MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reval Structured version   Visualization version   GIF version

Theorem reval 15031
Description: The value of the real part of a complex number. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
reval (𝐴 ∈ ℂ → (ℜ‘𝐴) = ((𝐴 + (∗‘𝐴)) / 2))

Proof of Theorem reval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6826 . . . 4 (𝑥 = 𝐴 → (∗‘𝑥) = (∗‘𝐴))
2 oveq12 7362 . . . 4 ((𝑥 = 𝐴 ∧ (∗‘𝑥) = (∗‘𝐴)) → (𝑥 + (∗‘𝑥)) = (𝐴 + (∗‘𝐴)))
31, 2mpdan 687 . . 3 (𝑥 = 𝐴 → (𝑥 + (∗‘𝑥)) = (𝐴 + (∗‘𝐴)))
43oveq1d 7368 . 2 (𝑥 = 𝐴 → ((𝑥 + (∗‘𝑥)) / 2) = ((𝐴 + (∗‘𝐴)) / 2))
5 df-re 15025 . 2 ℜ = (𝑥 ∈ ℂ ↦ ((𝑥 + (∗‘𝑥)) / 2))
6 ovex 7386 . 2 ((𝐴 + (∗‘𝐴)) / 2) ∈ V
74, 5, 6fvmpt 6934 1 (𝐴 ∈ ℂ → (ℜ‘𝐴) = ((𝐴 + (∗‘𝐴)) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  cc 11026   + caddc 11031   / cdiv 11795  2c2 12201  ccj 15021  cre 15022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-re 15025
This theorem is referenced by:  recl  15035  ref  15037  crre  15039  addcj  15073  sqreulem  15285  recosval  16063  dvmptre  25889  cosargd  26533  lnopunilem1  31972  constrrecl  33735  cnre2csqima  33877
  Copyright terms: Public domain W3C validator