|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > avril1 | Structured version Visualization version GIF version | ||
| Description: Poisson d'Avril's
Theorem.  This theorem is noted for its
       Selbstdokumentieren property, which means, literally,
       "self-documenting" and recalls the principle of quidquid
german dictum
       sit, altum viditur, often used in set theory.  Starting with the
       seemingly simple yet profound fact that any object 𝑥 equals
itself
       (proved by Tarski in 1965; see Lemma 6 of [Tarski] p. 68), we
       demonstrate that the power set of the real numbers, as a relation on the
       value of the imaginary unit, does not conjoin with an empty relation on
       the product of the additive and multiplicative identity elements,
       leading to this startling conclusion that has left even seasoned
       professional mathematicians scratching their heads.  (Contributed by
       Prof.  Loof Lirpa, 1-Apr-2005.)  (Proof modification is discouraged.)
       (New usage is discouraged.) A reply to skeptics can be found at mmnotes.txt, under the 1-Apr-2006 entry. | 
| Ref | Expression | 
|---|---|
| avril1 | ⊢ ¬ (𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | equid 2011 | . . . . . . . 8 ⊢ 𝑥 = 𝑥 | |
| 2 | dfnul2 4336 | . . . . . . . . . 10 ⊢ ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥} | |
| 3 | 2 | eqabri 2885 | . . . . . . . . 9 ⊢ (𝑥 ∈ ∅ ↔ ¬ 𝑥 = 𝑥) | 
| 4 | 3 | con2bii 357 | . . . . . . . 8 ⊢ (𝑥 = 𝑥 ↔ ¬ 𝑥 ∈ ∅) | 
| 5 | 1, 4 | mpbi 230 | . . . . . . 7 ⊢ ¬ 𝑥 ∈ ∅ | 
| 6 | eleq1 2829 | . . . . . . 7 ⊢ (𝑥 = 〈𝐹, 0〉 → (𝑥 ∈ ∅ ↔ 〈𝐹, 0〉 ∈ ∅)) | |
| 7 | 5, 6 | mtbii 326 | . . . . . 6 ⊢ (𝑥 = 〈𝐹, 0〉 → ¬ 〈𝐹, 0〉 ∈ ∅) | 
| 8 | 7 | vtocleg 3553 | . . . . 5 ⊢ (〈𝐹, 0〉 ∈ V → ¬ 〈𝐹, 0〉 ∈ ∅) | 
| 9 | elex 3501 | . . . . . 6 ⊢ (〈𝐹, 0〉 ∈ ∅ → 〈𝐹, 0〉 ∈ V) | |
| 10 | 9 | con3i 154 | . . . . 5 ⊢ (¬ 〈𝐹, 0〉 ∈ V → ¬ 〈𝐹, 0〉 ∈ ∅) | 
| 11 | 8, 10 | pm2.61i 182 | . . . 4 ⊢ ¬ 〈𝐹, 0〉 ∈ ∅ | 
| 12 | df-br 5144 | . . . . 5 ⊢ (𝐹∅(0 · 1) ↔ 〈𝐹, (0 · 1)〉 ∈ ∅) | |
| 13 | 0cn 11253 | . . . . . . . 8 ⊢ 0 ∈ ℂ | |
| 14 | 13 | mulridi 11265 | . . . . . . 7 ⊢ (0 · 1) = 0 | 
| 15 | 14 | opeq2i 4877 | . . . . . 6 ⊢ 〈𝐹, (0 · 1)〉 = 〈𝐹, 0〉 | 
| 16 | 15 | eleq1i 2832 | . . . . 5 ⊢ (〈𝐹, (0 · 1)〉 ∈ ∅ ↔ 〈𝐹, 0〉 ∈ ∅) | 
| 17 | 12, 16 | bitri 275 | . . . 4 ⊢ (𝐹∅(0 · 1) ↔ 〈𝐹, 0〉 ∈ ∅) | 
| 18 | 11, 17 | mtbir 323 | . . 3 ⊢ ¬ 𝐹∅(0 · 1) | 
| 19 | 18 | intnan 486 | . 2 ⊢ ¬ (𝐴𝒫 (R × {0R})(℩𝑦1〈0R, 1R〉𝑦) ∧ 𝐹∅(0 · 1)) | 
| 20 | df-i 11164 | . . . . . . . 8 ⊢ i = 〈0R, 1R〉 | |
| 21 | 20 | fveq1i 6907 | . . . . . . 7 ⊢ (i‘1) = (〈0R, 1R〉‘1) | 
| 22 | df-fv 6569 | . . . . . . 7 ⊢ (〈0R, 1R〉‘1) = (℩𝑦1〈0R, 1R〉𝑦) | |
| 23 | 21, 22 | eqtri 2765 | . . . . . 6 ⊢ (i‘1) = (℩𝑦1〈0R, 1R〉𝑦) | 
| 24 | 23 | breq2i 5151 | . . . . 5 ⊢ (𝐴𝒫 ℝ(i‘1) ↔ 𝐴𝒫 ℝ(℩𝑦1〈0R, 1R〉𝑦)) | 
| 25 | df-r 11165 | . . . . . . 7 ⊢ ℝ = (R × {0R}) | |
| 26 | sseq2 4010 | . . . . . . . . 9 ⊢ (ℝ = (R × {0R}) → (𝑧 ⊆ ℝ ↔ 𝑧 ⊆ (R × {0R}))) | |
| 27 | 26 | abbidv 2808 | . . . . . . . 8 ⊢ (ℝ = (R × {0R}) → {𝑧 ∣ 𝑧 ⊆ ℝ} = {𝑧 ∣ 𝑧 ⊆ (R × {0R})}) | 
| 28 | df-pw 4602 | . . . . . . . 8 ⊢ 𝒫 ℝ = {𝑧 ∣ 𝑧 ⊆ ℝ} | |
| 29 | df-pw 4602 | . . . . . . . 8 ⊢ 𝒫 (R × {0R}) = {𝑧 ∣ 𝑧 ⊆ (R × {0R})} | |
| 30 | 27, 28, 29 | 3eqtr4g 2802 | . . . . . . 7 ⊢ (ℝ = (R × {0R}) → 𝒫 ℝ = 𝒫 (R × {0R})) | 
| 31 | 25, 30 | ax-mp 5 | . . . . . 6 ⊢ 𝒫 ℝ = 𝒫 (R × {0R}) | 
| 32 | 31 | breqi 5149 | . . . . 5 ⊢ (𝐴𝒫 ℝ(℩𝑦1〈0R, 1R〉𝑦) ↔ 𝐴𝒫 (R × {0R})(℩𝑦1〈0R, 1R〉𝑦)) | 
| 33 | 24, 32 | bitri 275 | . . . 4 ⊢ (𝐴𝒫 ℝ(i‘1) ↔ 𝐴𝒫 (R × {0R})(℩𝑦1〈0R, 1R〉𝑦)) | 
| 34 | 33 | anbi1i 624 | . . 3 ⊢ ((𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1)) ↔ (𝐴𝒫 (R × {0R})(℩𝑦1〈0R, 1R〉𝑦) ∧ 𝐹∅(0 · 1))) | 
| 35 | 34 | notbii 320 | . 2 ⊢ (¬ (𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1)) ↔ ¬ (𝐴𝒫 (R × {0R})(℩𝑦1〈0R, 1R〉𝑦) ∧ 𝐹∅(0 · 1))) | 
| 36 | 19, 35 | mpbir 231 | 1 ⊢ ¬ (𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2714 Vcvv 3480 ⊆ wss 3951 ∅c0 4333 𝒫 cpw 4600 {csn 4626 〈cop 4632 class class class wbr 5143 × cxp 5683 ℩cio 6512 ‘cfv 6561 (class class class)co 7431 Rcnr 10905 0Rc0r 10906 1Rc1r 10907 ℝcr 11154 0cc0 11155 1c1 11156 ici 11157 · cmul 11160 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2177 ax-ext 2708 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-mulcl 11217 ax-mulcom 11219 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1rid 11225 ax-cnre 11228 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-iota 6514 df-fv 6569 df-ov 7434 df-i 11164 df-r 11165 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |