MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reval Structured version   Visualization version   GIF version

Theorem reval 15125
Description: The value of the real part of a complex number. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
reval (𝐴 ∈ ℂ → (ℜ‘𝐴) = ((𝐴 + (∗‘𝐴)) / 2))

Proof of Theorem reval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6876 . . . 4 (𝑥 = 𝐴 → (∗‘𝑥) = (∗‘𝐴))
2 oveq12 7414 . . . 4 ((𝑥 = 𝐴 ∧ (∗‘𝑥) = (∗‘𝐴)) → (𝑥 + (∗‘𝑥)) = (𝐴 + (∗‘𝐴)))
31, 2mpdan 687 . . 3 (𝑥 = 𝐴 → (𝑥 + (∗‘𝑥)) = (𝐴 + (∗‘𝐴)))
43oveq1d 7420 . 2 (𝑥 = 𝐴 → ((𝑥 + (∗‘𝑥)) / 2) = ((𝐴 + (∗‘𝐴)) / 2))
5 df-re 15119 . 2 ℜ = (𝑥 ∈ ℂ ↦ ((𝑥 + (∗‘𝑥)) / 2))
6 ovex 7438 . 2 ((𝐴 + (∗‘𝐴)) / 2) ∈ V
74, 5, 6fvmpt 6986 1 (𝐴 ∈ ℂ → (ℜ‘𝐴) = ((𝐴 + (∗‘𝐴)) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cfv 6531  (class class class)co 7405  cc 11127   + caddc 11132   / cdiv 11894  2c2 12295  ccj 15115  cre 15116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-re 15119
This theorem is referenced by:  recl  15129  ref  15131  crre  15133  addcj  15167  sqreulem  15378  recosval  16154  dvmptre  25925  cosargd  26569  lnopunilem1  31991  constrrecl  33803  cnre2csqima  33942
  Copyright terms: Public domain W3C validator