Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axresscn | Structured version Visualization version GIF version |
Description: The real numbers are a subset of the complex numbers. Axiom 1 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-resscn 10927. (Contributed by NM, 1-Mar-1995.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axresscn | ⊢ ℝ ⊆ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0r 10835 | . . 3 ⊢ 0R ∈ R | |
2 | snssi 4747 | . . 3 ⊢ (0R ∈ R → {0R} ⊆ R) | |
3 | xpss2 5609 | . . 3 ⊢ ({0R} ⊆ R → (R × {0R}) ⊆ (R × R)) | |
4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ (R × {0R}) ⊆ (R × R) |
5 | df-r 10880 | . 2 ⊢ ℝ = (R × {0R}) | |
6 | df-c 10876 | . 2 ⊢ ℂ = (R × R) | |
7 | 4, 5, 6 | 3sstr4i 3969 | 1 ⊢ ℝ ⊆ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2110 ⊆ wss 3892 {csn 4567 × cxp 5587 Rcnr 10620 0Rc0r 10621 ℂcc 10868 ℝcr 10869 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-inf2 9375 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7705 df-1st 7822 df-2nd 7823 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-1o 8286 df-oadd 8290 df-omul 8291 df-er 8479 df-ec 8481 df-qs 8485 df-ni 10627 df-pli 10628 df-mi 10629 df-lti 10630 df-plpq 10663 df-mpq 10664 df-ltpq 10665 df-enq 10666 df-nq 10667 df-erq 10668 df-plq 10669 df-mq 10670 df-1nq 10671 df-rq 10672 df-ltnq 10673 df-np 10736 df-1p 10737 df-enr 10810 df-nr 10811 df-0r 10815 df-c 10876 df-r 10880 |
This theorem is referenced by: ax1cn 10904 bj-rrhatsscchat 35401 |
Copyright terms: Public domain | W3C validator |