Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ref | Structured version Visualization version GIF version |
Description: Domain and codomain of the real part function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 6-Nov-2013.) |
Ref | Expression |
---|---|
ref | ⊢ ℜ:ℂ⟶ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-re 14512 | . 2 ⊢ ℜ = (𝑥 ∈ ℂ ↦ ((𝑥 + (∗‘𝑥)) / 2)) | |
2 | reval 14518 | . . 3 ⊢ (𝑥 ∈ ℂ → (ℜ‘𝑥) = ((𝑥 + (∗‘𝑥)) / 2)) | |
3 | recl 14522 | . . 3 ⊢ (𝑥 ∈ ℂ → (ℜ‘𝑥) ∈ ℝ) | |
4 | 2, 3 | eqeltrrd 2853 | . 2 ⊢ (𝑥 ∈ ℂ → ((𝑥 + (∗‘𝑥)) / 2) ∈ ℝ) |
5 | 1, 4 | fmpti 6872 | 1 ⊢ ℜ:ℂ⟶ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2111 ⟶wf 6335 ‘cfv 6339 (class class class)co 7155 ℂcc 10578 ℝcr 10579 + caddc 10583 / cdiv 11340 2c2 11734 ∗ccj 14508 ℜcre 14509 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-po 5446 df-so 5447 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-er 8304 df-en 8533 df-dom 8534 df-sdom 8535 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-div 11341 df-2 11742 df-cj 14511 df-re 14512 |
This theorem is referenced by: recn2 15010 climre 15015 rlimre 15020 caucvgr 15085 fsumre 15216 recncf 23608 cnrehmeo 23659 mbfdm 24331 ismbf 24333 ismbfcn 24334 mbfconst 24338 ismbfcn2 24343 mbfres 24349 mbfimaopnlem 24360 dvlip 24697 cxpcn3lem 25440 cxpcn3 25441 resqrtcn 25442 mbfresfi 35409 itgaddnc 35423 itgmulc2nc 35431 ftc1anclem5 35440 mbfres2cn 42994 |
Copyright terms: Public domain | W3C validator |