MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelreal Structured version   Visualization version   GIF version

Theorem opelreal 10875
Description: Ordered pair membership in class of real subset of complex numbers. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
opelreal (⟨𝐴, 0R⟩ ∈ ℝ ↔ 𝐴R)

Proof of Theorem opelreal
StepHypRef Expression
1 eqid 2738 . 2 0R = 0R
2 df-r 10870 . . . 4 ℝ = (R × {0R})
32eleq2i 2830 . . 3 (⟨𝐴, 0R⟩ ∈ ℝ ↔ ⟨𝐴, 0R⟩ ∈ (R × {0R}))
4 opelxp 5622 . . 3 (⟨𝐴, 0R⟩ ∈ (R × {0R}) ↔ (𝐴R ∧ 0R ∈ {0R}))
5 0r 10825 . . . . . 6 0RR
65elexi 3450 . . . . 5 0R ∈ V
76elsn 4578 . . . 4 (0R ∈ {0R} ↔ 0R = 0R)
87anbi2i 623 . . 3 ((𝐴R ∧ 0R ∈ {0R}) ↔ (𝐴R ∧ 0R = 0R))
93, 4, 83bitri 297 . 2 (⟨𝐴, 0R⟩ ∈ ℝ ↔ (𝐴R ∧ 0R = 0R))
101, 9mpbiran2 707 1 (⟨𝐴, 0R⟩ ∈ ℝ ↔ 𝐴R)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  {csn 4563  cop 4569   × cxp 5584  Rcnr 10610  0Rc0r 10611  cr 10859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7580  ax-inf2 9388
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-int 4882  df-iun 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5486  df-eprel 5492  df-po 5500  df-so 5501  df-fr 5541  df-we 5543  df-xp 5592  df-rel 5593  df-cnv 5594  df-co 5595  df-dm 5596  df-rn 5597  df-res 5598  df-ima 5599  df-pred 6197  df-ord 6264  df-on 6265  df-lim 6266  df-suc 6267  df-iota 6386  df-fun 6430  df-fn 6431  df-f 6432  df-f1 6433  df-fo 6434  df-f1o 6435  df-fv 6436  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7705  df-1st 7822  df-2nd 7823  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-1o 8286  df-oadd 8290  df-omul 8291  df-er 8487  df-ec 8489  df-qs 8493  df-ni 10617  df-pli 10618  df-mi 10619  df-lti 10620  df-plpq 10653  df-mpq 10654  df-ltpq 10655  df-enq 10656  df-nq 10657  df-erq 10658  df-plq 10659  df-mq 10660  df-1nq 10661  df-rq 10662  df-ltnq 10663  df-np 10726  df-1p 10727  df-enr 10800  df-nr 10801  df-0r 10805  df-r 10870
This theorem is referenced by:  ltresr  10885  ax1cn  10894  axaddrcl  10897  axmulrcl  10899  axrnegex  10907  axrrecex  10908  axcnre  10909  axpre-sup  10914
  Copyright terms: Public domain W3C validator