MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elreal Structured version   Visualization version   GIF version

Theorem elreal 11091
Description: Membership in class of real numbers. (Contributed by NM, 31-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
elreal (𝐴 ∈ ℝ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem elreal
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-r 11085 . . 3 ℝ = (R × {0R})
21eleq2i 2821 . 2 (𝐴 ∈ ℝ ↔ 𝐴 ∈ (R × {0R}))
3 elxp2 5665 . . 3 (𝐴 ∈ (R × {0R}) ↔ ∃𝑥R𝑦 ∈ {0R}𝐴 = ⟨𝑥, 𝑦⟩)
4 0r 11040 . . . . . . 7 0RR
54elexi 3473 . . . . . 6 0R ∈ V
6 opeq2 4841 . . . . . . 7 (𝑦 = 0R → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 0R⟩)
76eqeq2d 2741 . . . . . 6 (𝑦 = 0R → (𝐴 = ⟨𝑥, 𝑦⟩ ↔ 𝐴 = ⟨𝑥, 0R⟩))
85, 7rexsn 4649 . . . . 5 (∃𝑦 ∈ {0R}𝐴 = ⟨𝑥, 𝑦⟩ ↔ 𝐴 = ⟨𝑥, 0R⟩)
9 eqcom 2737 . . . . 5 (𝐴 = ⟨𝑥, 0R⟩ ↔ ⟨𝑥, 0R⟩ = 𝐴)
108, 9bitri 275 . . . 4 (∃𝑦 ∈ {0R}𝐴 = ⟨𝑥, 𝑦⟩ ↔ ⟨𝑥, 0R⟩ = 𝐴)
1110rexbii 3077 . . 3 (∃𝑥R𝑦 ∈ {0R}𝐴 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
123, 11bitri 275 . 2 (𝐴 ∈ (R × {0R}) ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
132, 12bitri 275 1 (𝐴 ∈ ℝ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  wrex 3054  {csn 4592  cop 4598   × cxp 5639  Rcnr 10825  0Rc0r 10826  cr 11074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-omul 8442  df-er 8674  df-ec 8676  df-qs 8680  df-ni 10832  df-pli 10833  df-mi 10834  df-lti 10835  df-plpq 10868  df-mpq 10869  df-ltpq 10870  df-enq 10871  df-nq 10872  df-erq 10873  df-plq 10874  df-mq 10875  df-1nq 10876  df-rq 10877  df-ltnq 10878  df-np 10941  df-1p 10942  df-enr 11015  df-nr 11016  df-0r 11020  df-r 11085
This theorem is referenced by:  axaddrcl  11112  axmulrcl  11114  axrrecex  11123  axpre-lttri  11125  axpre-lttrn  11126  axpre-ltadd  11127  axpre-mulgt0  11128
  Copyright terms: Public domain W3C validator