| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > avril1 | Structured version Visualization version GIF version | ||
| Description: Poisson d'Avril's
Theorem. This theorem is noted for its
Selbstdokumentieren property, which means, literally,
"self-documenting" and recalls the principle of quidquid
german dictum
sit, altum viditur, often used in set theory. Starting with the
seemingly simple yet profound fact that any object 𝑥 equals
itself
(proved by Tarski in 1965; see Lemma 6 of [Tarski] p. 68), we
demonstrate that the power set of the real numbers, as a relation on the
value of the imaginary unit, does not conjoin with an empty relation on
the product of the additive and multiplicative identity elements,
leading to this startling conclusion that has left even seasoned
professional mathematicians scratching their heads. (Contributed by
Prof. Loof Lirpa, 1-Apr-2005.) (Proof modification is discouraged.)
(New usage is discouraged.)
A reply to skeptics can be found at mmnotes.txt, under the 1-Apr-2006 entry. |
| Ref | Expression |
|---|---|
| avril1 | ⊢ ¬ (𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equid 2012 | . . . . . . . 8 ⊢ 𝑥 = 𝑥 | |
| 2 | dfnul2 4302 | . . . . . . . . . 10 ⊢ ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥} | |
| 3 | 2 | eqabri 2872 | . . . . . . . . 9 ⊢ (𝑥 ∈ ∅ ↔ ¬ 𝑥 = 𝑥) |
| 4 | 3 | con2bii 357 | . . . . . . . 8 ⊢ (𝑥 = 𝑥 ↔ ¬ 𝑥 ∈ ∅) |
| 5 | 1, 4 | mpbi 230 | . . . . . . 7 ⊢ ¬ 𝑥 ∈ ∅ |
| 6 | eleq1 2817 | . . . . . . 7 ⊢ (𝑥 = 〈𝐹, 0〉 → (𝑥 ∈ ∅ ↔ 〈𝐹, 0〉 ∈ ∅)) | |
| 7 | 5, 6 | mtbii 326 | . . . . . 6 ⊢ (𝑥 = 〈𝐹, 0〉 → ¬ 〈𝐹, 0〉 ∈ ∅) |
| 8 | 7 | vtocleg 3522 | . . . . 5 ⊢ (〈𝐹, 0〉 ∈ V → ¬ 〈𝐹, 0〉 ∈ ∅) |
| 9 | elex 3471 | . . . . . 6 ⊢ (〈𝐹, 0〉 ∈ ∅ → 〈𝐹, 0〉 ∈ V) | |
| 10 | 9 | con3i 154 | . . . . 5 ⊢ (¬ 〈𝐹, 0〉 ∈ V → ¬ 〈𝐹, 0〉 ∈ ∅) |
| 11 | 8, 10 | pm2.61i 182 | . . . 4 ⊢ ¬ 〈𝐹, 0〉 ∈ ∅ |
| 12 | df-br 5111 | . . . . 5 ⊢ (𝐹∅(0 · 1) ↔ 〈𝐹, (0 · 1)〉 ∈ ∅) | |
| 13 | 0cn 11173 | . . . . . . . 8 ⊢ 0 ∈ ℂ | |
| 14 | 13 | mulridi 11185 | . . . . . . 7 ⊢ (0 · 1) = 0 |
| 15 | 14 | opeq2i 4844 | . . . . . 6 ⊢ 〈𝐹, (0 · 1)〉 = 〈𝐹, 0〉 |
| 16 | 15 | eleq1i 2820 | . . . . 5 ⊢ (〈𝐹, (0 · 1)〉 ∈ ∅ ↔ 〈𝐹, 0〉 ∈ ∅) |
