MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  avril1 Structured version   Visualization version   GIF version

Theorem avril1 30464
Description: Poisson d'Avril's Theorem. This theorem is noted for its Selbstdokumentieren property, which means, literally, "self-documenting" and recalls the principle of quidquid german dictum sit, altum viditur, often used in set theory. Starting with the seemingly simple yet profound fact that any object 𝑥 equals itself (proved by Tarski in 1965; see Lemma 6 of [Tarski] p. 68), we demonstrate that the power set of the real numbers, as a relation on the value of the imaginary unit, does not conjoin with an empty relation on the product of the additive and multiplicative identity elements, leading to this startling conclusion that has left even seasoned professional mathematicians scratching their heads. (Contributed by Prof. Loof Lirpa, 1-Apr-2005.) (Proof modification is discouraged.) (New usage is discouraged.)

A reply to skeptics can be found at mmnotes.txt, under the 1-Apr-2006 entry.

Assertion
Ref Expression
avril1 ¬ (𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1))

Proof of Theorem avril1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 equid 2013 . . . . . . . 8 𝑥 = 𝑥
2 dfnul2 4285 . . . . . . . . . 10 ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥}
32eqabri 2875 . . . . . . . . 9 (𝑥 ∈ ∅ ↔ ¬ 𝑥 = 𝑥)
43con2bii 357 . . . . . . . 8 (𝑥 = 𝑥 ↔ ¬ 𝑥 ∈ ∅)
51, 4mpbi 230 . . . . . . 7 ¬ 𝑥 ∈ ∅
6 eleq1 2821 . . . . . . 7 (𝑥 = ⟨𝐹, 0⟩ → (𝑥 ∈ ∅ ↔ ⟨𝐹, 0⟩ ∈ ∅))
75, 6mtbii 326 . . . . . 6 (𝑥 = ⟨𝐹, 0⟩ → ¬ ⟨𝐹, 0⟩ ∈ ∅)
87vtocleg 3507 . . . . 5 (⟨𝐹, 0⟩ ∈ V → ¬ ⟨𝐹, 0⟩ ∈ ∅)
9 elex 3458 . . . . . 6 (⟨𝐹, 0⟩ ∈ ∅ → ⟨𝐹, 0⟩ ∈ V)
109con3i 154 . . . . 5 (¬ ⟨𝐹, 0⟩ ∈ V → ¬ ⟨𝐹, 0⟩ ∈ ∅)
118, 10pm2.61i 182 . . . 4 ¬ ⟨𝐹, 0⟩ ∈ ∅
12 df-br 5096 . . . . 5 (𝐹∅(0 · 1) ↔ ⟨𝐹, (0 · 1)⟩ ∈ ∅)
13 0cn 11115 . . . . . . . 8 0 ∈ ℂ
1413mulridi 11127 . . . . . . 7 (0 · 1) = 0
1514opeq2i 4830 . . . . . 6 𝐹, (0 · 1)⟩ = ⟨𝐹, 0⟩
1615eleq1i 2824 . . . . 5 (⟨𝐹, (0 · 1)⟩ ∈ ∅ ↔ ⟨𝐹, 0⟩ ∈ ∅)
1712, 16bitri 275 . . . 4 (𝐹∅(0 · 1) ↔ ⟨𝐹, 0⟩ ∈ ∅)
1811, 17mtbir 323 . . 3 ¬ 𝐹∅(0 · 1)
1918intnan 486 . 2 ¬ (𝐴𝒫 (R × {0R})(℩𝑦1⟨0R, 1R𝑦) ∧ 𝐹∅(0 · 1))
20 df-i 11026 . . . . . . . 8 i = ⟨0R, 1R
2120fveq1i 6832 . . . . . . 7 (i‘1) = (⟨0R, 1R⟩‘1)
22 df-fv 6497 . . . . . . 7 (⟨0R, 1R⟩‘1) = (℩𝑦1⟨0R, 1R𝑦)
2321, 22eqtri 2756 . . . . . 6 (i‘1) = (℩𝑦1⟨0R, 1R𝑦)
2423breq2i 5103 . . . . 5 (𝐴𝒫 ℝ(i‘1) ↔ 𝐴𝒫 ℝ(℩𝑦1⟨0R, 1R𝑦))
25 df-r 11027 . . . . . . 7 ℝ = (R × {0R})
26 sseq2 3957 . . . . . . . . 9 (ℝ = (R × {0R}) → (𝑧 ⊆ ℝ ↔ 𝑧 ⊆ (R × {0R})))
2726abbidv 2799 . . . . . . . 8 (ℝ = (R × {0R}) → {𝑧𝑧 ⊆ ℝ} = {𝑧𝑧 ⊆ (R × {0R})})
28 df-pw 4553 . . . . . . . 8 𝒫 ℝ = {𝑧𝑧 ⊆ ℝ}
29 df-pw 4553 . . . . . . . 8 𝒫 (R × {0R}) = {𝑧𝑧 ⊆ (R × {0R})}
3027, 28, 293eqtr4g 2793 . . . . . . 7 (ℝ = (R × {0R}) → 𝒫 ℝ = 𝒫 (R × {0R}))
3125, 30ax-mp 5 . . . . . 6 𝒫 ℝ = 𝒫 (R × {0R})
3231breqi 5101 . . . . 5 (𝐴𝒫 ℝ(℩𝑦1⟨0R, 1R𝑦) ↔ 𝐴𝒫 (R × {0R})(℩𝑦1⟨0R, 1R𝑦))
3324, 32bitri 275 . . . 4 (𝐴𝒫 ℝ(i‘1) ↔ 𝐴𝒫 (R × {0R})(℩𝑦1⟨0R, 1R𝑦))
3433anbi1i 624 . . 3 ((𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1)) ↔ (𝐴𝒫 (R × {0R})(℩𝑦1⟨0R, 1R𝑦) ∧ 𝐹∅(0 · 1)))
3534notbii 320 . 2 (¬ (𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1)) ↔ ¬ (𝐴𝒫 (R × {0R})(℩𝑦1⟨0R, 1R𝑦) ∧ 𝐹∅(0 · 1)))
3619, 35mpbir 231 1 ¬ (𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1541  wcel 2113  {cab 2711  Vcvv 3437  wss 3898  c0 4282  𝒫 cpw 4551  {csn 4577  cop 4583   class class class wbr 5095   × cxp 5619  cio 6443  cfv 6489  (class class class)co 7355  Rcnr 10767  0Rc0r 10768  1Rc1r 10769  cr 11016  0cc0 11017  1c1 11018  ici 11019   · cmul 11022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-12 2182  ax-ext 2705  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-mulcl 11079  ax-mulcom 11081  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1rid 11087  ax-cnre 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6445  df-fv 6497  df-ov 7358  df-i 11026  df-r 11027
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator