 4010 . . . . . . . . 9 (ℝ = (R × {0R}) → (𝑧 ⊆ ℝ ↔ 𝑧 ⊆ (R × {0R})))
2726abbidv 2808 . . . . . . . 8 (ℝ = (R × {0R}) → {𝑧𝑧 ⊆ ℝ} = {𝑧𝑧 ⊆ (R × {0R})})
28 df-pw 4602 . . . . . . . 8 𝒫 ℝ = {𝑧𝑧 ⊆ ℝ}
29 df-pw 4602 . . . . . . . 8 𝒫 (R × {0R}) = {𝑧𝑧 ⊆ (R × {0R})}
3027, 28, 293eqtr4g 2802 . . . . . . 7 (ℝ = (R × {0R}) → 𝒫 ℝ = 𝒫 (R × {0R}))
3125, 30ax-mp 5 . . . . . 6 𝒫 ℝ = 𝒫 (R × {0R})
3231breqi 5149 . . . . 5 (𝐴𝒫 ℝ(℩𝑦1⟨0R, 1R𝑦) ↔ 𝐴𝒫 (R × {0R})(℩𝑦1⟨0R, 1R𝑦))
3324, 32bitri 275 . . . 4 (𝐴𝒫 ℝ(i‘1) ↔ 𝐴𝒫 (R × {0R})(℩𝑦1⟨0R, 1R𝑦))
3433anbi1i 624 . . 3 ((𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1)) ↔ (𝐴𝒫 (R × {0R})(℩𝑦1⟨0R, 1R𝑦) ∧ 𝐹∅(0 · 1)))
3534notbii 320 . 2 (¬ (𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1)) ↔ ¬ (𝐴𝒫 (R × {0R})(℩𝑦1⟨0R, 1R𝑦) ∧ 𝐹∅(0 · 1)))
3619, 35mpbir 231 1 ¬ (𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2108  {cab 2714  Vcvv 3480  wss 3951  c0 4333  𝒫 cpw 4600  {csn 4626  cop 4632   class class class wbr 5143   × cxp 5683  cio 6512  cfv 6561  (class class class)co 7431  Rcnr 10905  0Rc0r 10906  1Rc1r 10907  cr 11154  0cc0 11155  1c1 11156  ici 11157   · cmul 11160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2177  ax-ext 2708  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-mulcl 11217  ax-mulcom 11219  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1rid 11225  ax-cnre 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-iota 6514  df-fv 6569  df-ov 7434  df-i 11164  df-r 11165
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator