Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elreal | Structured version Visualization version GIF version |
Description: Membership in class of real numbers. (Contributed by NM, 31-Mar-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elreal | ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-r 10960 | . . 3 ⊢ ℝ = (R × {0R}) | |
2 | 1 | eleq2i 2828 | . 2 ⊢ (𝐴 ∈ ℝ ↔ 𝐴 ∈ (R × {0R})) |
3 | elxp2 5631 | . . 3 ⊢ (𝐴 ∈ (R × {0R}) ↔ ∃𝑥 ∈ R ∃𝑦 ∈ {0R}𝐴 = 〈𝑥, 𝑦〉) | |
4 | 0r 10915 | . . . . . . 7 ⊢ 0R ∈ R | |
5 | 4 | elexi 3459 | . . . . . 6 ⊢ 0R ∈ V |
6 | opeq2 4815 | . . . . . . 7 ⊢ (𝑦 = 0R → 〈𝑥, 𝑦〉 = 〈𝑥, 0R〉) | |
7 | 6 | eqeq2d 2747 | . . . . . 6 ⊢ (𝑦 = 0R → (𝐴 = 〈𝑥, 𝑦〉 ↔ 𝐴 = 〈𝑥, 0R〉)) |
8 | 5, 7 | rexsn 4627 | . . . . 5 ⊢ (∃𝑦 ∈ {0R}𝐴 = 〈𝑥, 𝑦〉 ↔ 𝐴 = 〈𝑥, 0R〉) |
9 | eqcom 2743 | . . . . 5 ⊢ (𝐴 = 〈𝑥, 0R〉 ↔ 〈𝑥, 0R〉 = 𝐴) | |
10 | 8, 9 | bitri 274 | . . . 4 ⊢ (∃𝑦 ∈ {0R}𝐴 = 〈𝑥, 𝑦〉 ↔ 〈𝑥, 0R〉 = 𝐴) |
11 | 10 | rexbii 3093 | . . 3 ⊢ (∃𝑥 ∈ R ∃𝑦 ∈ {0R}𝐴 = 〈𝑥, 𝑦〉 ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) |
12 | 3, 11 | bitri 274 | . 2 ⊢ (𝐴 ∈ (R × {0R}) ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) |
13 | 2, 12 | bitri 274 | 1 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1540 ∈ wcel 2105 ∃wrex 3070 {csn 4570 〈cop 4576 × cxp 5605 Rcnr 10700 0Rc0r 10701 ℝcr 10949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-inf2 9476 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-int 4892 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-1st 7877 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-1o 8345 df-oadd 8349 df-omul 8350 df-er 8547 df-ec 8549 df-qs 8553 df-ni 10707 df-pli 10708 df-mi 10709 df-lti 10710 df-plpq 10743 df-mpq 10744 df-ltpq 10745 df-enq 10746 df-nq 10747 df-erq 10748 df-plq 10749 df-mq 10750 df-1nq 10751 df-rq 10752 df-ltnq 10753 df-np 10816 df-1p 10817 df-enr 10890 df-nr 10891 df-0r 10895 df-r 10960 |
This theorem is referenced by: axaddrcl 10987 axmulrcl 10989 axrrecex 10998 axpre-lttri 11000 axpre-lttrn 11001 axpre-ltadd 11002 axpre-mulgt0 11003 |
Copyright terms: Public domain | W3C validator |