Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > avril1 | Structured version Visualization version GIF version |
Description: Poisson d'Avril's
Theorem. This theorem is noted for its
Selbstdokumentieren property, which means, literally,
"self-documenting" and recalls the principle of quidquid
german dictum
sit, altum viditur, often used in set theory. Starting with the
seemingly simple yet profound fact that any object 𝑥 equals
itself
(proved by Tarski in 1965; see Lemma 6 of [Tarski] p. 68), we
demonstrate that the power set of the real numbers, as a relation on the
value of the imaginary unit, does not conjoin with an empty relation on
the product of the additive and multiplicative identity elements,
leading to this startling conclusion that has left even seasoned
professional mathematicians scratching their heads. (Contributed by
Prof. Loof Lirpa, 1-Apr-2005.) (Proof modification is discouraged.)
(New usage is discouraged.)
A reply to skeptics can be found at mmnotes.txt, under the 1-Apr-2006 entry. |
Ref | Expression |
---|---|
avril1 | ⊢ ¬ (𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equid 2016 | . . . . . . . 8 ⊢ 𝑥 = 𝑥 | |
2 | dfnul2 4256 | . . . . . . . . . 10 ⊢ ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥} | |
3 | 2 | abeq2i 2874 | . . . . . . . . 9 ⊢ (𝑥 ∈ ∅ ↔ ¬ 𝑥 = 𝑥) |
4 | 3 | con2bii 357 | . . . . . . . 8 ⊢ (𝑥 = 𝑥 ↔ ¬ 𝑥 ∈ ∅) |
5 | 1, 4 | mpbi 229 | . . . . . . 7 ⊢ ¬ 𝑥 ∈ ∅ |
6 | eleq1 2826 | . . . . . . 7 ⊢ (𝑥 = 〈𝐹, 0〉 → (𝑥 ∈ ∅ ↔ 〈𝐹, 0〉 ∈ ∅)) | |
7 | 5, 6 | mtbii 325 | . . . . . 6 ⊢ (𝑥 = 〈𝐹, 0〉 → ¬ 〈𝐹, 0〉 ∈ ∅) |
8 | 7 | vtocleg 3511 | . . . . 5 ⊢ (〈𝐹, 0〉 ∈ V → ¬ 〈𝐹, 0〉 ∈ ∅) |
9 | elex 3440 | . . . . . 6 ⊢ (〈𝐹, 0〉 ∈ ∅ → 〈𝐹, 0〉 ∈ V) | |
10 | 9 | con3i 154 | . . . . 5 ⊢ (¬ 〈𝐹, 0〉 ∈ V → ¬ 〈𝐹, 0〉 ∈ ∅) |
11 | 8, 10 | pm2.61i 182 | . . . 4 ⊢ ¬ 〈𝐹, 0〉 ∈ ∅ |
12 | df-br 5071 | . . . . 5 ⊢ (𝐹∅(0 · 1) ↔ 〈𝐹, (0 · 1)〉 ∈ ∅) | |
13 | 0cn 10898 | . . . . . . . 8 ⊢ 0 ∈ ℂ | |
14 | 13 | mulid1i 10910 | . . . . . . 7 ⊢ (0 · 1) = 0 |
15 | 14 | opeq2i 4805 | . . . . . 6 ⊢ 〈𝐹, (0 · 1)〉 = 〈𝐹, 0〉 |
16 | 15 | eleq1i 2829 | . . . . 5 ⊢ (〈𝐹, (0 · 1)〉 ∈ ∅ ↔ 〈𝐹, 0〉 ∈ ∅) |
17 | 12, 16 | bitri 274 | . . . 4 ⊢ (𝐹∅(0 · 1) ↔ 〈𝐹, 0〉 ∈ ∅) |
18 | 11, 17 | mtbir 322 | . . 3 ⊢ ¬ 𝐹∅(0 · 1) |
19 | 18 | intnan 486 | . 2 ⊢ ¬ (𝐴𝒫 (R × {0R})(℩𝑦1〈0R, 1R〉𝑦) ∧ 𝐹∅(0 · 1)) |
20 | df-i 10811 | . . . . . . . 8 ⊢ i = 〈0R, 1R〉 | |
21 | 20 | fveq1i 6757 | . . . . . . 7 ⊢ (i‘1) = (〈0R, 1R〉‘1) |
22 | df-fv 6426 | . . . . . . 7 ⊢ (〈0R, 1R〉‘1) = (℩𝑦1〈0R, 1R〉𝑦) | |
23 | 21, 22 | eqtri 2766 | . . . . . 6 ⊢ (i‘1) = (℩𝑦1〈0R, 1R〉𝑦) |
24 | 23 | breq2i 5078 | . . . . 5 ⊢ (𝐴𝒫 ℝ(i‘1) ↔ 𝐴𝒫 ℝ(℩𝑦1〈0R, 1R〉𝑦)) |
25 | df-r 10812 | . . . . . . 7 ⊢ ℝ = (R × {0R}) | |
26 | sseq2 3943 | . . . . . . . . 9 ⊢ (ℝ = (R × {0R}) → (𝑧 ⊆ ℝ ↔ 𝑧 ⊆ (R × {0R}))) | |
27 | 26 | abbidv 2808 | . . . . . . . 8 ⊢ (ℝ = (R × {0R}) → {𝑧 ∣ 𝑧 ⊆ ℝ} = {𝑧 ∣ 𝑧 ⊆ (R × {0R})}) |
28 | df-pw 4532 | . . . . . . . 8 ⊢ 𝒫 ℝ = {𝑧 ∣ 𝑧 ⊆ ℝ} | |
29 | df-pw 4532 | . . . . . . . 8 ⊢ 𝒫 (R × {0R}) = {𝑧 ∣ 𝑧 ⊆ (R × {0R})} | |
30 | 27, 28, 29 | 3eqtr4g 2804 | . . . . . . 7 ⊢ (ℝ = (R × {0R}) → 𝒫 ℝ = 𝒫 (R × {0R})) |
31 | 25, 30 | ax-mp 5 | . . . . . 6 ⊢ 𝒫 ℝ = 𝒫 (R × {0R}) |
32 | 31 | breqi 5076 | . . . . 5 ⊢ (𝐴𝒫 ℝ(℩𝑦1〈0R, 1R〉𝑦) ↔ 𝐴𝒫 (R × {0R})(℩𝑦1〈0R, 1R〉𝑦)) |
33 | 24, 32 | bitri 274 | . . . 4 ⊢ (𝐴𝒫 ℝ(i‘1) ↔ 𝐴𝒫 (R × {0R})(℩𝑦1〈0R, 1R〉𝑦)) |
34 | 33 | anbi1i 623 | . . 3 ⊢ ((𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1)) ↔ (𝐴𝒫 (R × {0R})(℩𝑦1〈0R, 1R〉𝑦) ∧ 𝐹∅(0 · 1))) |
35 | 34 | notbii 319 | . 2 ⊢ (¬ (𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1)) ↔ ¬ (𝐴𝒫 (R × {0R})(℩𝑦1〈0R, 1R〉𝑦) ∧ 𝐹∅(0 · 1))) |
36 | 19, 35 | mpbir 230 | 1 ⊢ ¬ (𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2715 Vcvv 3422 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 {csn 4558 〈cop 4564 class class class wbr 5070 × cxp 5578 ℩cio 6374 ‘cfv 6418 (class class class)co 7255 Rcnr 10552 0Rc0r 10553 1Rc1r 10554 ℝcr 10801 0cc0 10802 1c1 10803 ici 10804 · cmul 10807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-mulcl 10864 ax-mulcom 10866 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1rid 10872 ax-cnre 10875 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-i 10811 df-r 10812 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |