MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elreal2 Structured version   Visualization version   GIF version

Theorem elreal2 11123
Description: Ordered pair membership in the class of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
elreal2 (𝐴 ∈ ℝ ↔ ((1st𝐴) ∈ R𝐴 = ⟨(1st𝐴), 0R⟩))

Proof of Theorem elreal2
StepHypRef Expression
1 df-r 11116 . . 3 ℝ = (R × {0R})
21eleq2i 2825 . 2 (𝐴 ∈ ℝ ↔ 𝐴 ∈ (R × {0R}))
3 xp1st 8003 . . . 4 (𝐴 ∈ (R × {0R}) → (1st𝐴) ∈ R)
4 1st2nd2 8010 . . . . 5 (𝐴 ∈ (R × {0R}) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
5 xp2nd 8004 . . . . . . 7 (𝐴 ∈ (R × {0R}) → (2nd𝐴) ∈ {0R})
6 elsni 4644 . . . . . . 7 ((2nd𝐴) ∈ {0R} → (2nd𝐴) = 0R)
75, 6syl 17 . . . . . 6 (𝐴 ∈ (R × {0R}) → (2nd𝐴) = 0R)
87opeq2d 4879 . . . . 5 (𝐴 ∈ (R × {0R}) → ⟨(1st𝐴), (2nd𝐴)⟩ = ⟨(1st𝐴), 0R⟩)
94, 8eqtrd 2772 . . . 4 (𝐴 ∈ (R × {0R}) → 𝐴 = ⟨(1st𝐴), 0R⟩)
103, 9jca 512 . . 3 (𝐴 ∈ (R × {0R}) → ((1st𝐴) ∈ R𝐴 = ⟨(1st𝐴), 0R⟩))
11 eleq1 2821 . . . . 5 (𝐴 = ⟨(1st𝐴), 0R⟩ → (𝐴 ∈ (R × {0R}) ↔ ⟨(1st𝐴), 0R⟩ ∈ (R × {0R})))
12 0r 11071 . . . . . . . 8 0RR
1312elexi 3493 . . . . . . 7 0R ∈ V
1413snid 4663 . . . . . 6 0R ∈ {0R}
15 opelxp 5711 . . . . . 6 (⟨(1st𝐴), 0R⟩ ∈ (R × {0R}) ↔ ((1st𝐴) ∈ R ∧ 0R ∈ {0R}))
1614, 15mpbiran2 708 . . . . 5 (⟨(1st𝐴), 0R⟩ ∈ (R × {0R}) ↔ (1st𝐴) ∈ R)
1711, 16bitrdi 286 . . . 4 (𝐴 = ⟨(1st𝐴), 0R⟩ → (𝐴 ∈ (R × {0R}) ↔ (1st𝐴) ∈ R))
1817biimparc 480 . . 3 (((1st𝐴) ∈ R𝐴 = ⟨(1st𝐴), 0R⟩) → 𝐴 ∈ (R × {0R}))
1910, 18impbii 208 . 2 (𝐴 ∈ (R × {0R}) ↔ ((1st𝐴) ∈ R𝐴 = ⟨(1st𝐴), 0R⟩))
202, 19bitri 274 1 (𝐴 ∈ ℝ ↔ ((1st𝐴) ∈ R𝐴 = ⟨(1st𝐴), 0R⟩))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1541  wcel 2106  {csn 4627  cop 4633   × cxp 5673  cfv 6540  1st c1st 7969  2nd c2nd 7970  Rcnr 10856  0Rc0r 10857  cr 11105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-omul 8467  df-er 8699  df-ec 8701  df-qs 8705  df-ni 10863  df-pli 10864  df-mi 10865  df-lti 10866  df-plpq 10899  df-mpq 10900  df-ltpq 10901  df-enq 10902  df-nq 10903  df-erq 10904  df-plq 10905  df-mq 10906  df-1nq 10907  df-rq 10908  df-ltnq 10909  df-np 10972  df-1p 10973  df-enr 11046  df-nr 11047  df-0r 11051  df-r 11116
This theorem is referenced by:  ltresr2  11132  axrnegex  11153  axpre-sup  11160
  Copyright terms: Public domain W3C validator