MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  avril1 Structured version   Visualization version   GIF version

Theorem avril1 28500
Description: Poisson d'Avril's Theorem. This theorem is noted for its Selbstdokumentieren property, which means, literally, "self-documenting" and recalls the principle of quidquid german dictum sit, altum viditur, often used in set theory. Starting with the seemingly simple yet profound fact that any object 𝑥 equals itself (proved by Tarski in 1965; see Lemma 6 of [Tarski] p. 68), we demonstrate that the power set of the real numbers, as a relation on the value of the imaginary unit, does not conjoin with an empty relation on the product of the additive and multiplicative identity elements, leading to this startling conclusion that has left even seasoned professional mathematicians scratching their heads. (Contributed by Prof. Loof Lirpa, 1-Apr-2005.) (Proof modification is discouraged.) (New usage is discouraged.)

A reply to skeptics can be found at mmnotes.txt, under the 1-Apr-2006 entry.

Assertion
Ref Expression
avril1 ¬ (𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1))

Proof of Theorem avril1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 equid 2022 . . . . . . . 8 𝑥 = 𝑥
2 dfnul2 4226 . . . . . . . . . 10 ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥}
32abeq2i 2865 . . . . . . . . 9 (𝑥 ∈ ∅ ↔ ¬ 𝑥 = 𝑥)
43con2bii 361 . . . . . . . 8 (𝑥 = 𝑥 ↔ ¬ 𝑥 ∈ ∅)
51, 4mpbi 233 . . . . . . 7 ¬ 𝑥 ∈ ∅
6 eleq1 2818 . . . . . . 7 (𝑥 = ⟨𝐹, 0⟩ → (𝑥 ∈ ∅ ↔ ⟨𝐹, 0⟩ ∈ ∅))
75, 6mtbii 329 . . . . . 6 (𝑥 = ⟨𝐹, 0⟩ → ¬ ⟨𝐹, 0⟩ ∈ ∅)
87vtocleg 3487 . . . . 5 (⟨𝐹, 0⟩ ∈ V → ¬ ⟨𝐹, 0⟩ ∈ ∅)
9 elex 3416 . . . . . 6 (⟨𝐹, 0⟩ ∈ ∅ → ⟨𝐹, 0⟩ ∈ V)
109con3i 157 . . . . 5 (¬ ⟨𝐹, 0⟩ ∈ V → ¬ ⟨𝐹, 0⟩ ∈ ∅)
118, 10pm2.61i 185 . . . 4 ¬ ⟨𝐹, 0⟩ ∈ ∅
12 df-br 5040 . . . . 5 (𝐹∅(0 · 1) ↔ ⟨𝐹, (0 · 1)⟩ ∈ ∅)
13 0cn 10790 . . . . . . . 8 0 ∈ ℂ
1413mulid1i 10802 . . . . . . 7 (0 · 1) = 0
1514opeq2i 4774 . . . . . 6 𝐹, (0 · 1)⟩ = ⟨𝐹, 0⟩
1615eleq1i 2821 . . . . 5 (⟨𝐹, (0 · 1)⟩ ∈ ∅ ↔ ⟨𝐹, 0⟩ ∈ ∅)
1712, 16bitri 278 . . . 4 (𝐹∅(0 · 1) ↔ ⟨𝐹, 0⟩ ∈ ∅)
1811, 17mtbir 326 . . 3 ¬ 𝐹∅(0 · 1)
1918intnan 490 . 2 ¬ (𝐴𝒫 (R × {0R})(℩𝑦1⟨0R, 1R𝑦) ∧ 𝐹∅(0 · 1))
20 df-i 10703 . . . . . . . 8 i = ⟨0R, 1R
2120fveq1i 6696 . . . . . . 7 (i‘1) = (⟨0R, 1R⟩‘1)
22 df-fv 6366 . . . . . . 7 (⟨0R, 1R⟩‘1) = (℩𝑦1⟨0R, 1R𝑦)
2321, 22eqtri 2759 . . . . . 6 (i‘1) = (℩𝑦1⟨0R, 1R𝑦)
2423breq2i 5047 . . . . 5 (𝐴𝒫 ℝ(i‘1) ↔ 𝐴𝒫 ℝ(℩𝑦1⟨0R, 1R𝑦))
25 df-r 10704 . . . . . . 7 ℝ = (R × {0R})
26 sseq2 3913 . . . . . . . . 9 (ℝ = (R × {0R}) → (𝑧 ⊆ ℝ ↔ 𝑧 ⊆ (R × {0R})))
2726abbidv 2800 . . . . . . . 8 (ℝ = (R × {0R}) → {𝑧𝑧 ⊆ ℝ} = {𝑧𝑧 ⊆ (R × {0R})})
28 df-pw 4501 . . . . . . . 8 𝒫 ℝ = {𝑧𝑧 ⊆ ℝ}
29 df-pw 4501 . . . . . . . 8 𝒫 (R × {0R}) = {𝑧𝑧 ⊆ (R × {0R})}
3027, 28, 293eqtr4g 2796 . . . . . . 7 (ℝ = (R × {0R}) → 𝒫 ℝ = 𝒫 (R × {0R}))
3125, 30ax-mp 5 . . . . . 6 𝒫 ℝ = 𝒫 (R × {0R})
3231breqi 5045 . . . . 5 (𝐴𝒫 ℝ(℩𝑦1⟨0R, 1R𝑦) ↔ 𝐴𝒫 (R × {0R})(℩𝑦1⟨0R, 1R𝑦))
3324, 32bitri 278 . . . 4 (𝐴𝒫 ℝ(i‘1) ↔ 𝐴𝒫 (R × {0R})(℩𝑦1⟨0R, 1R𝑦))
3433anbi1i 627 . . 3 ((𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1)) ↔ (𝐴𝒫 (R × {0R})(℩𝑦1⟨0R, 1R𝑦) ∧ 𝐹∅(0 · 1)))
3534notbii 323 . 2 (¬ (𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1)) ↔ ¬ (𝐴𝒫 (R × {0R})(℩𝑦1⟨0R, 1R𝑦) ∧ 𝐹∅(0 · 1)))
3619, 35mpbir 234 1 ¬ (𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 399   = wceq 1543  wcel 2112  {cab 2714  Vcvv 3398  wss 3853  c0 4223  𝒫 cpw 4499  {csn 4527  cop 4533   class class class wbr 5039   × cxp 5534  cio 6314  cfv 6358  (class class class)co 7191  Rcnr 10444  0Rc0r 10445  1Rc1r 10446  cr 10693  0cc0 10694  1c1 10695  ici 10696   · cmul 10699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-12 2177  ax-ext 2708  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-mulcl 10756  ax-mulcom 10758  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1rid 10764  ax-cnre 10767
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-iota 6316  df-fv 6366  df-ov 7194  df-i 10703  df-r 10704
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator