MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elreal2 Structured version   Visualization version   GIF version

Theorem elreal2 11092
Description: Ordered pair membership in the class of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
elreal2 (𝐴 ∈ ℝ ↔ ((1st𝐴) ∈ R𝐴 = ⟨(1st𝐴), 0R⟩))

Proof of Theorem elreal2
StepHypRef Expression
1 df-r 11085 . . 3 ℝ = (R × {0R})
21eleq2i 2821 . 2 (𝐴 ∈ ℝ ↔ 𝐴 ∈ (R × {0R}))
3 xp1st 8003 . . . 4 (𝐴 ∈ (R × {0R}) → (1st𝐴) ∈ R)
4 1st2nd2 8010 . . . . 5 (𝐴 ∈ (R × {0R}) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
5 xp2nd 8004 . . . . . . 7 (𝐴 ∈ (R × {0R}) → (2nd𝐴) ∈ {0R})
6 elsni 4609 . . . . . . 7 ((2nd𝐴) ∈ {0R} → (2nd𝐴) = 0R)
75, 6syl 17 . . . . . 6 (𝐴 ∈ (R × {0R}) → (2nd𝐴) = 0R)
87opeq2d 4847 . . . . 5 (𝐴 ∈ (R × {0R}) → ⟨(1st𝐴), (2nd𝐴)⟩ = ⟨(1st𝐴), 0R⟩)
94, 8eqtrd 2765 . . . 4 (𝐴 ∈ (R × {0R}) → 𝐴 = ⟨(1st𝐴), 0R⟩)
103, 9jca 511 . . 3 (𝐴 ∈ (R × {0R}) → ((1st𝐴) ∈ R𝐴 = ⟨(1st𝐴), 0R⟩))
11 eleq1 2817 . . . . 5 (𝐴 = ⟨(1st𝐴), 0R⟩ → (𝐴 ∈ (R × {0R}) ↔ ⟨(1st𝐴), 0R⟩ ∈ (R × {0R})))
12 0r 11040 . . . . . . . 8 0RR
1312elexi 3473 . . . . . . 7 0R ∈ V
1413snid 4629 . . . . . 6 0R ∈ {0R}
15 opelxp 5677 . . . . . 6 (⟨(1st𝐴), 0R⟩ ∈ (R × {0R}) ↔ ((1st𝐴) ∈ R ∧ 0R ∈ {0R}))
1614, 15mpbiran2 710 . . . . 5 (⟨(1st𝐴), 0R⟩ ∈ (R × {0R}) ↔ (1st𝐴) ∈ R)
1711, 16bitrdi 287 . . . 4 (𝐴 = ⟨(1st𝐴), 0R⟩ → (𝐴 ∈ (R × {0R}) ↔ (1st𝐴) ∈ R))
1817biimparc 479 . . 3 (((1st𝐴) ∈ R𝐴 = ⟨(1st𝐴), 0R⟩) → 𝐴 ∈ (R × {0R}))
1910, 18impbii 209 . 2 (𝐴 ∈ (R × {0R}) ↔ ((1st𝐴) ∈ R𝐴 = ⟨(1st𝐴), 0R⟩))
202, 19bitri 275 1 (𝐴 ∈ ℝ ↔ ((1st𝐴) ∈ R𝐴 = ⟨(1st𝐴), 0R⟩))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  {csn 4592  cop 4598   × cxp 5639  cfv 6514  1st c1st 7969  2nd c2nd 7970  Rcnr 10825  0Rc0r 10826  cr 11074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-omul 8442  df-er 8674  df-ec 8676  df-qs 8680  df-ni 10832  df-pli 10833  df-mi 10834  df-lti 10835  df-plpq 10868  df-mpq 10869  df-ltpq 10870  df-enq 10871  df-nq 10872  df-erq 10873  df-plq 10874  df-mq 10875  df-1nq 10876  df-rq 10877  df-ltnq 10878  df-np 10941  df-1p 10942  df-enr 11015  df-nr 11016  df-0r 11020  df-r 11085
This theorem is referenced by:  ltresr2  11101  axrnegex  11122  axpre-sup  11129
  Copyright terms: Public domain W3C validator