MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elreal2 Structured version   Visualization version   GIF version

Theorem elreal2 10876
Description: Ordered pair membership in the class of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
elreal2 (𝐴 ∈ ℝ ↔ ((1st𝐴) ∈ R𝐴 = ⟨(1st𝐴), 0R⟩))

Proof of Theorem elreal2
StepHypRef Expression
1 df-r 10869 . . 3 ℝ = (R × {0R})
21eleq2i 2830 . 2 (𝐴 ∈ ℝ ↔ 𝐴 ∈ (R × {0R}))
3 xp1st 7853 . . . 4 (𝐴 ∈ (R × {0R}) → (1st𝐴) ∈ R)
4 1st2nd2 7860 . . . . 5 (𝐴 ∈ (R × {0R}) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
5 xp2nd 7854 . . . . . . 7 (𝐴 ∈ (R × {0R}) → (2nd𝐴) ∈ {0R})
6 elsni 4579 . . . . . . 7 ((2nd𝐴) ∈ {0R} → (2nd𝐴) = 0R)
75, 6syl 17 . . . . . 6 (𝐴 ∈ (R × {0R}) → (2nd𝐴) = 0R)
87opeq2d 4812 . . . . 5 (𝐴 ∈ (R × {0R}) → ⟨(1st𝐴), (2nd𝐴)⟩ = ⟨(1st𝐴), 0R⟩)
94, 8eqtrd 2778 . . . 4 (𝐴 ∈ (R × {0R}) → 𝐴 = ⟨(1st𝐴), 0R⟩)
103, 9jca 512 . . 3 (𝐴 ∈ (R × {0R}) → ((1st𝐴) ∈ R𝐴 = ⟨(1st𝐴), 0R⟩))
11 eleq1 2826 . . . . 5 (𝐴 = ⟨(1st𝐴), 0R⟩ → (𝐴 ∈ (R × {0R}) ↔ ⟨(1st𝐴), 0R⟩ ∈ (R × {0R})))
12 0r 10824 . . . . . . . 8 0RR
1312elexi 3449 . . . . . . 7 0R ∈ V
1413snid 4598 . . . . . 6 0R ∈ {0R}
15 opelxp 5621 . . . . . 6 (⟨(1st𝐴), 0R⟩ ∈ (R × {0R}) ↔ ((1st𝐴) ∈ R ∧ 0R ∈ {0R}))
1614, 15mpbiran2 707 . . . . 5 (⟨(1st𝐴), 0R⟩ ∈ (R × {0R}) ↔ (1st𝐴) ∈ R)
1711, 16bitrdi 287 . . . 4 (𝐴 = ⟨(1st𝐴), 0R⟩ → (𝐴 ∈ (R × {0R}) ↔ (1st𝐴) ∈ R))
1817biimparc 480 . . 3 (((1st𝐴) ∈ R𝐴 = ⟨(1st𝐴), 0R⟩) → 𝐴 ∈ (R × {0R}))
1910, 18impbii 208 . 2 (𝐴 ∈ (R × {0R}) ↔ ((1st𝐴) ∈ R𝐴 = ⟨(1st𝐴), 0R⟩))
202, 19bitri 274 1 (𝐴 ∈ ℝ ↔ ((1st𝐴) ∈ R𝐴 = ⟨(1st𝐴), 0R⟩))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  {csn 4562  cop 4568   × cxp 5583  cfv 6427  1st c1st 7819  2nd c2nd 7820  Rcnr 10609  0Rc0r 10610  cr 10858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579  ax-inf2 9387
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5485  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-we 5542  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-pred 6196  df-ord 6263  df-on 6264  df-lim 6265  df-suc 6266  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7704  df-1st 7821  df-2nd 7822  df-frecs 8085  df-wrecs 8116  df-recs 8190  df-rdg 8229  df-1o 8285  df-oadd 8289  df-omul 8290  df-er 8486  df-ec 8488  df-qs 8492  df-ni 10616  df-pli 10617  df-mi 10618  df-lti 10619  df-plpq 10652  df-mpq 10653  df-ltpq 10654  df-enq 10655  df-nq 10656  df-erq 10657  df-plq 10658  df-mq 10659  df-1nq 10660  df-rq 10661  df-ltnq 10662  df-np 10725  df-1p 10726  df-enr 10799  df-nr 10800  df-0r 10804  df-r 10869
This theorem is referenced by:  ltresr2  10885  axrnegex  10906  axpre-sup  10913
  Copyright terms: Public domain W3C validator