| 17 | 12, 16 | bitri 275 | . . . 4 ⊢ (𝐹∅(0 · 1) ↔ 〈𝐹, 0〉 ∈ ∅) |
| 18 | 11, 17 | mtbir 323 | . . 3 ⊢ ¬ 𝐹∅(0 · 1) |
| 19 | 18 | intnan 486 | . 2 ⊢ ¬ (𝐴𝒫 (R × {0R})(℩𝑦1〈0R, 1R〉𝑦) ∧ 𝐹∅(0 · 1)) |
| 20 | df-i 11084 | . . . . . . . 8 ⊢ i = 〈0R, 1R〉 | |
| 21 | 20 | fveq1i 6862 | . . . . . . 7 ⊢ (i‘1) = (〈0R, 1R〉‘1) |
| 22 | df-fv 6522 | . . . . . . 7 ⊢ (〈0R, 1R〉‘1) = (℩𝑦1〈0R, 1R〉𝑦) | |
| 23 | 21, 22 | eqtri 2753 | . . . . . 6 ⊢ (i‘1) = (℩𝑦1〈0R, 1R〉𝑦) |
| 24 | 23 | breq2i 5118 | . . . . 5 ⊢ (𝐴𝒫 ℝ(i‘1) ↔ 𝐴𝒫 ℝ(℩𝑦1〈0R, 1R〉𝑦)) |
| 25 | df-r 11085 | . . . . . . 7 ⊢ ℝ = (R × {0R}) | |
| 26 | sseq2 3976 | . . . . . . . . 9 ⊢ (ℝ = (R × {0R}) → (𝑧 ⊆ ℝ ↔ 𝑧 ⊆ (R × {0R}))) | |
| 27 | 26 | abbidv 2796 | . . . . . . . 8 ⊢ (ℝ = (R × {0R}) → {𝑧 ∣ 𝑧 ⊆ ℝ} = {𝑧 ∣ 𝑧 ⊆ (R × {0R})}) |
| 28 | df-pw 4568 | . . . . . . . 8 ⊢ 𝒫 ℝ = {𝑧 ∣ 𝑧 ⊆ ℝ} | |
| 29 | df-pw 4568 | . . . . . . . 8 ⊢ 𝒫 (R × {0R}) = {𝑧 ∣ 𝑧 ⊆ (R × {0R})} | |
| 30 | 27, 28, 29 | 3eqtr4g 2790 | . . . . . . 7 ⊢ (ℝ = (R × {0R}) → 𝒫 ℝ = 𝒫 (R × {0R})) |
| 31 | 25, 30 | ax-mp 5 | . . . . . 6 ⊢ 𝒫 ℝ = 𝒫 (R × {0R}) |
| 32 | 31 | breqi 5116 | . . . . 5 ⊢ (𝐴𝒫 ℝ(℩𝑦1〈0R, 1R〉𝑦) ↔ 𝐴𝒫 (R × {0R})(℩𝑦1〈0R, 1R〉𝑦)) |
| 33 | 24, 32 | bitri 275 | . . . 4 ⊢ (𝐴𝒫 ℝ(i‘1) ↔ 𝐴𝒫 (R × {0R})(℩𝑦1〈0R, 1R〉𝑦)) |
| 34 | 33 | anbi1i 624 | . . 3 ⊢ ((𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1)) ↔ (𝐴𝒫 (R × {0R})(℩𝑦1〈0R, 1R〉𝑦) ∧ 𝐹∅(0 · 1))) |
| 35 | 34 | notbii 320 | . 2 ⊢ (¬ (𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1)) ↔ ¬ (𝐴𝒫 (R × {0R})(℩𝑦1〈0R, 1R〉𝑦) ∧ 𝐹∅(0 · 1))) |
| 36 | 19, 35 | mpbir 231 | 1 ⊢ ¬ (𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 Vcvv 3450 ⊆ wss 3917 ∅c0 4299 𝒫 cpw 4566 {csn 4592 〈cop 4598 class class class wbr 5110 × cxp 5639 ℩cio 6465 ‘cfv 6514 (class class class)co 7390 Rcnr 10825 0Rc0r 10826 1Rc1r 10827 ℝcr 11074 0cc0 11075 1c1 11076 ici 11077 · cmul 11080 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2702 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-mulcl 11137 ax-mulcom 11139 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1rid 11145 ax-cnre 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-i 11084 df-r 11085 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |