| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reval | Structured version Visualization version GIF version | ||
| Description: The value of the real part of a complex number. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.) |
| Ref | Expression |
|---|---|
| reval | ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) = ((𝐴 + (∗‘𝐴)) / 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6828 | . . . 4 ⊢ (𝑥 = 𝐴 → (∗‘𝑥) = (∗‘𝐴)) | |
| 2 | oveq12 7361 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ (∗‘𝑥) = (∗‘𝐴)) → (𝑥 + (∗‘𝑥)) = (𝐴 + (∗‘𝐴))) | |
| 3 | 1, 2 | mpdan 687 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 + (∗‘𝑥)) = (𝐴 + (∗‘𝐴))) |
| 4 | 3 | oveq1d 7367 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 + (∗‘𝑥)) / 2) = ((𝐴 + (∗‘𝐴)) / 2)) |
| 5 | df-re 15009 | . 2 ⊢ ℜ = (𝑥 ∈ ℂ ↦ ((𝑥 + (∗‘𝑥)) / 2)) | |
| 6 | ovex 7385 | . 2 ⊢ ((𝐴 + (∗‘𝐴)) / 2) ∈ V | |
| 7 | 4, 5, 6 | fvmpt 6935 | 1 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) = ((𝐴 + (∗‘𝐴)) / 2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ‘cfv 6486 (class class class)co 7352 ℂcc 11011 + caddc 11016 / cdiv 11781 2c2 12187 ∗ccj 15005 ℜcre 15006 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-re 15009 |
| This theorem is referenced by: recl 15019 ref 15021 crre 15023 addcj 15057 sqreulem 15269 recosval 16047 dvmptre 25901 cosargd 26545 lnopunilem1 31992 constrrecl 33803 cnre2csqima 33945 |
| Copyright terms: Public domain | W3C validator |