![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reval | Structured version Visualization version GIF version |
Description: The value of the real part of a complex number. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.) |
Ref | Expression |
---|---|
reval | ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) = ((𝐴 + (∗‘𝐴)) / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6897 | . . . 4 ⊢ (𝑥 = 𝐴 → (∗‘𝑥) = (∗‘𝐴)) | |
2 | oveq12 7429 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ (∗‘𝑥) = (∗‘𝐴)) → (𝑥 + (∗‘𝑥)) = (𝐴 + (∗‘𝐴))) | |
3 | 1, 2 | mpdan 686 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 + (∗‘𝑥)) = (𝐴 + (∗‘𝐴))) |
4 | 3 | oveq1d 7435 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 + (∗‘𝑥)) / 2) = ((𝐴 + (∗‘𝐴)) / 2)) |
5 | df-re 15079 | . 2 ⊢ ℜ = (𝑥 ∈ ℂ ↦ ((𝑥 + (∗‘𝑥)) / 2)) | |
6 | ovex 7453 | . 2 ⊢ ((𝐴 + (∗‘𝐴)) / 2) ∈ V | |
7 | 4, 5, 6 | fvmpt 7005 | 1 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) = ((𝐴 + (∗‘𝐴)) / 2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ‘cfv 6548 (class class class)co 7420 ℂcc 11136 + caddc 11141 / cdiv 11901 2c2 12297 ∗ccj 15075 ℜcre 15076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6500 df-fun 6550 df-fv 6556 df-ov 7423 df-re 15079 |
This theorem is referenced by: recl 15089 ref 15091 crre 15093 addcj 15127 sqreulem 15338 recosval 16112 dvmptre 25900 cosargd 26541 lnopunilem1 31819 cnre2csqima 33512 |
Copyright terms: Public domain | W3C validator |