| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elreal | Structured version Visualization version GIF version | ||
| Description: Membership in class of real numbers. (Contributed by NM, 31-Mar-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elreal | ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-r 11023 | . . 3 ⊢ ℝ = (R × {0R}) | |
| 2 | 1 | eleq2i 2825 | . 2 ⊢ (𝐴 ∈ ℝ ↔ 𝐴 ∈ (R × {0R})) |
| 3 | elxp2 5643 | . . 3 ⊢ (𝐴 ∈ (R × {0R}) ↔ ∃𝑥 ∈ R ∃𝑦 ∈ {0R}𝐴 = 〈𝑥, 𝑦〉) | |
| 4 | 0r 10978 | . . . . . . 7 ⊢ 0R ∈ R | |
| 5 | 4 | elexi 3460 | . . . . . 6 ⊢ 0R ∈ V |
| 6 | opeq2 4825 | . . . . . . 7 ⊢ (𝑦 = 0R → 〈𝑥, 𝑦〉 = 〈𝑥, 0R〉) | |
| 7 | 6 | eqeq2d 2744 | . . . . . 6 ⊢ (𝑦 = 0R → (𝐴 = 〈𝑥, 𝑦〉 ↔ 𝐴 = 〈𝑥, 0R〉)) |
| 8 | 5, 7 | rexsn 4634 | . . . . 5 ⊢ (∃𝑦 ∈ {0R}𝐴 = 〈𝑥, 𝑦〉 ↔ 𝐴 = 〈𝑥, 0R〉) |
| 9 | eqcom 2740 | . . . . 5 ⊢ (𝐴 = 〈𝑥, 0R〉 ↔ 〈𝑥, 0R〉 = 𝐴) | |
| 10 | 8, 9 | bitri 275 | . . . 4 ⊢ (∃𝑦 ∈ {0R}𝐴 = 〈𝑥, 𝑦〉 ↔ 〈𝑥, 0R〉 = 𝐴) |
| 11 | 10 | rexbii 3080 | . . 3 ⊢ (∃𝑥 ∈ R ∃𝑦 ∈ {0R}𝐴 = 〈𝑥, 𝑦〉 ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) |
| 12 | 3, 11 | bitri 275 | . 2 ⊢ (𝐴 ∈ (R × {0R}) ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) |
| 13 | 2, 12 | bitri 275 | 1 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 {csn 4575 〈cop 4581 × cxp 5617 Rcnr 10763 0Rc0r 10764 ℝcr 11012 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-oadd 8395 df-omul 8396 df-er 8628 df-ec 8630 df-qs 8634 df-ni 10770 df-pli 10771 df-mi 10772 df-lti 10773 df-plpq 10806 df-mpq 10807 df-ltpq 10808 df-enq 10809 df-nq 10810 df-erq 10811 df-plq 10812 df-mq 10813 df-1nq 10814 df-rq 10815 df-ltnq 10816 df-np 10879 df-1p 10880 df-enr 10953 df-nr 10954 df-0r 10958 df-r 11023 |
| This theorem is referenced by: axaddrcl 11050 axmulrcl 11052 axrrecex 11061 axpre-lttri 11063 axpre-lttrn 11064 axpre-ltadd 11065 axpre-mulgt0 11066 |
| Copyright terms: Public domain | W3C validator |