MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elreal Structured version   Visualization version   GIF version

Theorem elreal 10545
Description: Membership in class of real numbers. (Contributed by NM, 31-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
elreal (𝐴 ∈ ℝ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem elreal
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-r 10539 . . 3 ℝ = (R × {0R})
21eleq2i 2902 . 2 (𝐴 ∈ ℝ ↔ 𝐴 ∈ (R × {0R}))
3 elxp2 5572 . . 3 (𝐴 ∈ (R × {0R}) ↔ ∃𝑥R𝑦 ∈ {0R}𝐴 = ⟨𝑥, 𝑦⟩)
4 0r 10494 . . . . . . 7 0RR
54elexi 3512 . . . . . 6 0R ∈ V
6 opeq2 4796 . . . . . . 7 (𝑦 = 0R → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 0R⟩)
76eqeq2d 2830 . . . . . 6 (𝑦 = 0R → (𝐴 = ⟨𝑥, 𝑦⟩ ↔ 𝐴 = ⟨𝑥, 0R⟩))
85, 7rexsn 4612 . . . . 5 (∃𝑦 ∈ {0R}𝐴 = ⟨𝑥, 𝑦⟩ ↔ 𝐴 = ⟨𝑥, 0R⟩)
9 eqcom 2826 . . . . 5 (𝐴 = ⟨𝑥, 0R⟩ ↔ ⟨𝑥, 0R⟩ = 𝐴)
108, 9bitri 277 . . . 4 (∃𝑦 ∈ {0R}𝐴 = ⟨𝑥, 𝑦⟩ ↔ ⟨𝑥, 0R⟩ = 𝐴)
1110rexbii 3245 . . 3 (∃𝑥R𝑦 ∈ {0R}𝐴 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
123, 11bitri 277 . 2 (𝐴 ∈ (R × {0R}) ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
132, 12bitri 277 1 (𝐴 ∈ ℝ ↔ ∃𝑥R𝑥, 0R⟩ = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 208   = wceq 1531  wcel 2108  wrex 3137  {csn 4559  cop 4565   × cxp 5546  Rcnr 10279  0Rc0r 10280  cr 10528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-omul 8099  df-er 8281  df-ec 8283  df-qs 8287  df-ni 10286  df-pli 10287  df-mi 10288  df-lti 10289  df-plpq 10322  df-mpq 10323  df-ltpq 10324  df-enq 10325  df-nq 10326  df-erq 10327  df-plq 10328  df-mq 10329  df-1nq 10330  df-rq 10331  df-ltnq 10332  df-np 10395  df-1p 10396  df-enr 10469  df-nr 10470  df-0r 10474  df-r 10539
This theorem is referenced by:  axaddrcl  10566  axmulrcl  10568  axrrecex  10577  axpre-lttri  10579  axpre-lttrn  10580  axpre-ltadd  10581  axpre-mulgt0  10582
  Copyright terms: Public domain W3C validator