MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelreal Structured version   Visualization version   GIF version

Theorem opelreal 11170
Description: Ordered pair membership in class of real subset of complex numbers. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
opelreal (⟨𝐴, 0R⟩ ∈ ℝ ↔ 𝐴R)

Proof of Theorem opelreal
StepHypRef Expression
1 eqid 2737 . 2 0R = 0R
2 df-r 11165 . . . 4 ℝ = (R × {0R})
32eleq2i 2833 . . 3 (⟨𝐴, 0R⟩ ∈ ℝ ↔ ⟨𝐴, 0R⟩ ∈ (R × {0R}))
4 opelxp 5721 . . 3 (⟨𝐴, 0R⟩ ∈ (R × {0R}) ↔ (𝐴R ∧ 0R ∈ {0R}))
5 0r 11120 . . . . . 6 0RR
65elexi 3503 . . . . 5 0R ∈ V
76elsn 4641 . . . 4 (0R ∈ {0R} ↔ 0R = 0R)
87anbi2i 623 . . 3 ((𝐴R ∧ 0R ∈ {0R}) ↔ (𝐴R ∧ 0R = 0R))
93, 4, 83bitri 297 . 2 (⟨𝐴, 0R⟩ ∈ ℝ ↔ (𝐴R ∧ 0R = 0R))
101, 9mpbiran2 710 1 (⟨𝐴, 0R⟩ ∈ ℝ ↔ 𝐴R)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  {csn 4626  cop 4632   × cxp 5683  Rcnr 10905  0Rc0r 10906  cr 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-omul 8511  df-er 8745  df-ec 8747  df-qs 8751  df-ni 10912  df-pli 10913  df-mi 10914  df-lti 10915  df-plpq 10948  df-mpq 10949  df-ltpq 10950  df-enq 10951  df-nq 10952  df-erq 10953  df-plq 10954  df-mq 10955  df-1nq 10956  df-rq 10957  df-ltnq 10958  df-np 11021  df-1p 11022  df-enr 11095  df-nr 11096  df-0r 11100  df-r 11165
This theorem is referenced by:  ltresr  11180  ax1cn  11189  axaddrcl  11192  axmulrcl  11194  axrnegex  11202  axrrecex  11203  axcnre  11204  axpre-sup  11209
  Copyright terms: Public domain W3C validator