![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elreal2 | Structured version Visualization version GIF version |
Description: Ordered pair membership in the class of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elreal2 | ⊢ (𝐴 ∈ ℝ ↔ ((1st ‘𝐴) ∈ R ∧ 𝐴 = ⟨(1st ‘𝐴), 0R⟩)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-r 11116 | . . 3 ⊢ ℝ = (R × {0R}) | |
2 | 1 | eleq2i 2825 | . 2 ⊢ (𝐴 ∈ ℝ ↔ 𝐴 ∈ (R × {0R})) |
3 | xp1st 8003 | . . . 4 ⊢ (𝐴 ∈ (R × {0R}) → (1st ‘𝐴) ∈ R) | |
4 | 1st2nd2 8010 | . . . . 5 ⊢ (𝐴 ∈ (R × {0R}) → 𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩) | |
5 | xp2nd 8004 | . . . . . . 7 ⊢ (𝐴 ∈ (R × {0R}) → (2nd ‘𝐴) ∈ {0R}) | |
6 | elsni 4644 | . . . . . . 7 ⊢ ((2nd ‘𝐴) ∈ {0R} → (2nd ‘𝐴) = 0R) | |
7 | 5, 6 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ (R × {0R}) → (2nd ‘𝐴) = 0R) |
8 | 7 | opeq2d 4879 | . . . . 5 ⊢ (𝐴 ∈ (R × {0R}) → ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ = ⟨(1st ‘𝐴), 0R⟩) |
9 | 4, 8 | eqtrd 2772 | . . . 4 ⊢ (𝐴 ∈ (R × {0R}) → 𝐴 = ⟨(1st ‘𝐴), 0R⟩) |
10 | 3, 9 | jca 512 | . . 3 ⊢ (𝐴 ∈ (R × {0R}) → ((1st ‘𝐴) ∈ R ∧ 𝐴 = ⟨(1st ‘𝐴), 0R⟩)) |
11 | eleq1 2821 | . . . . 5 ⊢ (𝐴 = ⟨(1st ‘𝐴), 0R⟩ → (𝐴 ∈ (R × {0R}) ↔ ⟨(1st ‘𝐴), 0R⟩ ∈ (R × {0R}))) | |
12 | 0r 11071 | . . . . . . . 8 ⊢ 0R ∈ R | |
13 | 12 | elexi 3493 | . . . . . . 7 ⊢ 0R ∈ V |
14 | 13 | snid 4663 | . . . . . 6 ⊢ 0R ∈ {0R} |
15 | opelxp 5711 | . . . . . 6 ⊢ (⟨(1st ‘𝐴), 0R⟩ ∈ (R × {0R}) ↔ ((1st ‘𝐴) ∈ R ∧ 0R ∈ {0R})) | |
16 | 14, 15 | mpbiran2 708 | . . . . 5 ⊢ (⟨(1st ‘𝐴), 0R⟩ ∈ (R × {0R}) ↔ (1st ‘𝐴) ∈ R) |
17 | 11, 16 | bitrdi 286 | . . . 4 ⊢ (𝐴 = ⟨(1st ‘𝐴), 0R⟩ → (𝐴 ∈ (R × {0R}) ↔ (1st ‘𝐴) ∈ R)) |
18 | 17 | biimparc 480 | . . 3 ⊢ (((1st ‘𝐴) ∈ R ∧ 𝐴 = ⟨(1st ‘𝐴), 0R⟩) → 𝐴 ∈ (R × {0R})) |
19 | 10, 18 | impbii 208 | . 2 ⊢ (𝐴 ∈ (R × {0R}) ↔ ((1st ‘𝐴) ∈ R ∧ 𝐴 = ⟨(1st ‘𝐴), 0R⟩)) |
20 | 2, 19 | bitri 274 | 1 ⊢ (𝐴 ∈ ℝ ↔ ((1st ‘𝐴) ∈ R ∧ 𝐴 = ⟨(1st ‘𝐴), 0R⟩)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {csn 4627 ⟨cop 4633 × cxp 5673 ‘cfv 6540 1st c1st 7969 2nd c2nd 7970 Rcnr 10856 0Rc0r 10857 ℝcr 11105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-oadd 8466 df-omul 8467 df-er 8699 df-ec 8701 df-qs 8705 df-ni 10863 df-pli 10864 df-mi 10865 df-lti 10866 df-plpq 10899 df-mpq 10900 df-ltpq 10901 df-enq 10902 df-nq 10903 df-erq 10904 df-plq 10905 df-mq 10906 df-1nq 10907 df-rq 10908 df-ltnq 10909 df-np 10972 df-1p 10973 df-enr 11046 df-nr 11047 df-0r 11051 df-r 11116 |
This theorem is referenced by: ltresr2 11132 axrnegex 11153 axpre-sup 11160 |
Copyright terms: Public domain | W3C validator |