MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ref Structured version   Visualization version   GIF version

Theorem ref 14060
Description: Domain and codomain of the real part function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
ref ℜ:ℂ⟶ℝ

Proof of Theorem ref
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-re 14048 . 2 ℜ = (𝑥 ∈ ℂ ↦ ((𝑥 + (∗‘𝑥)) / 2))
2 reval 14054 . . 3 (𝑥 ∈ ℂ → (ℜ‘𝑥) = ((𝑥 + (∗‘𝑥)) / 2))
3 recl 14058 . . 3 (𝑥 ∈ ℂ → (ℜ‘𝑥) ∈ ℝ)
42, 3eqeltrrd 2851 . 2 (𝑥 ∈ ℂ → ((𝑥 + (∗‘𝑥)) / 2) ∈ ℝ)
51, 4fmpti 6527 1 ℜ:ℂ⟶ℝ
Colors of variables: wff setvar class
Syntax hints:  wcel 2145  wf 6026  cfv 6030  (class class class)co 6796  cc 10140  cr 10141   + caddc 10145   / cdiv 10890  2c2 11276  ccj 14044  cre 14045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-po 5171  df-so 5172  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-2 11285  df-cj 14047  df-re 14048
This theorem is referenced by:  recn2  14539  climre  14544  rlimre  14549  caucvgr  14614  fsumre  14747  recncf  22925  cnrehmeo  22972  mbfdm  23614  ismbf  23616  ismbfcn  23617  mbfconst  23621  ismbfcn2  23626  mbfres  23631  mbfimaopnlem  23642  dvlip  23976  cxpcn3lem  24709  cxpcn3  24710  resqrtcn  24711  mbfresfi  33787  itgaddnc  33801  itgmulc2nc  33809  ftc1anclem5  33820  mbfres2cn  40686
  Copyright terms: Public domain W3C validator