| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elreal2 | Structured version Visualization version GIF version | ||
| Description: Ordered pair membership in the class of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elreal2 | ⊢ (𝐴 ∈ ℝ ↔ ((1st ‘𝐴) ∈ R ∧ 𝐴 = 〈(1st ‘𝐴), 0R〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-r 11016 | . . 3 ⊢ ℝ = (R × {0R}) | |
| 2 | 1 | eleq2i 2823 | . 2 ⊢ (𝐴 ∈ ℝ ↔ 𝐴 ∈ (R × {0R})) |
| 3 | xp1st 7953 | . . . 4 ⊢ (𝐴 ∈ (R × {0R}) → (1st ‘𝐴) ∈ R) | |
| 4 | 1st2nd2 7960 | . . . . 5 ⊢ (𝐴 ∈ (R × {0R}) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
| 5 | xp2nd 7954 | . . . . . . 7 ⊢ (𝐴 ∈ (R × {0R}) → (2nd ‘𝐴) ∈ {0R}) | |
| 6 | elsni 4590 | . . . . . . 7 ⊢ ((2nd ‘𝐴) ∈ {0R} → (2nd ‘𝐴) = 0R) | |
| 7 | 5, 6 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ (R × {0R}) → (2nd ‘𝐴) = 0R) |
| 8 | 7 | opeq2d 4829 | . . . . 5 ⊢ (𝐴 ∈ (R × {0R}) → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 = 〈(1st ‘𝐴), 0R〉) |
| 9 | 4, 8 | eqtrd 2766 | . . . 4 ⊢ (𝐴 ∈ (R × {0R}) → 𝐴 = 〈(1st ‘𝐴), 0R〉) |
| 10 | 3, 9 | jca 511 | . . 3 ⊢ (𝐴 ∈ (R × {0R}) → ((1st ‘𝐴) ∈ R ∧ 𝐴 = 〈(1st ‘𝐴), 0R〉)) |
| 11 | eleq1 2819 | . . . . 5 ⊢ (𝐴 = 〈(1st ‘𝐴), 0R〉 → (𝐴 ∈ (R × {0R}) ↔ 〈(1st ‘𝐴), 0R〉 ∈ (R × {0R}))) | |
| 12 | 0r 10971 | . . . . . . . 8 ⊢ 0R ∈ R | |
| 13 | 12 | elexi 3459 | . . . . . . 7 ⊢ 0R ∈ V |
| 14 | 13 | snid 4612 | . . . . . 6 ⊢ 0R ∈ {0R} |
| 15 | opelxp 5650 | . . . . . 6 ⊢ (〈(1st ‘𝐴), 0R〉 ∈ (R × {0R}) ↔ ((1st ‘𝐴) ∈ R ∧ 0R ∈ {0R})) | |
| 16 | 14, 15 | mpbiran2 710 | . . . . 5 ⊢ (〈(1st ‘𝐴), 0R〉 ∈ (R × {0R}) ↔ (1st ‘𝐴) ∈ R) |
| 17 | 11, 16 | bitrdi 287 | . . . 4 ⊢ (𝐴 = 〈(1st ‘𝐴), 0R〉 → (𝐴 ∈ (R × {0R}) ↔ (1st ‘𝐴) ∈ R)) |
| 18 | 17 | biimparc 479 | . . 3 ⊢ (((1st ‘𝐴) ∈ R ∧ 𝐴 = 〈(1st ‘𝐴), 0R〉) → 𝐴 ∈ (R × {0R})) |
| 19 | 10, 18 | impbii 209 | . 2 ⊢ (𝐴 ∈ (R × {0R}) ↔ ((1st ‘𝐴) ∈ R ∧ 𝐴 = 〈(1st ‘𝐴), 0R〉)) |
| 20 | 2, 19 | bitri 275 | 1 ⊢ (𝐴 ∈ ℝ ↔ ((1st ‘𝐴) ∈ R ∧ 𝐴 = 〈(1st ‘𝐴), 0R〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {csn 4573 〈cop 4579 × cxp 5612 ‘cfv 6481 1st c1st 7919 2nd c2nd 7920 Rcnr 10756 0Rc0r 10757 ℝcr 11005 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-omul 8390 df-er 8622 df-ec 8624 df-qs 8628 df-ni 10763 df-pli 10764 df-mi 10765 df-lti 10766 df-plpq 10799 df-mpq 10800 df-ltpq 10801 df-enq 10802 df-nq 10803 df-erq 10804 df-plq 10805 df-mq 10806 df-1nq 10807 df-rq 10808 df-ltnq 10809 df-np 10872 df-1p 10873 df-enr 10946 df-nr 10947 df-0r 10951 df-r 11016 |
| This theorem is referenced by: ltresr2 11032 axrnegex 11053 axpre-sup 11060 |
| Copyright terms: Public domain | W3C validator |