MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reval Structured version   Visualization version   GIF version

Theorem reval 14253
Description: The value of the real part of a complex number. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
reval (𝐴 ∈ ℂ → (ℜ‘𝐴) = ((𝐴 + (∗‘𝐴)) / 2))

Proof of Theorem reval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6446 . . . 4 (𝑥 = 𝐴 → (∗‘𝑥) = (∗‘𝐴))
2 oveq12 6931 . . . 4 ((𝑥 = 𝐴 ∧ (∗‘𝑥) = (∗‘𝐴)) → (𝑥 + (∗‘𝑥)) = (𝐴 + (∗‘𝐴)))
31, 2mpdan 677 . . 3 (𝑥 = 𝐴 → (𝑥 + (∗‘𝑥)) = (𝐴 + (∗‘𝐴)))
43oveq1d 6937 . 2 (𝑥 = 𝐴 → ((𝑥 + (∗‘𝑥)) / 2) = ((𝐴 + (∗‘𝐴)) / 2))
5 df-re 14247 . 2 ℜ = (𝑥 ∈ ℂ ↦ ((𝑥 + (∗‘𝑥)) / 2))
6 ovex 6954 . 2 ((𝐴 + (∗‘𝐴)) / 2) ∈ V
74, 5, 6fvmpt 6542 1 (𝐴 ∈ ℂ → (ℜ‘𝐴) = ((𝐴 + (∗‘𝐴)) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2106  cfv 6135  (class class class)co 6922  cc 10270   + caddc 10275   / cdiv 11032  2c2 11430  ccj 14243  cre 14244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3399  df-sbc 3652  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-iota 6099  df-fun 6137  df-fv 6143  df-ov 6925  df-re 14247
This theorem is referenced by:  recl  14257  ref  14259  crre  14261  addcj  14295  sqreulem  14506  recosval  15268  dvmptre  24169  cosargd  24791  lnopunilem1  29441  cnre2csqima  30555
  Copyright terms: Public domain W3C validator