| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elreal2 | Structured version Visualization version GIF version | ||
| Description: Ordered pair membership in the class of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elreal2 | ⊢ (𝐴 ∈ ℝ ↔ ((1st ‘𝐴) ∈ R ∧ 𝐴 = 〈(1st ‘𝐴), 0R〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-r 11054 | . . 3 ⊢ ℝ = (R × {0R}) | |
| 2 | 1 | eleq2i 2820 | . 2 ⊢ (𝐴 ∈ ℝ ↔ 𝐴 ∈ (R × {0R})) |
| 3 | xp1st 7979 | . . . 4 ⊢ (𝐴 ∈ (R × {0R}) → (1st ‘𝐴) ∈ R) | |
| 4 | 1st2nd2 7986 | . . . . 5 ⊢ (𝐴 ∈ (R × {0R}) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
| 5 | xp2nd 7980 | . . . . . . 7 ⊢ (𝐴 ∈ (R × {0R}) → (2nd ‘𝐴) ∈ {0R}) | |
| 6 | elsni 4602 | . . . . . . 7 ⊢ ((2nd ‘𝐴) ∈ {0R} → (2nd ‘𝐴) = 0R) | |
| 7 | 5, 6 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ (R × {0R}) → (2nd ‘𝐴) = 0R) |
| 8 | 7 | opeq2d 4840 | . . . . 5 ⊢ (𝐴 ∈ (R × {0R}) → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 = 〈(1st ‘𝐴), 0R〉) |
| 9 | 4, 8 | eqtrd 2764 | . . . 4 ⊢ (𝐴 ∈ (R × {0R}) → 𝐴 = 〈(1st ‘𝐴), 0R〉) |
| 10 | 3, 9 | jca 511 | . . 3 ⊢ (𝐴 ∈ (R × {0R}) → ((1st ‘𝐴) ∈ R ∧ 𝐴 = 〈(1st ‘𝐴), 0R〉)) |
| 11 | eleq1 2816 | . . . . 5 ⊢ (𝐴 = 〈(1st ‘𝐴), 0R〉 → (𝐴 ∈ (R × {0R}) ↔ 〈(1st ‘𝐴), 0R〉 ∈ (R × {0R}))) | |
| 12 | 0r 11009 | . . . . . . . 8 ⊢ 0R ∈ R | |
| 13 | 12 | elexi 3467 | . . . . . . 7 ⊢ 0R ∈ V |
| 14 | 13 | snid 4622 | . . . . . 6 ⊢ 0R ∈ {0R} |
| 15 | opelxp 5667 | . . . . . 6 ⊢ (〈(1st ‘𝐴), 0R〉 ∈ (R × {0R}) ↔ ((1st ‘𝐴) ∈ R ∧ 0R ∈ {0R})) | |
| 16 | 14, 15 | mpbiran2 710 | . . . . 5 ⊢ (〈(1st ‘𝐴), 0R〉 ∈ (R × {0R}) ↔ (1st ‘𝐴) ∈ R) |
| 17 | 11, 16 | bitrdi 287 | . . . 4 ⊢ (𝐴 = 〈(1st ‘𝐴), 0R〉 → (𝐴 ∈ (R × {0R}) ↔ (1st ‘𝐴) ∈ R)) |
| 18 | 17 | biimparc 479 | . . 3 ⊢ (((1st ‘𝐴) ∈ R ∧ 𝐴 = 〈(1st ‘𝐴), 0R〉) → 𝐴 ∈ (R × {0R})) |
| 19 | 10, 18 | impbii 209 | . 2 ⊢ (𝐴 ∈ (R × {0R}) ↔ ((1st ‘𝐴) ∈ R ∧ 𝐴 = 〈(1st ‘𝐴), 0R〉)) |
| 20 | 2, 19 | bitri 275 | 1 ⊢ (𝐴 ∈ ℝ ↔ ((1st ‘𝐴) ∈ R ∧ 𝐴 = 〈(1st ‘𝐴), 0R〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4585 〈cop 4591 × cxp 5629 ‘cfv 6499 1st c1st 7945 2nd c2nd 7946 Rcnr 10794 0Rc0r 10795 ℝcr 11043 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-oadd 8415 df-omul 8416 df-er 8648 df-ec 8650 df-qs 8654 df-ni 10801 df-pli 10802 df-mi 10803 df-lti 10804 df-plpq 10837 df-mpq 10838 df-ltpq 10839 df-enq 10840 df-nq 10841 df-erq 10842 df-plq 10843 df-mq 10844 df-1nq 10845 df-rq 10846 df-ltnq 10847 df-np 10910 df-1p 10911 df-enr 10984 df-nr 10985 df-0r 10989 df-r 11054 |
| This theorem is referenced by: ltresr2 11070 axrnegex 11091 axpre-sup 11098 |
| Copyright terms: Public domain | W3C validator |