![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > avril1 | Structured version Visualization version GIF version |
Description: Poisson d'Avril's
Theorem. This theorem is noted for its
Selbstdokumentieren property, which means, literally,
"self-documenting" and recalls the principle of quidquid
german dictum
sit, altum viditur, often used in set theory. Starting with the
seemingly simple yet profound fact that any object 𝑥 equals
itself
(proved by Tarski in 1965; see Lemma 6 of [Tarski] p. 68), we
demonstrate that the power set of the real numbers, as a relation on the
value of the imaginary unit, does not conjoin with an empty relation on
the product of the additive and multiplicative identity elements,
leading to this startling conclusion that has left even seasoned
professional mathematicians scratching their heads. (Contributed by
Prof. Loof Lirpa, 1-Apr-2005.) (Proof modification is discouraged.)
(New usage is discouraged.)
A reply to skeptics can be found at mmnotes.txt, under the 1-Apr-2006 entry. |
Ref | Expression |
---|---|
avril1 | ⊢ ¬ (𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equid 1970 | . . . . . . . 8 ⊢ 𝑥 = 𝑥 | |
2 | dfnul2 4174 | . . . . . . . . . 10 ⊢ ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥} | |
3 | 2 | abeq2i 2893 | . . . . . . . . 9 ⊢ (𝑥 ∈ ∅ ↔ ¬ 𝑥 = 𝑥) |
4 | 3 | con2bii 350 | . . . . . . . 8 ⊢ (𝑥 = 𝑥 ↔ ¬ 𝑥 ∈ ∅) |
5 | 1, 4 | mpbi 222 | . . . . . . 7 ⊢ ¬ 𝑥 ∈ ∅ |
6 | eleq1 2846 | . . . . . . 7 ⊢ (𝑥 = 〈𝐹, 0〉 → (𝑥 ∈ ∅ ↔ 〈𝐹, 0〉 ∈ ∅)) | |
7 | 5, 6 | mtbii 318 | . . . . . 6 ⊢ (𝑥 = 〈𝐹, 0〉 → ¬ 〈𝐹, 0〉 ∈ ∅) |
8 | 7 | vtocleg 3493 | . . . . 5 ⊢ (〈𝐹, 0〉 ∈ V → ¬ 〈𝐹, 0〉 ∈ ∅) |
9 | elex 3426 | . . . . . 6 ⊢ (〈𝐹, 0〉 ∈ ∅ → 〈𝐹, 0〉 ∈ V) | |
10 | 9 | con3i 152 | . . . . 5 ⊢ (¬ 〈𝐹, 0〉 ∈ V → ¬ 〈𝐹, 0〉 ∈ ∅) |
11 | 8, 10 | pm2.61i 177 | . . . 4 ⊢ ¬ 〈𝐹, 0〉 ∈ ∅ |
12 | df-br 4926 | . . . . 5 ⊢ (𝐹∅(0 · 1) ↔ 〈𝐹, (0 · 1)〉 ∈ ∅) | |
13 | 0cn 10429 | . . . . . . . 8 ⊢ 0 ∈ ℂ | |
14 | 13 | mulid1i 10442 | . . . . . . 7 ⊢ (0 · 1) = 0 |
15 | 14 | opeq2i 4677 | . . . . . 6 ⊢ 〈𝐹, (0 · 1)〉 = 〈𝐹, 0〉 |
16 | 15 | eleq1i 2849 | . . . . 5 ⊢ (〈𝐹, (0 · 1)〉 ∈ ∅ ↔ 〈𝐹, 0〉 ∈ ∅) |
17 | 12, 16 | bitri 267 | . . . 4 ⊢ (𝐹∅(0 · 1) ↔ 〈𝐹, 0〉 ∈ ∅) |
18 | 11, 17 | mtbir 315 | . . 3 ⊢ ¬ 𝐹∅(0 · 1) |
19 | 18 | intnan 479 | . 2 ⊢ ¬ (𝐴𝒫 (R × {0R})(℩𝑦1〈0R, 1R〉𝑦) ∧ 𝐹∅(0 · 1)) |
20 | df-i 10342 | . . . . . . . 8 ⊢ i = 〈0R, 1R〉 | |
21 | 20 | fveq1i 6497 | . . . . . . 7 ⊢ (i‘1) = (〈0R, 1R〉‘1) |
22 | df-fv 6193 | . . . . . . 7 ⊢ (〈0R, 1R〉‘1) = (℩𝑦1〈0R, 1R〉𝑦) | |
23 | 21, 22 | eqtri 2795 | . . . . . 6 ⊢ (i‘1) = (℩𝑦1〈0R, 1R〉𝑦) |
24 | 23 | breq2i 4933 | . . . . 5 ⊢ (𝐴𝒫 ℝ(i‘1) ↔ 𝐴𝒫 ℝ(℩𝑦1〈0R, 1R〉𝑦)) |
25 | df-r 10343 | . . . . . . 7 ⊢ ℝ = (R × {0R}) | |
26 | sseq2 3876 | . . . . . . . . 9 ⊢ (ℝ = (R × {0R}) → (𝑧 ⊆ ℝ ↔ 𝑧 ⊆ (R × {0R}))) | |
27 | 26 | abbidv 2836 | . . . . . . . 8 ⊢ (ℝ = (R × {0R}) → {𝑧 ∣ 𝑧 ⊆ ℝ} = {𝑧 ∣ 𝑧 ⊆ (R × {0R})}) |
28 | df-pw 4418 | . . . . . . . 8 ⊢ 𝒫 ℝ = {𝑧 ∣ 𝑧 ⊆ ℝ} | |
29 | df-pw 4418 | . . . . . . . 8 ⊢ 𝒫 (R × {0R}) = {𝑧 ∣ 𝑧 ⊆ (R × {0R})} | |
30 | 27, 28, 29 | 3eqtr4g 2832 | . . . . . . 7 ⊢ (ℝ = (R × {0R}) → 𝒫 ℝ = 𝒫 (R × {0R})) |
31 | 25, 30 | ax-mp 5 | . . . . . 6 ⊢ 𝒫 ℝ = 𝒫 (R × {0R}) |
32 | 31 | breqi 4931 | . . . . 5 ⊢ (𝐴𝒫 ℝ(℩𝑦1〈0R, 1R〉𝑦) ↔ 𝐴𝒫 (R × {0R})(℩𝑦1〈0R, 1R〉𝑦)) |
33 | 24, 32 | bitri 267 | . . . 4 ⊢ (𝐴𝒫 ℝ(i‘1) ↔ 𝐴𝒫 (R × {0R})(℩𝑦1〈0R, 1R〉𝑦)) |
34 | 33 | anbi1i 615 | . . 3 ⊢ ((𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1)) ↔ (𝐴𝒫 (R × {0R})(℩𝑦1〈0R, 1R〉𝑦) ∧ 𝐹∅(0 · 1))) |
35 | 34 | notbii 312 | . 2 ⊢ (¬ (𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1)) ↔ ¬ (𝐴𝒫 (R × {0R})(℩𝑦1〈0R, 1R〉𝑦) ∧ 𝐹∅(0 · 1))) |
36 | 19, 35 | mpbir 223 | 1 ⊢ ¬ (𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 387 = wceq 1508 ∈ wcel 2051 {cab 2751 Vcvv 3408 ⊆ wss 3822 ∅c0 4172 𝒫 cpw 4416 {csn 4435 〈cop 4441 class class class wbr 4925 × cxp 5401 ℩cio 6147 ‘cfv 6185 (class class class)co 6974 Rcnr 10083 0Rc0r 10084 1Rc1r 10085 ℝcr 10332 0cc0 10333 1c1 10334 ici 10335 · cmul 10338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-ext 2743 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-mulcl 10395 ax-mulcom 10397 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1rid 10403 ax-cnre 10406 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ral 3086 df-rex 3087 df-rab 3090 df-v 3410 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-br 4926 df-iota 6149 df-fv 6193 df-ov 6977 df-i 10342 df-r 10343 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |