![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elreal2 | Structured version Visualization version GIF version |
Description: Ordered pair membership in the class of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elreal2 | ⊢ (𝐴 ∈ ℝ ↔ ((1st ‘𝐴) ∈ R ∧ 𝐴 = 〈(1st ‘𝐴), 0R〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-r 11150 | . . 3 ⊢ ℝ = (R × {0R}) | |
2 | 1 | eleq2i 2817 | . 2 ⊢ (𝐴 ∈ ℝ ↔ 𝐴 ∈ (R × {0R})) |
3 | xp1st 8026 | . . . 4 ⊢ (𝐴 ∈ (R × {0R}) → (1st ‘𝐴) ∈ R) | |
4 | 1st2nd2 8033 | . . . . 5 ⊢ (𝐴 ∈ (R × {0R}) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
5 | xp2nd 8027 | . . . . . . 7 ⊢ (𝐴 ∈ (R × {0R}) → (2nd ‘𝐴) ∈ {0R}) | |
6 | elsni 4647 | . . . . . . 7 ⊢ ((2nd ‘𝐴) ∈ {0R} → (2nd ‘𝐴) = 0R) | |
7 | 5, 6 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ (R × {0R}) → (2nd ‘𝐴) = 0R) |
8 | 7 | opeq2d 4882 | . . . . 5 ⊢ (𝐴 ∈ (R × {0R}) → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 = 〈(1st ‘𝐴), 0R〉) |
9 | 4, 8 | eqtrd 2765 | . . . 4 ⊢ (𝐴 ∈ (R × {0R}) → 𝐴 = 〈(1st ‘𝐴), 0R〉) |
10 | 3, 9 | jca 510 | . . 3 ⊢ (𝐴 ∈ (R × {0R}) → ((1st ‘𝐴) ∈ R ∧ 𝐴 = 〈(1st ‘𝐴), 0R〉)) |
11 | eleq1 2813 | . . . . 5 ⊢ (𝐴 = 〈(1st ‘𝐴), 0R〉 → (𝐴 ∈ (R × {0R}) ↔ 〈(1st ‘𝐴), 0R〉 ∈ (R × {0R}))) | |
12 | 0r 11105 | . . . . . . . 8 ⊢ 0R ∈ R | |
13 | 12 | elexi 3482 | . . . . . . 7 ⊢ 0R ∈ V |
14 | 13 | snid 4666 | . . . . . 6 ⊢ 0R ∈ {0R} |
15 | opelxp 5714 | . . . . . 6 ⊢ (〈(1st ‘𝐴), 0R〉 ∈ (R × {0R}) ↔ ((1st ‘𝐴) ∈ R ∧ 0R ∈ {0R})) | |
16 | 14, 15 | mpbiran2 708 | . . . . 5 ⊢ (〈(1st ‘𝐴), 0R〉 ∈ (R × {0R}) ↔ (1st ‘𝐴) ∈ R) |
17 | 11, 16 | bitrdi 286 | . . . 4 ⊢ (𝐴 = 〈(1st ‘𝐴), 0R〉 → (𝐴 ∈ (R × {0R}) ↔ (1st ‘𝐴) ∈ R)) |
18 | 17 | biimparc 478 | . . 3 ⊢ (((1st ‘𝐴) ∈ R ∧ 𝐴 = 〈(1st ‘𝐴), 0R〉) → 𝐴 ∈ (R × {0R})) |
19 | 10, 18 | impbii 208 | . 2 ⊢ (𝐴 ∈ (R × {0R}) ↔ ((1st ‘𝐴) ∈ R ∧ 𝐴 = 〈(1st ‘𝐴), 0R〉)) |
20 | 2, 19 | bitri 274 | 1 ⊢ (𝐴 ∈ ℝ ↔ ((1st ‘𝐴) ∈ R ∧ 𝐴 = 〈(1st ‘𝐴), 0R〉)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {csn 4630 〈cop 4636 × cxp 5676 ‘cfv 6549 1st c1st 7992 2nd c2nd 7993 Rcnr 10890 0Rc0r 10891 ℝcr 11139 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-inf2 9666 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-oadd 8491 df-omul 8492 df-er 8725 df-ec 8727 df-qs 8731 df-ni 10897 df-pli 10898 df-mi 10899 df-lti 10900 df-plpq 10933 df-mpq 10934 df-ltpq 10935 df-enq 10936 df-nq 10937 df-erq 10938 df-plq 10939 df-mq 10940 df-1nq 10941 df-rq 10942 df-ltnq 10943 df-np 11006 df-1p 11007 df-enr 11080 df-nr 11081 df-0r 11085 df-r 11150 |
This theorem is referenced by: ltresr2 11166 axrnegex 11187 axpre-sup 11194 |
Copyright terms: Public domain | W3C validator |