Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elreal2 | Structured version Visualization version GIF version |
Description: Ordered pair membership in the class of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elreal2 | ⊢ (𝐴 ∈ ℝ ↔ ((1st ‘𝐴) ∈ R ∧ 𝐴 = 〈(1st ‘𝐴), 0R〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-r 10812 | . . 3 ⊢ ℝ = (R × {0R}) | |
2 | 1 | eleq2i 2830 | . 2 ⊢ (𝐴 ∈ ℝ ↔ 𝐴 ∈ (R × {0R})) |
3 | xp1st 7836 | . . . 4 ⊢ (𝐴 ∈ (R × {0R}) → (1st ‘𝐴) ∈ R) | |
4 | 1st2nd2 7843 | . . . . 5 ⊢ (𝐴 ∈ (R × {0R}) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
5 | xp2nd 7837 | . . . . . . 7 ⊢ (𝐴 ∈ (R × {0R}) → (2nd ‘𝐴) ∈ {0R}) | |
6 | elsni 4575 | . . . . . . 7 ⊢ ((2nd ‘𝐴) ∈ {0R} → (2nd ‘𝐴) = 0R) | |
7 | 5, 6 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ (R × {0R}) → (2nd ‘𝐴) = 0R) |
8 | 7 | opeq2d 4808 | . . . . 5 ⊢ (𝐴 ∈ (R × {0R}) → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 = 〈(1st ‘𝐴), 0R〉) |
9 | 4, 8 | eqtrd 2778 | . . . 4 ⊢ (𝐴 ∈ (R × {0R}) → 𝐴 = 〈(1st ‘𝐴), 0R〉) |
10 | 3, 9 | jca 511 | . . 3 ⊢ (𝐴 ∈ (R × {0R}) → ((1st ‘𝐴) ∈ R ∧ 𝐴 = 〈(1st ‘𝐴), 0R〉)) |
11 | eleq1 2826 | . . . . 5 ⊢ (𝐴 = 〈(1st ‘𝐴), 0R〉 → (𝐴 ∈ (R × {0R}) ↔ 〈(1st ‘𝐴), 0R〉 ∈ (R × {0R}))) | |
12 | 0r 10767 | . . . . . . . 8 ⊢ 0R ∈ R | |
13 | 12 | elexi 3441 | . . . . . . 7 ⊢ 0R ∈ V |
14 | 13 | snid 4594 | . . . . . 6 ⊢ 0R ∈ {0R} |
15 | opelxp 5616 | . . . . . 6 ⊢ (〈(1st ‘𝐴), 0R〉 ∈ (R × {0R}) ↔ ((1st ‘𝐴) ∈ R ∧ 0R ∈ {0R})) | |
16 | 14, 15 | mpbiran2 706 | . . . . 5 ⊢ (〈(1st ‘𝐴), 0R〉 ∈ (R × {0R}) ↔ (1st ‘𝐴) ∈ R) |
17 | 11, 16 | bitrdi 286 | . . . 4 ⊢ (𝐴 = 〈(1st ‘𝐴), 0R〉 → (𝐴 ∈ (R × {0R}) ↔ (1st ‘𝐴) ∈ R)) |
18 | 17 | biimparc 479 | . . 3 ⊢ (((1st ‘𝐴) ∈ R ∧ 𝐴 = 〈(1st ‘𝐴), 0R〉) → 𝐴 ∈ (R × {0R})) |
19 | 10, 18 | impbii 208 | . 2 ⊢ (𝐴 ∈ (R × {0R}) ↔ ((1st ‘𝐴) ∈ R ∧ 𝐴 = 〈(1st ‘𝐴), 0R〉)) |
20 | 2, 19 | bitri 274 | 1 ⊢ (𝐴 ∈ ℝ ↔ ((1st ‘𝐴) ∈ R ∧ 𝐴 = 〈(1st ‘𝐴), 0R〉)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {csn 4558 〈cop 4564 × cxp 5578 ‘cfv 6418 1st c1st 7802 2nd c2nd 7803 Rcnr 10552 0Rc0r 10553 ℝcr 10801 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-omul 8272 df-er 8456 df-ec 8458 df-qs 8462 df-ni 10559 df-pli 10560 df-mi 10561 df-lti 10562 df-plpq 10595 df-mpq 10596 df-ltpq 10597 df-enq 10598 df-nq 10599 df-erq 10600 df-plq 10601 df-mq 10602 df-1nq 10603 df-rq 10604 df-ltnq 10605 df-np 10668 df-1p 10669 df-enr 10742 df-nr 10743 df-0r 10747 df-r 10812 |
This theorem is referenced by: ltresr2 10828 axrnegex 10849 axpre-sup 10856 |
Copyright terms: Public domain | W3C validator |