MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elreal Structured version   Visualization version   GIF version

Theorem elreal 11125
Description: Membership in class of real numbers. (Contributed by NM, 31-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
elreal (𝐴 ∈ ℝ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem elreal
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-r 11119 . . 3 ℝ = (R × {0R})
21eleq2i 2819 . 2 (𝐴 ∈ ℝ ↔ 𝐴 ∈ (R × {0R}))
3 elxp2 5693 . . 3 (𝐴 ∈ (R × {0R}) ↔ ∃𝑥R𝑦 ∈ {0R}𝐴 = ⟨𝑥, 𝑦⟩)
4 0r 11074 . . . . . . 7 0RR
54elexi 3488 . . . . . 6 0R ∈ V
6 opeq2 4869 . . . . . . 7 (𝑦 = 0R → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 0R⟩)
76eqeq2d 2737 . . . . . 6 (𝑦 = 0R → (𝐴 = ⟨𝑥, 𝑦⟩ ↔ 𝐴 = ⟨𝑥, 0R⟩))
85, 7rexsn 4681 . . . . 5 (∃𝑦 ∈ {0R}𝐴 = ⟨𝑥, 𝑦⟩ ↔ 𝐴 = ⟨𝑥, 0R⟩)
9 eqcom 2733 . . . . 5 (𝐴 = ⟨𝑥, 0R⟩ ↔ ⟨𝑥, 0R⟩ = 𝐴)
108, 9bitri 275 . . . 4 (∃𝑦 ∈ {0R}𝐴 = ⟨𝑥, 𝑦⟩ ↔ ⟨𝑥, 0R⟩ = 𝐴)
1110rexbii 3088 . . 3 (∃𝑥R𝑦 ∈ {0R}𝐴 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
123, 11bitri 275 . 2 (𝐴 ∈ (R × {0R}) ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
132, 12bitri 275 1 (𝐴 ∈ ℝ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1533  wcel 2098  wrex 3064  {csn 4623  cop 4629   × cxp 5667  Rcnr 10859  0Rc0r 10860  cr 11108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-inf2 9635
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-oadd 8468  df-omul 8469  df-er 8702  df-ec 8704  df-qs 8708  df-ni 10866  df-pli 10867  df-mi 10868  df-lti 10869  df-plpq 10902  df-mpq 10903  df-ltpq 10904  df-enq 10905  df-nq 10906  df-erq 10907  df-plq 10908  df-mq 10909  df-1nq 10910  df-rq 10911  df-ltnq 10912  df-np 10975  df-1p 10976  df-enr 11049  df-nr 11050  df-0r 11054  df-r 11119
This theorem is referenced by:  axaddrcl  11146  axmulrcl  11148  axrrecex  11157  axpre-lttri  11159  axpre-lttrn  11160  axpre-ltadd  11161  axpre-mulgt0  11162
  Copyright terms: Public domain W3C validator